3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-06 06:03:23 +00:00

addressing misc. string bugs

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2019-08-24 15:40:15 +01:00
parent a337a51374
commit 0d9cd7bc2b
6 changed files with 120 additions and 103 deletions

View file

@ -2642,6 +2642,11 @@ namespace smt2 {
check_rparen("invalid get-value command, ')' expected"); check_rparen("invalid get-value command, ')' expected");
model_ref md; model_ref md;
if (m_ctx.ignore_check()) {
expr_stack().shrink(spos);
next();
return;
}
if (!m_ctx.is_model_available(md) || m_ctx.get_check_sat_result() == nullptr) if (!m_ctx.is_model_available(md) || m_ctx.get_check_sat_result() == nullptr)
throw cmd_exception("model is not available"); throw cmd_exception("model is not available");
if (index != 0) { if (index != 0) {

View file

@ -641,7 +641,6 @@ namespace qe {
} }
} }
fml = mk_and(paxioms); fml = mk_and(paxioms);
std::cout << fml << "\n";
} }
} }

View file

@ -3348,7 +3348,7 @@ namespace smt {
if (lit.sign() ? m_model->is_true(v) : m_model->is_false(v)) { if (lit.sign() ? m_model->is_true(v) : m_model->is_false(v)) {
IF_VERBOSE(10, verbose_stream() IF_VERBOSE(10, verbose_stream()
<< "invalid assignment " << (lit.sign() ? "true" : "false") << "invalid assignment " << (lit.sign() ? "true" : "false")
<< " to #" << v->get_id() << " := " << mk_bounded_pp(v, m_manager, 1) << "\n"); << " to #" << v->get_id() << " := " << mk_bounded_pp(v, m_manager, 2) << "\n");
} }
} }
for (clause* cls : m_aux_clauses) { for (clause* cls : m_aux_clauses) {

View file

@ -91,6 +91,30 @@ namespace smt {
return v != null_theory_var && get_enode(v) == n; return v != null_theory_var && get_enode(v) == n;
} }
struct scoped_trace_stream {
ast_manager& m;
scoped_trace_stream(ast_manager& m, std::function<void (void)>& fn): m(m) {
if (m.has_trace_stream()) {
fn();
}
}
scoped_trace_stream(theory& th, std::function<expr* (void)>& fn): m(th.get_manager()) {
if (m.has_trace_stream()) {
expr_ref body(fn(), m);
th.log_axiom_instantiation(body);
}
}
~scoped_trace_stream() {
if (m.has_trace_stream()) {
m.trace_stream() << "[end-of-instance]\n";
}
}
};
protected: protected:
/** /**
\brief Return true if the theory uses default internalization: \brief Return true if the theory uses default internalization:

