mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
different strategies for weighted
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
26237a3727
commit
0deb951873
|
@ -147,6 +147,9 @@ namespace opt {
|
|||
void core_maxsat::collect_statistics(statistics& st) const {
|
||||
// nothing specific
|
||||
}
|
||||
void core_maxsat::updt_params(params_ref& p) {
|
||||
// no-op
|
||||
}
|
||||
void core_maxsat::get_model(model_ref& mdl) {
|
||||
mdl = m_model.get();
|
||||
if (!mdl) {
|
||||
|
|
|
@ -43,6 +43,7 @@ namespace opt {
|
|||
virtual void set_cancel(bool f);
|
||||
virtual void collect_statistics(statistics& st) const;
|
||||
virtual void get_model(model_ref& mdl);
|
||||
virtual void updt_params(params_ref& p);
|
||||
private:
|
||||
void set2vector(expr_set const& set, ptr_vector<expr>& es) const;
|
||||
expr_ref mk_at_most(expr_set const& set, unsigned k);
|
||||
|
|
|
@ -368,6 +368,10 @@ namespace opt {
|
|||
m_imp->get_model(m);
|
||||
}
|
||||
|
||||
void fu_malik::updt_params(params_ref& p) {
|
||||
// no-op
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -42,6 +42,7 @@ namespace opt {
|
|||
virtual void set_cancel(bool f);
|
||||
virtual void collect_statistics(statistics& st) const;
|
||||
virtual void get_model(model_ref& m);
|
||||
virtual void updt_params(params_ref& p);
|
||||
};
|
||||
|
||||
};
|
||||
|
|
|
@ -51,6 +51,7 @@ namespace opt {
|
|||
}
|
||||
|
||||
if (m_msolver) {
|
||||
m_msolver->updt_params(m_params);
|
||||
is_sat = (*m_msolver)();
|
||||
if (is_sat == l_true) {
|
||||
m_msolver->get_model(m_model);
|
||||
|
@ -149,6 +150,10 @@ namespace opt {
|
|||
void maxsmt::updt_params(params_ref& p) {
|
||||
opt_params _p(p);
|
||||
m_maxsat_engine = _p.maxsat_engine();
|
||||
m_params = p;
|
||||
if (m_msolver) {
|
||||
m_msolver->updt_params(p);
|
||||
}
|
||||
}
|
||||
|
||||
void maxsmt::collect_statistics(statistics& st) const {
|
||||
|
|
|
@ -34,6 +34,8 @@ namespace opt {
|
|||
virtual void set_cancel(bool f) = 0;
|
||||
virtual void collect_statistics(statistics& st) const = 0;
|
||||
virtual void get_model(model_ref& mdl) = 0;
|
||||
virtual void updt_params(params_ref& p) = 0;
|
||||
|
||||
};
|
||||
/**
|
||||
Takes solver with hard constraints added.
|
||||
|
@ -52,6 +54,7 @@ namespace opt {
|
|||
scoped_ptr<maxsmt_solver> m_msolver;
|
||||
symbol m_maxsat_engine;
|
||||
model_ref m_model;
|
||||
params_ref m_params;
|
||||
public:
|
||||
maxsmt(ast_manager& m): m(m), m_s(0), m_cancel(false), m_soft_constraints(m), m_answer(m) {}
|
||||
|
||||
|
|
|
@ -193,7 +193,14 @@ namespace opt {
|
|||
tactic_ref tac0 = mk_simplify_tactic(m);
|
||||
tactic_ref tac1 = mk_elim01_tactic(m);
|
||||
tactic_ref tac2 = mk_lia2card_tactic(m);
|
||||
tactic_ref tac = and_then(tac0.get(), tac1.get(), tac2.get());
|
||||
tactic_ref tac;
|
||||
opt_params optp(m_params);
|
||||
if (optp.elim_01()) {
|
||||
tac = and_then(tac0.get(), tac1.get(), tac2.get());
|
||||
}
|
||||
else {
|
||||
tac = tac0;
|
||||
}
|
||||
proof_converter_ref pc;
|
||||
expr_dependency_ref core(m);
|
||||
goal_ref_buffer result;
|
||||
|
|
|
@ -8,6 +8,11 @@ def_module_params('opt',
|
|||
('dump_benchmarks', BOOL, False, 'dump benchmarks for profiling'),
|
||||
('print_model', BOOL, False, 'display model for satisfiable constraints'),
|
||||
('debug_conflict', BOOL, False, 'debug conflict resolution'),
|
||||
('wmaxsat_engine', SYMBOL, 'wmax', "weighted maxsat engine: 'wmax', 'iwmax' (iterative), 'bwmax' (bisection)"),
|
||||
('pb_conflict_freq', UINT, 0, 'conflict frequency for pb theory'),
|
||||
('pb_learn_comp', BOOL, True, 'learn complement literals'),
|
||||
('elim_01', BOOL, True, 'eliminate 01 variables')
|
||||
|
||||
))
|
||||
|
||||
|
||||
|
|
|
@ -18,14 +18,16 @@ Notes:
|
|||
Based directly on smt_solver.