View file

@ -225,7 +225,7 @@ void theory_seq::solution_map::pop_scope(unsigned num_scopes) {
void theory_seq::solution_map::display(std::ostream& out) const { void theory_seq::solution_map::display(std::ostream& out) const {
for (auto const& kv : m_map) { for (auto const& kv : m_map) {
out << mk_pp(kv.m_key, m) << " |-> " << mk_pp(kv.m_value.first, m) << "\n"; out << mk_bounded_pp(kv.m_key, m) << " |-> " << mk_bounded_pp(kv.m_value.first, m) << "\n";
} }
} }
@ -1458,12 +1458,12 @@ bool theory_seq::branch_variable_mb() {
for (const auto& elem : len1) l1 += elem; for (const auto& elem : len1) l1 += elem;
for (const auto& elem : len2) l2 += elem; for (const auto& elem : len2) l2 += elem;
if (l1 != l2) { if (l1 != l2) {
TRACE("seq", tout << "lengths are not compatible\n";);
expr_ref l = mk_concat(e.ls()); expr_ref l = mk_concat(e.ls());
expr_ref r = mk_concat(e.rs()); expr_ref r = mk_concat(e.rs());
expr_ref lnl = mk_len(l), lnr = mk_len(r); expr_ref lnl = mk_len(l), lnr = mk_len(r);
propagate_eq(e.dep(), lnl, lnr, false); if (propagate_eq(e.dep(), lnl, lnr, false)) {
change = true; change = true;
}
continue; continue;
} }
if (split_lengths(e.dep(), e.ls(), e.rs(), len1, len2)) { if (split_lengths(e.dep(), e.ls(), e.rs(), len1, len2)) {
@ -1472,7 +1472,7 @@ bool theory_seq::branch_variable_mb() {
break; break;
} }
} }
CTRACE("seq", change, tout << "branch_variable_mb\n";); CTRACE("seq", change, get_context().display(tout << "branch_variable_mb\n"););
return change; return change;
} }
@ -2300,13 +2300,12 @@ void theory_seq::propagate_lit(dependency* dep, unsigned n, literal const* _lits
m_new_propagation = true; m_new_propagation = true;
ctx.assign(lit, js); ctx.assign(lit, js);
if (m.has_trace_stream()) { std::function<expr*(void)> fn = [&]() {
expr_ref expr(m); expr* r = ctx.bool_var2expr(lit.var());
expr = ctx.bool_var2expr(lit.var()); if (lit.sign()) r = m.mk_not(r);
if (lit.sign()) expr = m.mk_not(expr); return r;
log_axiom_instantiation(expr); };
m.trace_stream() << "[end-of-instance]\n"; scoped_trace_stream _sts(*this, fn);
}
} }
void theory_seq::set_conflict(dependency* dep, literal_vector const& _lits) { void theory_seq::set_conflict(dependency* dep, literal_vector const& _lits) {
@ -2323,16 +2322,16 @@ void theory_seq::set_conflict(dependency* dep, literal_vector const& _lits) {
get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), 0, nullptr))); get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), 0, nullptr)));
} }
void theory_seq::propagate_eq(dependency* dep, enode* n1, enode* n2) { bool theory_seq::propagate_eq(dependency* dep, enode* n1, enode* n2) {
if (n1->get_root() == n2->get_root()) { if (n1->get_root() == n2->get_root()) {
return; return false;
} }
context& ctx = get_context(); context& ctx = get_context();
literal_vector lits; literal_vector lits;
enode_pair_vector eqs; enode_pair_vector eqs;
if (!linearize(dep, eqs, lits)) { if (!linearize(dep, eqs, lits)) {
TRACE("seq", tout << "not linearized\n";); TRACE("seq", tout << "not linearized\n";);
return; return false;
} }
TRACE("seq_verbose", TRACE("seq_verbose",
tout << "assert: " << mk_bounded_pp(n1->get_owner(), m) << " = " << mk_bounded_pp(n2->get_owner(), m) << " <-\n"; tout << "assert: " << mk_bounded_pp(n1->get_owner(), m) << " = " << mk_bounded_pp(n2->get_owner(), m) << " <-\n";
@ -2342,30 +2341,30 @@ void theory_seq::propagate_eq(dependency* dep, enode* n1, enode* n2) {