|
||||
|
||||
--*/
|
||||
#include"reg_decl_plugins.h"
|
||||
#include"opt_solver.h"
|
||||
#include"smt_context.h"
|
||||
#include"theory_arith.h"
|
||||
#include"theory_diff_logic.h"
|
||||
#include "reg_decl_plugins.h"
|
||||
#include "opt_solver.h"
|
||||
#include "smt_context.h"
|
||||
#include "theory_arith.h"
|
||||
#include "theory_diff_logic.h"
|
||||
#include "theory_pb.h"
|
||||
#include "ast_pp.h"
|
||||
#include "ast_smt_pp.h"
|
||||
#include "pp_params.hpp"
|
||||
#include "opt_params.hpp"
|
||||
#include "model_smt2_pp.h"
|
||||
|
||||
namespace opt {
|
||||
|
@ -46,10 +48,18 @@ namespace opt {
|
|||
opt_solver::~opt_solver() {
|
||||
}
|
||||
|
||||
void opt_solver::updt_params(params_ref const & p) {
|
||||
m_dump_benchmarks = p.get_bool("dump_benchmarks", false);
|
||||
m_params.updt_params(p);
|
||||
m_context.updt_params(p);
|
||||
void opt_solver::updt_params(params_ref & _p) {
|
||||
opt_params p(_p);
|
||||
m_dump_benchmarks = p.dump_benchmarks();
|
||||
m_params.updt_params(_p);
|
||||
m_context.updt_params(_p);
|
||||
smt::theory_id th_id = m.get_family_id("pb");
|
||||
smt::theory* _th = get_context().get_theory(th_id);
|
||||
if (_th) {
|
||||
smt::theory_pb* th = dynamic_cast<smt::theory_pb*>(_th);
|
||||
th->set_conflict_frequency(p.pb_conflict_freq());
|
||||
th->set_learn_complements(p.pb_learn_comp());
|
||||
}
|
||||
}
|
||||
|
||||
void opt_solver::collect_param_descrs(param_descrs & r) {
|
||||
|
|
|
@ -55,7 +55,7 @@ namespace opt {
|
|||
opt_solver(ast_manager & m, params_ref const & p, symbol const & l);
|
||||
virtual ~opt_solver();
|
||||
|
||||
virtual void updt_params(params_ref const & p);
|
||||
virtual void updt_params(params_ref & p);
|
||||
virtual void collect_param_descrs(param_descrs & r);
|
||||
virtual void collect_statistics(statistics & st) const;
|
||||
virtual void assert_expr(expr * t);
|
||||
|
|
|
@ -20,14 +20,23 @@ Notes:
|
|||
#include "smt_theory.h"
|
||||
#include "smt_context.h"
|
||||
#include "ast_pp.h"
|
||||
#include "opt_params.hpp"
|
||||
#include "pb_decl_plugin.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
class theory_weighted_maxsat : public theory {
|
||||
struct stats {
|
||||
unsigned m_num_blocks;
|
||||
void reset() { memset(this, 0, sizeof(*this)); }
|
||||
stats() { reset(); }
|
||||
};
|
||||
|
||||
opt::opt_solver& s;
|
||||
app_ref_vector m_vars; // Auxiliary variables per soft clause
|
||||
expr_ref_vector m_fmls; // Formulas per soft clause
|
||||
app_ref m_min_cost_atom; // atom tracking modified lower bound
|
||||
app_ref_vector m_min_cost_atoms;
|
||||
bool_var m_min_cost_bv; // max cost Boolean variable
|
||||
vector<rational> m_weights; // weights of theory variables.
|
||||
svector<theory_var> m_costs; // set of asserted theory variables
|
||||
|
@ -38,6 +47,7 @@ namespace smt {
|
|||
svector<bool_var> m_var2bool; // theory_var -> bool_var
|
||||
bool m_propagate;
|
||||
svector<bool> m_assigned;
|
||||
stats m_stats;
|
||||
|
||||
public:
|
||||
theory_weighted_maxsat(ast_manager& m, opt::opt_solver& s):
|
||||
|
@ -46,6 +56,7 @@ namespace smt {
|
|||
m_vars(m),
|
||||
m_fmls(m),
|
||||
m_min_cost_atom(m),
|
||||
m_min_cost_atoms(m),
|
||||
m_propagate(false)
|
||||
{}
|
||||
|
||||
|
@ -88,41 +99,8 @@ namespace smt {
|
|||
bool initialized = !m_var2bool.empty();
|
||||
m_propagate = true;
|
||||
|
||||
for (unsigned i = 0; !initialized && i < m_vars.size(); ++i) {
|
||||
app* var = m_vars[i].get();
|
||||
bool_var bv;
|
||||
theory_var v;
|
||||
SASSERT(!ctx.e_internalized(var));
|
||||
enode* x = ctx.mk_enode(var, false, true, true);
|
||||
if (ctx.b_internalized(var)) {
|
||||
bv = ctx.get_bool_var(var);
|
||||
}
|
||||
else {
|
||||
bv = ctx.mk_bool_var(var);
|
||||
}
|
||||
ctx.set_var_theory(bv, get_id());
|
||||
ctx.set_enode_flag(bv, true);
|
||||
v = mk_var(x);
|
||||
ctx.attach_th_var(x, this, v);
|
||||
m_bool2var.insert(bv, v);
|
||||
SASSERT(v == m_var2bool.size());
|
||||
SASSERT(i == v);
|
||||
m_var2bool.push_back(bv);
|
||||
SASSERT(ctx.bool_var2enode(bv));
|
||||
}
|
||||
|
||||
if (!initialized && m_min_cost_atom) {
|
||||
app* var = m_min_cost_atom;
|
||||
if (!ctx.e_internalized(var)) {
|
||||
ctx.mk_enode(var, false, true, true);
|
||||
}
|
||||
if (ctx.b_internalized(var)) {
|
||||
m_min_cost_bv = ctx.get_bool_var(var);
|
||||
}
|
||||
else {
|
||||
m_min_cost_bv = ctx.mk_bool_var(var);
|
||||
}
|
||||
ctx.set_enode_flag(m_min_cost_bv, true);
|
||||
for (unsigned i = 0; i < m_min_cost_atoms.size(); ++i) {
|
||||
app* var = m_min_cost_atoms[i].get();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -139,6 +117,33 @@ namespace smt {
|
|||
m_fmls.push_back(fml);
|
||||
m_assigned.push_back(false);
|
||||
m_min_cost += w;
|
||||
|
||||
register_var(var, true);
|
||||
}
|
||||
|
||||
bool_var register_var(app* var, bool attach) {
|
||||
context & ctx = get_context();
|
||||
ast_manager& m = get_manager();
|
||||
bool_var bv;
|
||||
SASSERT(!ctx.e_internalized(var));
|
||||
enode* x = ctx.mk_enode(var, false, true, true);
|
||||
if (ctx.b_internalized(var)) {
|
||||
bv = ctx.get_bool_var(var);
|
||||
}
|
||||
else {
|
||||
bv = ctx.mk_bool_var(var);
|
||||
}
|