justification* js = ctx.mk_justification( justification* js = ctx.mk_justification(
ext_theory_eq_propagation_justification( ext_theory_eq_propagation_justification(
get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), n1, n2)); get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), n1, n2));
if (m.has_trace_stream()) {
app_ref body(m); {
body = m.mk_eq(n1->get_owner(), n2->get_owner()); std::function<expr*(void)> fn = [&]() { return m.mk_eq(n1->get_owner(), n2->get_owner()); };
log_axiom_instantiation(body); scoped_trace_stream _sts(*this, fn);
}
ctx.assign_eq(n1, n2, eq_justification(js)); ctx.assign_eq(n1, n2, eq_justification(js));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n"; }
m_new_propagation = true; m_new_propagation = true;
enforce_length_coherence(n1, n2); enforce_length_coherence(n1, n2);
return true;
} }
void theory_seq::propagate_eq(dependency* dep, expr* e1, expr* e2, bool add_eq) { bool theory_seq::propagate_eq(dependency* dep, expr* e1, expr* e2, bool add_eq) {
literal_vector lits; literal_vector lits;
propagate_eq(dep, lits, e1, e2, add_eq); return propagate_eq(dep, lits, e1, e2, add_eq);
} }
void theory_seq::propagate_eq(dependency* dep, literal lit, expr* e1, expr* e2, bool add_to_eqs) { bool theory_seq::propagate_eq(dependency* dep, literal lit, expr* e1, expr* e2, bool add_to_eqs) {
literal_vector lits; literal_vector lits;
lits.push_back(lit); lits.push_back(lit);
propagate_eq(dep, lits, e1, e2, add_to_eqs); return propagate_eq(dep, lits, e1, e2, add_to_eqs);
} }
void theory_seq::enforce_length_coherence(enode* n1, enode* n2) { void theory_seq::enforce_length_coherence(enode* n1, enode* n2) {
expr* o1 = n1->get_owner(); expr* o1 = n1->get_owner();
expr* o2 = n2->get_owner(); expr* o2 = n2->get_owner();
@ -2442,7 +2441,7 @@ bool theory_seq::simplify_eq(expr_ref_vector& ls, expr_ref_vector& rs, dependenc
// no-op // no-op
} }
else if (m_util.is_seq(li) || m_util.is_re(li)) { else if (m_util.is_seq(li) || m_util.is_re(li)) {
TRACE("seq", tout << "inserting " << li << " = " << ri << "\n";); TRACE("seq_verbose", tout << "inserting " << li << " = " << ri << "\n";);
m_eqs.push_back(mk_eqdep(li, ri, deps)); m_eqs.push_back(mk_eqdep(li, ri, deps));
} }
else { else {
@ -2508,7 +2507,6 @@ bool theory_seq::solve_unit_eq(expr_ref_vector const& l, expr_ref_vector const&
bool theory_seq::reduce_length(expr* l, expr* r, literal_vector& lits) { bool theory_seq::reduce_length(expr* l, expr* r, literal_vector& lits) {
expr_ref len1(m), len2(m); expr_ref len1(m), len2(m);
lits.reset(); lits.reset();
if (get_length(l, len1, lits) && if (get_length(l, len1, lits) &&
@ -2593,11 +2591,9 @@ bool theory_seq::add_solution(expr* l, expr* r, dependency* deps) {
m_rep.update(l, r, deps); m_rep.update(l, r, deps);
enode* n1 = ensure_enode(l); enode* n1 = ensure_enode(l);
enode* n2 = ensure_enode(r); enode* n2 = ensure_enode(r);
TRACE("seq", tout << mk_pp(l, m) << " ==> " << mk_pp(r, m) << "\n"; display_deps(tout, deps); TRACE("seq", tout << mk_pp(l, m) << " ==> " << mk_bounded_pp(r, m) << "\n"; display_deps(tout, deps);
tout << (n1->get_root() == n2->get_root()) << "\n";); tout << (n1->get_root() == n2->get_root()) << "\n";);
if (n1->get_root() != n2->get_root()) {
propagate_eq(deps, n1, n2); propagate_eq(deps, n1, n2);
}
return true; return true;
} }
@ -3902,11 +3898,9 @@ std::ostream& theory_seq::display_deps(std::ostream& out, literal_vector const&
smt2_pp_environment_dbg env(m); smt2_pp_environment_dbg env(m);
params_ref p; params_ref p;
for (auto const& eq : eqs) { for (auto const& eq : eqs) {
out << " (= "; out << " (= " << mk_bounded_pp(eq.first->get_owner(), m)
ast_smt2_pp(out, eq.first->get_owner(), env, p, 5); << "\n " << mk_bounded_pp(eq.second->get_owner(), m)
out << "\n "; << ")\n";
ast_smt2_pp(out, eq.second->get_owner(), env, p, 5);
out << ")\n";
} }
for (literal l : lits) { for (literal l : lits) {
if (l == true_literal) { if (l == true_literal) {
@ -3918,11 +3912,10 @@ std::ostream& theory_seq::display_deps(std::ostream& out, literal_vector const&
else { else {
expr* e = ctx.bool_var2expr(l.var()); expr* e = ctx.bool_var2expr(l.var());
if (l.sign()) { if (l.sign()) {
ast_smt2_pp(out << " (not ", e, env, p, 7); out << "(not " << mk_bounded_pp(e, m) << ")";
out << ")";
} }
else { else {
ast_smt2_pp(out << " ", e, env, p, 2); out << mk_bounded_pp(e, m);
} }
} }
out << "\n"; out << "\n";
@ -4177,7 +4170,6 @@ app* theory_seq::mk_value(app* e) {
void theory_seq::validate_model(model& mdl) { void theory_seq::validate_model(model& mdl) {
std::cout << "validate-seq-model\n";
for (auto const& eq : m_eqs) { for (auto const& eq : m_eqs) {
expr_ref_vector ls = eq.ls(); expr_ref_vector ls = eq.ls();
expr_ref_vector rs = eq.rs(); expr_ref_vector rs = eq.rs();
@ -4211,6 +4203,16 @@ void theory_seq::validate_model(model& mdl) {
} }
} }
#if 0
for (auto const& kv : m_rep) {
expr_ref l(kv.m_key, m);
expr_ref r(kv.m_value.first, m);
if (!mdl.are_equal(l, r)) {
IF_VERBOSE(0, verbose_stream() << l << " = " << r << " but " << mdl(l) << " != " << mdl(r) << "\n");
}
}
#endif
#if 0 #if 0
ptr_vector<expr> fmls; ptr_vector<expr> fmls;
context& ctx = get_context(); context& ctx = get_context();
@ -4927,13 +4929,10 @@ void theory_seq::propagate_in_re(expr* n, bool is_true) {
} }
else { else {
TRACE("seq", ctx.display_literals_verbose(tout, lits) << "\n";); TRACE("seq", ctx.display_literals_verbose(tout, lits) << "\n";);
if (m.has_trace_stream()) {
app_ref body(m); std::function<expr*(void)> fn = [&]() { return m.mk_implies(n, m.mk_or(exprs.size(), exprs.c_ptr())); };
body = m.mk_implies(n, m.mk_or(exprs.size(), exprs.c_ptr())); scoped_trace_stream _sts(*this, fn);
log_axiom_instantiation(body);
}
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr()); ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
} }
} }
@ -5259,7 +5258,7 @@ void theory_seq::add_extract_suffix_axiom(expr* e, expr* s, expr* i) {
*/ */
void theory_seq::add_at_axiom(expr* e) { void theory_seq::add_at_axiom(expr* e) {
TRACE("seq", tout << "at-axiom: " << mk_pp(e, m) << "\n";); TRACE("seq", tout << "at-axiom: " << get_context().get_scope_level() << " " << mk_bounded_pp(e, m) << "\n";);
expr* s = nullptr, *i = nullptr; expr* s = nullptr, *i = nullptr;
VERIFY(m_util.str.is_at(e, s, i)); VERIFY(m_util.str.is_at(e, s, i));
expr_ref zero(m_autil.mk_int(0), m); expr_ref zero(m_autil.mk_int(0), m);
@ -5320,13 +5319,7 @@ void theory_seq::add_nth_axiom(expr* e) {
expr_ref rhs(s, m); expr_ref rhs(s, m);
expr_ref lhs(m_util.str.mk_unit(e), m); expr_ref lhs(m_util.str.mk_unit(e), m);
if (!m_util.str.is_at(s) || zero != i) rhs = m_util.str.mk_at(s, i); if (!m_util.str.is_at(s) || zero != i) rhs = m_util.str.mk_at(s, i);
if (e->get_id() == 420) {
enable_trace("seq");
}
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(lhs, rhs, false)); add_axiom(~i_ge_0, i_ge_len_s, mk_eq(lhs, rhs, false));
if (e->get_id() == 420) {
disable_trace("seq");
}
} }
} }