||||
ctx.set_enode_flag(bv, true);
|
||||
if (attach) {
|
||||
ctx.set_var_theory(bv, get_id());
|
||||
theory_var v = mk_var(x);
|
||||
ctx.attach_th_var(x, this, v);
|
||||
m_bool2var.insert(bv, v);
|
||||
SASSERT(v == m_var2bool.size());
|
||||
m_var2bool.push_back(bv);
|
||||
SASSERT(ctx.bool_var2enode(bv));
|
||||
}
|
||||
return bv;
|
||||
}
|
||||
|
||||
rational const& get_min_cost() const {
|
||||
|
@ -151,7 +156,11 @@ namespace smt {
|
|||
strm << "cost <= " << c;
|
||||
m_min_cost = c;
|
||||
m_min_cost_atom = m.mk_fresh_const(strm.str().c_str(), m.mk_bool_sort());
|
||||
m_min_cost_atoms.push_back(m_min_cost_atom);
|
||||
s.mc().insert(m_min_cost_atom->get_decl());
|
||||
|
||||
m_min_cost_bv = register_var(m_min_cost_atom, false);
|
||||
|
||||
return m_min_cost_atom;
|
||||
}
|
||||
|
||||
|
@ -206,8 +215,10 @@ namespace smt {
|
|||
m_bool2var.reset();
|
||||
m_var2bool.reset();
|
||||
m_min_cost_atom = 0;
|
||||
m_min_cost_atoms.reset();
|
||||
m_propagate = false;
|
||||
m_assigned.reset();
|
||||
m_stats.reset();
|
||||
}
|
||||
|
||||
virtual theory * mk_fresh(context * new_ctx) { return 0; }
|
||||
|
@ -216,6 +227,10 @@ namespace smt {
|
|||
virtual void new_eq_eh(theory_var v1, theory_var v2) { }
|
||||
virtual void new_diseq_eh(theory_var v1, theory_var v2) { }
|
||||
|
||||
virtual void collect_statistics(::statistics & st) const {
|
||||
st.update("wmaxsat num blocks", m_stats.m_num_blocks);
|
||||
}
|
||||
|
||||
virtual bool can_propagate() {
|
||||
return m_propagate;
|
||||
}
|
||||
|
@ -253,7 +268,7 @@ namespace smt {
|
|||
disj.push_back(m.mk_not(m_min_cost_atom));
|
||||
}
|
||||
if (is_optimal()) {
|
||||
IF_VERBOSE(1, verbose_stream() << "(wmaxsat with lower bound: " << weight << ")\n";);
|
||||
IF_VERBOSE(1, verbose_stream() << "(wmaxsat with upper bound: " << weight << ")\n";);
|
||||
m_min_cost = weight;
|
||||
m_cost_save.reset();
|
||||
m_cost_save.append(m_costs);
|
||||
|
@ -281,6 +296,7 @@ namespace smt {
|
|||
if (m_vars.empty()) {
|
||||
return;
|
||||
}
|
||||
++m_stats.m_num_blocks;
|
||||
ast_manager& m = get_manager();
|
||||
context& ctx = get_context();
|
||||
literal_vector lits;
|
||||
|
@ -317,43 +333,12 @@ namespace smt {
|
|||
return m_th.m_weights[v] > m_th.m_weights[w];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
namespace opt {
|
||||
|
||||
/**
|
||||
Iteratively increase cost until there is an assignment during
|
||||
final_check that satisfies min_cost.
|
||||
|
||||
Takes: log (n / log(n)) iterations
|
||||
*/
|
||||
|
||||
static lbool iterative_weighted_maxsat(opt_solver& s, smt::theory_weighted_maxsat& wth) {
|
||||
ast_manager& m = s.get_context().get_manager();
|
||||
rational cost = wth.get_min_cost();
|
||||
rational log_cost(1), tmp(1);
|
||||
while (tmp < cost) {
|
||||
++log_cost;
|
||||
tmp *= rational(2);
|
||||
}
|
||||
expr_ref_vector bounds(m);
|
||||
expr_ref bound(m);
|
||||
lbool result = l_false;
|
||||
while (log_cost <= cost && !wth.found_solution() && result != l_undef) {
|
||||
std::cout << "cost: " << log_cost << "\n";
|
||||
bound = wth.set_min_cost(log_cost);
|
||||
bounds.push_back(bound);
|
||||
result = s.check_sat_core(1,bounds.c_ptr()+bounds.size()-1);
|
||||
log_cost *= rational(2);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
struct wmaxsmt::imp {
|
||||
ast_manager& m;
|
||||
opt_solver& s;
|
||||
|
@ -363,6 +348,7 @@ namespace opt {
|
|||
rational m_upper;
|
||||
rational m_lower;
|
||||
model_ref m_model;
|
||||
symbol m_engine;
|
||||
volatile bool m_cancel;
|
||||
|
||||
imp(ast_manager& m, opt_solver& s, expr_ref_vector& soft_constraints, vector<rational> const& weights):
|
||||
|
@ -403,44 +389,17 @@ namespace opt {
|
|||
*/
|
||||
|
||||
lbool operator()() {
|
||||
TRACE("opt", tout << "weighted maxsat\n";);
|
||||
smt::theory_weighted_maxsat& wth = ensure_theory();
|
||||
lbool is_sat = l_true;
|
||||
{
|
||||
solver::scoped_push _s(s);
|
||||
bool was_sat = false;
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
wth.assert_weighted(m_soft[i].get(), m_weights[i]);
|
||||
}
|
||||
while (l_true == is_sat) {
|
||||
is_sat = s.check_sat_core(0,0);
|
||||
if (m_cancel) {
|
||||
is_sat = l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
if (wth.is_optimal()) {
|
||||
s.get_model(m_model);
|
||||
}
|
||||
expr_ref fml = wth.mk_block();
|
||||
s.assert_expr(fml);
|
||||
was_sat = true;
|
||||
}
|
||||
}
|
||||
if (was_sat) {
|
||||
wth.get_assignment(m_assignment);
|
||||
}
|
||||
if (is_sat == l_false && was_sat) {
|
||||
is_sat = l_true;
|
||||
}
|
||||
if (m_engine == symbol("iwmax")) {
|
||||
return iterative_solve();
|
||||
}
|
||||
m_upper = wth.get_min_cost();
|
||||
if (is_sat == l_true) {
|
||||
m_lower = m_upper;
|
||||
if (m_engine == symbol("bwmax")) {
|
||||
return bisection_solve();
|
||||
}
|
||||
TRACE("opt", tout << "min cost: " << m_upper << "\n";);
|
||||
wth.reset();
|
||||
return is_sat;
|
||||
}
|
||||
if (m_engine == symbol("pwmax")) {
|
||||
return pb_solve();
|
||||
}
|
||||
return incremental_solve();
|
||||
}
|
||||
|
||||
rational get_lower() const {
|
||||
return m_lower;
|
||||
|
@ -454,6 +413,219 @@ namespace opt {
|
|||
mdl = m_model.get();
|
||||
}
|
||||
|
||||
|
||||
|
||||
lbool incremental_solve() {
|
||||
TRACE("opt", tout << "weighted maxsat\n";);
|
||||
smt::theory_weighted_maxsat& wth = ensure_theory();
|
||||
solver::scoped_push _s(s);
|
||||
lbool is_sat = l_true;
|
||||
bool was_sat = false;
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
wth.assert_weighted(m_soft[i].get(), m_weights[i]);
|
||||
}
|
||||
solver::scoped_push __s(s);
|
||||
while (l_true == is_sat) {
|
||||
is_sat = s.check_sat_core(0,0);
|
||||
if (m_cancel) {
|
||||
is_sat = l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
if (wth.is_optimal()) {
|
||||
s.get_model(m_model);
|
||||
}
|
||||
expr_ref fml = wth.mk_block();
|
||||
s.assert_expr(fml);
|
||||
was_sat = true;
|
||||
}
|
||||
}
|
||||
if (was_sat) {
|
||||
wth.get_assignment(m_assignment);
|
||||
}
|
||||
if (is_sat == l_false && was_sat) {
|
||||
is_sat = l_true;
|
||||
}
|
||||
m_upper = wth.get_min_cost();
|
||||
if (is_sat == l_true) {
|
||||
m_lower = m_upper;
|
||||
}
|
||||
TRACE("opt", tout << "min cost: " << m_upper << "\n";);
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
/**
|
||||
Iteratively increase cost until there is an assignment during
|
||||
final_check that satisfies min_cost.