@ -5426,23 +5419,20 @@ void theory_seq::add_axiom(literal l1, literal l2, literal l3, literal l4, liter
if (l3 != null_literal && l3 != false_literal) { ctx.mark_as_relevant(l3); lits.push_back(l3); push_lit_as_expr(l3, exprs); } if (l3 != null_literal && l3 != false_literal) { ctx.mark_as_relevant(l3); lits.push_back(l3); push_lit_as_expr(l3, exprs); }
if (l4 != null_literal && l4 != false_literal) { ctx.mark_as_relevant(l4); lits.push_back(l4); push_lit_as_expr(l4, exprs); } if (l4 != null_literal && l4 != false_literal) { ctx.mark_as_relevant(l4); lits.push_back(l4); push_lit_as_expr(l4, exprs); }
if (l5 != null_literal && l5 != false_literal) { ctx.mark_as_relevant(l5); lits.push_back(l5); push_lit_as_expr(l5, exprs); } if (l5 != null_literal && l5 != false_literal) { ctx.mark_as_relevant(l5); lits.push_back(l5); push_lit_as_expr(l5, exprs); }
TRACE("seq", ctx.display_literals_verbose(tout << "assert:\n", lits) << "\n";); TRACE("seq", ctx.display_literals_verbose(tout << "assert:", lits) << "\n";);
m_new_propagation = true; m_new_propagation = true;
++m_stats.m_add_axiom; ++m_stats.m_add_axiom;
if (m.has_trace_stream()) { {
app_ref body(m); std::function<expr*(void)> fn = [&]() { return m.mk_or(exprs.size(), exprs.c_ptr()); };
body = m.mk_or(exprs.size(), exprs.c_ptr()); scoped_trace_stream _sts(*this, fn);
log_axiom_instantiation(body);
}
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr()); ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
if (m.has_trace_stream()) {
m.trace_stream() << "[end-of-instance]\n";
} }
#if 0
if (!ctx.at_base_level() && l2 == null_literal) { if (!ctx.at_base_level() && l2 == null_literal) {
m_trail_stack.push(push_replay(alloc(replay_unit_literal, m, ctx.bool_var2expr(l1.var()), l1.sign()))); m_trail_stack.push(push_replay(alloc(replay_unit_literal, m, ctx.bool_var2expr(l1.var()), l1.sign())));
} }
#endif
} }
@ -5532,33 +5522,33 @@ theory_seq::dependency* theory_seq::mk_join(dependency* deps, literal_vector con
return deps; return deps;
} }
void theory_seq::propagate_eq(literal lit, expr* e1, expr* e2, bool add_to_eqs) { bool theory_seq::propagate_eq(literal lit, expr* e1, expr* e2, bool add_to_eqs) {
literal_vector lits; literal_vector lits;
lits.push_back(lit); lits.push_back(lit);
propagate_eq(nullptr, lits, e1, e2, add_to_eqs); return propagate_eq(nullptr, lits, e1, e2, add_to_eqs);
} }
void theory_seq::propagate_eq(dependency* deps, literal_vector const& _lits, expr* e1, expr* e2, bool add_to_eqs) { bool theory_seq::propagate_eq(dependency* deps, literal_vector const& _lits, expr* e1, expr* e2, bool add_to_eqs) {
context& ctx = get_context(); context& ctx = get_context();
enode* n1 = ensure_enode(e1); enode* n1 = ensure_enode(e1);
enode* n2 = ensure_enode(e2); enode* n2 = ensure_enode(e2);
if (n1->get_root() == n2->get_root()) { if (n1->get_root() == n2->get_root()) {
return; return false;
} }
ctx.mark_as_relevant(n1); ctx.mark_as_relevant(n1);
ctx.mark_as_relevant(n2); ctx.mark_as_relevant(n2);
literal_vector lits(_lits); literal_vector lits(_lits);
enode_pair_vector eqs; enode_pair_vector eqs;
if (!linearize(deps, eqs, lits)) if (!linearize(deps, eqs, lits)) {
return; return false;
}
if (add_to_eqs) { if (add_to_eqs) {
deps = mk_join(deps, _lits); deps = mk_join(deps, _lits);
new_eq_eh(deps, n1, n2); new_eq_eh(deps, n1, n2);
} }
TRACE("seq", TRACE("seq_verbose",
tout << "assert: " << mk_pp(e1, m) << " = " << mk_pp(e2, m) << " <- \n"; tout << "assert: " << mk_pp(e1, m) << " = " << mk_pp(e2, m) << " <- \n";