|
||||
|
||||
Takes: log (n / log(n)) iterations
|
||||
*/
|
||||
|
||||
lbool iterative_solve() {
|
||||
smt::theory_weighted_maxsat& wth = ensure_theory();
|
||||
solver::scoped_push _s(s);
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
wth.assert_weighted(m_soft[i].get(), m_weights[i]);
|
||||
}
|
||||
solver::scoped_push __s(s);
|
||||
rational cost = wth.get_min_cost();
|
||||
rational log_cost(1), tmp(1);
|
||||
while (tmp < cost) {
|
||||
++log_cost;
|
||||
tmp *= rational(2);
|
||||
}
|
||||
expr_ref_vector bounds(m);
|
||||
expr_ref bound(m);
|
||||
lbool result = l_false;
|
||||
unsigned nsc = 0;
|
||||
m_upper = cost;
|
||||
while (log_cost <= cost && result == l_false) {
|
||||
bound = wth.set_min_cost(log_cost);
|
||||
s.push_core();
|
||||
++nsc;
|
||||
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.iwmax min cost: " << log_cost << ")\n";);
|
||||
TRACE("opt", tout << "cost: " << log_cost << " " << bound << "\n";);
|
||||
bounds.push_back(bound);
|
||||
result = conditional_solve(bound);
|
||||
if (result == l_false) {
|
||||
m_lower = log_cost;
|
||||
}
|
||||
log_cost *= rational(2);
|
||||
if (m_cancel) {
|
||||
result = l_undef;
|
||||
}
|
||||
}
|
||||
s.pop_core(nsc);
|
||||
return result;
|
||||
}
|
||||
|
||||
lbool conditional_solve(expr* cond) {
|
||||
smt::theory_weighted_maxsat& wth = *get_theory();
|
||||
bool was_sat = false;
|
||||
lbool is_sat = l_true;
|
||||
while (l_true == is_sat) {
|
||||
is_sat = s.check_sat_core(1,&cond);
|
||||
if (m_cancel) {
|
||||
is_sat = l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
if (wth.is_optimal()) {
|
||||
s.get_model(m_model);
|
||||
was_sat = true;
|
||||
}
|
||||
expr_ref fml = wth.mk_block();
|
||||
s.assert_expr(fml);
|
||||
}
|
||||
}
|
||||
if (was_sat) {
|
||||
wth.get_assignment(m_assignment);
|
||||
}
|
||||
if (is_sat == l_false && was_sat) {
|
||||
is_sat = l_true;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
m_lower = m_upper = wth.get_min_cost();
|
||||
}
|
||||
TRACE("opt", tout << "min cost: " << m_upper << "\n";);
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
lbool bisection_solve() {
|
||||
TRACE("opt", tout << "weighted maxsat\n";);
|
||||
smt::theory_weighted_maxsat& wth = ensure_theory();
|
||||
solver::scoped_push _s(s);
|
||||
lbool is_sat = l_true;
|
||||
bool was_sat = false;
|
||||
expr_ref_vector bounds(m);
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
wth.assert_weighted(m_soft[i].get(), m_weights[i]);
|
||||
}
|
||||
solver::scoped_push __s(s);
|
||||
m_lower = rational::zero();
|
||||
m_upper = wth.get_min_cost();
|
||||
while (m_lower < m_upper) {
|
||||
rational cost = div(m_upper + m_lower, rational(2));
|
||||
bounds.push_back(wth.set_min_cost(cost));
|
||||
is_sat = s.check_sat_core(1,bounds.c_ptr()+bounds.size()-1);
|
||||
if (m_cancel) {
|
||||
is_sat = l_undef;
|
||||
}
|
||||
switch(is_sat) {
|
||||
case l_true: {
|
||||
if (wth.is_optimal()) {
|
||||
s.get_model(m_model);
|
||||
}
|
||||
expr_ref fml = wth.mk_block();
|
||||
s.assert_expr(fml);
|
||||
m_upper = wth.get_min_cost();
|
||||
break;
|
||||
}
|
||||
case l_false: {
|
||||
m_lower = cost;
|
||||
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.bwmax min cost: " << m_lower << ")\n";);
|
||||
break;
|
||||
}
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
}
|
||||
}
|
||||
if (was_sat) {
|
||||
is_sat = l_true;
|
||||
}
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
// convert bounds constraint into pseudo-Boolean
|
||||
|
||||
lbool pb_solve() {
|
||||
pb_util u(m);
|
||||
expr_ref fml(m), val(m);
|
||||
expr_ref_vector nsoft(m);
|
||||
m_lower = m_upper = rational::zero();
|
||||
rational minw(0);
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
m_upper += m_weights[i];
|
||||
if (m_weights[i] < minw || minw.is_zero()) {
|
||||
minw = m_weights[i];
|
||||
}
|
||||
nsoft.push_back(m.mk_not(m_soft[i].get()));
|
||||
}
|
||||
solver::scoped_push __s(s);
|
||||
lbool is_sat = l_true;
|
||||
bool was_sat = false;
|
||||
while (l_true == is_sat) {
|
||||
is_sat = s.check_sat_core(0,0);
|
||||
if (m_cancel) {
|
||||
is_sat = l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
s.get_model(m_model);
|
||||
m_upper = rational::zero();
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
VERIFY(m_model->eval(m_soft[i].get(), val));
|
||||
m_assignment[i] = !m.is_false(val);
|
||||
if (!m_assignment[i]) {
|
||||
m_upper += m_weights[i];
|
||||
}
|
||||
}
|
||||
|
||||
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.pb with upper bound: " << m_upper << ")\n";);
|
||||
fml = u.mk_le(nsoft.size(), m_weights.c_ptr(), nsoft.c_ptr(), m_upper - minw);
|
||||
s.assert_expr(fml);
|
||||
was_sat = true;
|
||||
}
|
||||
}
|
||||
if (is_sat == l_false && was_sat) {
|
||||
is_sat = l_true;
|
||||
m_lower = m_upper;
|
||||
}
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
void updt_params(params_ref& p) {
|
||||
opt_params _p(p);
|
||||
m_engine = _p.wmaxsat_engine();
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
wmaxsmt::wmaxsmt(ast_manager& m, opt_solver& s, expr_ref_vector& soft_constraints, vector<rational> const& weights) {
|
||||
|
@ -486,8 +658,9 @@ namespace opt {
|
|||
m_imp->get_model(mdl);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void wmaxsmt::updt_params(params_ref& p) {
|
||||
m_imp->updt_params(p);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -40,6 +40,7 @@ namespace opt {
|
|||
virtual void set_cancel(bool f);
|
||||
virtual void collect_statistics(statistics& st) const;
|
||||
virtual void get_model(model_ref& mdl);
|
||||
virtual void updt_params(params_ref& p);
|
||||
};
|
||||
};
|
||||
|
||||
|
|
|
@ -1334,6 +1334,7 @@ namespace smt {
|
|||
TRACE("propagate_bool_var_enode_bug", tout << "var: " << v << " #" << bool_var2expr(v)->get_id() << "\n";);
|
||||
SASSERT(v < static_cast<int>(m_b_internalized_stack.size()));
|
||||
enode * n = bool_var2enode(v);
|
||||
CTRACE("mk_bool_var", !n, tout << "No enode for " << v << "\n";);
|
||||
bool sign = val == l_false;
|
||||
if (n->merge_tf())
|
||||
add_eq(n, sign ? m_false_enode : m_true_enode, eq_justification(literal(v, sign)));