if (!lits.empty()) { ctx.display_literals_verbose(tout, lits) << "\n"; }); if (!lits.empty()) { ctx.display_literals_verbose(tout, lits) << "\n"; });
justification* js = justification* js =
@ -5567,23 +5557,22 @@ void theory_seq::propagate_eq(dependency* deps, literal_vector const& _lits, exp
get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), n1, n2)); get_id(), ctx.get_region(), lits.size(), lits.c_ptr(), eqs.size(), eqs.c_ptr(), n1, n2));
m_new_propagation = true; m_new_propagation = true;
if (m.has_trace_stream()) {
app_ref body(m); std::function<expr*(void)> fn = [&]() { return m.mk_eq(e1, e2); };
body = m.mk_eq(e1, e2); scoped_trace_stream _sts(*this, fn);
log_axiom_instantiation(body);
}
ctx.assign_eq(n1, n2, eq_justification(js)); ctx.assign_eq(n1, n2, eq_justification(js));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n"; return true;
} }
void theory_seq::assign_eh(bool_var v, bool is_true) { void theory_seq::assign_eh(bool_var v, bool is_true) {
context & ctx = get_context(); context & ctx = get_context();
expr* e = ctx.bool_var2expr(v); expr* e = ctx.bool_var2expr(v);
expr* e1 = nullptr, *e2 = nullptr; expr* e1 = nullptr, *e2 = nullptr;
expr_ref f(m); expr_ref f(m);
literal lit(v, !is_true); literal lit(v, !is_true);
TRACE("seq", tout << (is_true?"":"not ") << mk_pp(e, m) << "\n";); TRACE("seq", tout << (is_true?"":"not ") << mk_bounded_pp(e, m) << "\n";);
if (m_util.str.is_prefix(e, e1, e2)) { if (m_util.str.is_prefix(e, e1, e2)) {
if (is_true) { if (is_true) {
@ -5616,13 +5605,13 @@ void theory_seq::assign_eh(bool_var v, bool is_true) {
lits.push_back(mk_literal(d)); lits.push_back(mk_literal(d));
} }
++m_stats.m_add_axiom; ++m_stats.m_add_axiom;
if (m.has_trace_stream()) {
app_ref body(m); {
body = m.mk_implies(e, m.mk_or(disj.size(), disj.c_ptr())); std::function<expr*(void)> fn = [&]() { return m.mk_implies(e, m.mk_or(disj.size(), disj.c_ptr())); };
log_axiom_instantiation(body); scoped_trace_stream _sts(*this, fn);
}
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr()); ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n"; }
for (expr* d : disj) { for (expr* d : disj) {
add_axiom(lit, ~mk_literal(d)); add_axiom(lit, ~mk_literal(d));
} }
@ -5833,7 +5822,6 @@ void theory_seq::restart_eh() {
} }
void theory_seq::relevant_eh(app* n) { void theory_seq::relevant_eh(app* n) {
TRACE("seq", tout << mk_pp(n, m) << "\n";);
if (m_util.str.is_index(n) || if (m_util.str.is_index(n) ||
m_util.str.is_replace(n) || m_util.str.is_replace(n) ||
m_util.str.is_extract(n) || m_util.str.is_extract(n) ||
@ -6005,13 +5993,12 @@ void theory_seq::propagate_accept(literal lit, expr* acc) {
lits.push_back(step); lits.push_back(step);
exprs.push_back(step_e); exprs.push_back(step_e);
} }
if (m.has_trace_stream()) {
app_ref body(m); {
body = m.mk_implies(acc, m.mk_or(exprs.size(), exprs.c_ptr())); std::function<expr*(void)> fn = [&]() { return m.mk_implies(acc, m.mk_or(exprs.size(), exprs.c_ptr())); };
log_axiom_instantiation(body); scoped_trace_stream _sts(*this, fn);
}
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr()); ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n"; }
if (_idx.get_unsigned() > m_max_unfolding_depth && if (_idx.get_unsigned() > m_max_unfolding_depth &&
m_max_unfolding_lit != null_literal && ctx.get_scope_level() > 0) { m_max_unfolding_lit != null_literal && ctx.get_scope_level() > 0) {

View file

@ -94,6 +94,8 @@ namespace smt {
void push_scope() { m_limit.push_back(m_updates.size()); } void push_scope() { m_limit.push_back(m_updates.size()); }
void pop_scope(unsigned num_scopes); void pop_scope(unsigned num_scopes);
void display(std::ostream& out) const; void display(std::ostream& out) const;
eqdep_map_t::iterator begin() { return m_map.begin(); }
eqdep_map_t::iterator end() { return m_map.end(); }
}; };
// Table of current disequalities // Table of current disequalities
@ -529,11 +531,11 @@ namespace smt {
bool linearize(dependency* dep, enode_pair_vector& eqs, literal_vector& lits) const; bool linearize(dependency* dep, enode_pair_vector& eqs, literal_vector& lits) const;
void propagate_lit(dependency* dep, literal lit) { propagate_lit(dep, 0, nullptr, lit); } void propagate_lit(dependency* dep, literal lit) { propagate_lit(dep, 0, nullptr, lit); }
void propagate_lit(dependency* dep, unsigned n, literal const* lits, literal lit); void propagate_lit(dependency* dep, unsigned n, literal const* lits, literal lit);
void propagate_eq(dependency* dep, enode* n1, enode* n2); bool propagate_eq(dependency* dep, enode* n1, enode* n2);
void propagate_eq(literal lit, expr* e1, expr* e2, bool add_to_eqs); bool propagate_eq(literal lit, expr* e1, expr* e2, bool add_to_eqs);
void propagate_eq(dependency* dep, literal_vector const& lits, expr* e1, expr* e2, bool add_to_eqs = true); bool propagate_eq(dependency* dep, literal_vector const& lits, expr* e1, expr* e2, bool add_to_eqs = true);
void propagate_eq(dependency* dep, expr* e1, expr* e2, bool add_to_eqs = true); bool propagate_eq(dependency* dep, expr* e1, expr* e2, bool add_to_eqs = true);
void propagate_eq(dependency* dep, literal lit, expr* e1, expr* e2, bool add_to_eqs = true); bool propagate_eq(dependency* dep, literal lit, expr* e1, expr* e2, bool add_to_eqs = true);
void set_conflict(dependency* dep, literal_vector const& lits = literal_vector()); void set_conflict(dependency* dep, literal_vector const& lits = literal_vector());
u_map<unsigned> m_branch_start; u_map<unsigned> m_branch_start;