|
||||
|
|
|
@ -328,7 +328,9 @@ namespace smt {
|
|||
theory_pb::theory_pb(ast_manager& m):
|
||||
theory(m.mk_family_id("pb")),
|
||||
m_util(m),
|
||||
m_lemma(null_literal)
|
||||
m_lemma(null_literal),
|
||||
m_learn_complements(false),
|
||||
m_conflict_frequency(0xF)
|
||||
{}
|
||||
|
||||
theory_pb::~theory_pb() {
|
||||
|
@ -716,10 +718,11 @@ namespace smt {
|
|||
|
||||
numeral k = c.k();
|
||||
numeral coeff = c.coeff(w);
|
||||
|
||||
for (unsigned i = c.watch_size(); c.watch_sum() - coeff < k + c.max_watch() && i < c.size(); ++i) {
|
||||
bool add_more = c.watch_sum() - coeff < k + c.max_watch();
|
||||
for (unsigned i = c.watch_size(); add_more && i < c.size(); ++i) {
|
||||
if (ctx.get_assignment(c.lit(i)) != l_false) {
|
||||
add_watch(c, i);
|
||||
add_more = c.watch_sum() - coeff < k + c.max_watch();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -750,8 +753,9 @@ namespace smt {
|
|||
|
||||
literal_vector& lits = get_unhelpful_literals(c, true);
|
||||
lits.push_back(c.lit());
|
||||
numeral deficit = c.watch_sum() - k;
|
||||
for (unsigned i = 0; i < c.size(); ++i) {
|
||||
if (c.watch_sum() - c.coeff(i) < k && ctx.get_assignment(c.lit(i)) == l_undef) {
|
||||
if (ctx.get_assignment(c.lit(i)) == l_undef && deficit < c.coeff(i)) {
|
||||
DEBUG_CODE(validate_assign(c, lits, c.lit(i)););
|
||||
add_assign(c, lits, c.lit(i));
|
||||
}
|
||||
|
@ -1044,12 +1048,18 @@ namespace smt {
|
|||
tout << "\n";
|
||||
display(tout, c, true););
|
||||
|
||||
if (true || (c.m_num_propagations & 0xF) == 0) {
|
||||
justification* js = 0;
|
||||
|
||||
if (m_conflict_frequency == 0 || (0 == (c.m_num_propagations % m_conflict_frequency))) {
|
||||
resolve_conflict(c);
|
||||
}
|
||||
|
||||
justification* js = 0;
|
||||
ctx.mk_clause(lits.size(), lits.c_ptr(), js, CLS_AUX_LEMMA, 0);
|
||||
|
||||
// if (true || (c.m_num_propagations & 0xF) == 0) {
|
||||
// resolve_conflict(c);
|
||||
//}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -1090,7 +1100,7 @@ namespace smt {
|
|||
|
||||
if (ctx.get_assignment(l) != l_false) {
|
||||
m_lemma.m_k -= coeff;
|
||||
if (true && false && is_marked(v)) {
|
||||
if (m_learn_complements && is_marked(v)) {
|
||||
SASSERT(ctx.get_assignment(l) == l_true);
|
||||
numeral& lcoeff = m_lemma.m_args[m_conseq_index[v]].second;
|
||||
lcoeff -= coeff;
|
||||
|
|
|
@ -111,6 +111,8 @@ namespace smt {
|
|||
pb_util m_util;
|
||||
stats m_stats;
|
||||
ptr_vector<ineq> m_to_compile; // inequalities to compile.
|
||||
unsigned m_conflict_frequency;
|
||||
bool m_learn_complements;
|
||||
|
||||
// internalize_atom:
|
||||
literal compile_arg(expr* arg);
|
||||
|
@ -189,5 +191,8 @@ namespace smt {
|
|||
virtual void collect_statistics(::statistics & st) const;
|
||||
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
|
||||
virtual void init_model(model_generator & m);
|
||||
|
||||
void set_conflict_frequency(unsigned f) { m_conflict_frequency = f; }
|
||||
void set_learn_complements(bool l) { m_learn_complements = l; }
|
||||
};
|
||||
};
|
||||
|
|
Loading…
Reference in a new issue