3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-28 05:58:55 +00:00

spacer: lemma generalizer for small numbers

Attempts to reduce denominators in coefficients of farkas lemmas
This commit is contained in:
Arie Gurfinkel 2019-09-09 19:55:21 +02:00 committed by Nikolaj Bjorner
parent 78a1f53ac9
commit 0d3fed9a6a
6 changed files with 249 additions and 31 deletions

View file

@ -0,0 +1,164 @@
/*++
Copyright (c) 2019 Microsoft Corporation and Arie Gurfinkel
Module Name:
spacer_arith_generalizers.cpp
Abstract:
Arithmetic-related generalizers
Author:
Arie Gurfinkel
Revision History:
--*/
#include "ast/rewriter/rewriter.h"
#include "ast/rewriter/rewriter_def.h"
#include "muz/spacer/spacer_generalizers.h"
namespace spacer {
namespace {
/* Rewrite all denominators to be no larger than a given limit */
struct limit_denominator_rewriter_cfg : public default_rewriter_cfg {
ast_manager &m;
arith_util m_arith;
rational m_limit;
limit_denominator_rewriter_cfg(ast_manager &manager, rational limit)
: m(manager), m_arith(m), m_limit(limit) {}
bool is_numeral(func_decl *f, rational &val, bool &is_int) {
if (f->get_family_id() == m_arith.get_family_id() &&
f->get_decl_kind() == OP_NUM) {
val = f->get_parameter(0).get_rational();
is_int = f->get_parameter(1).get_int() != 0;
return true;
}
return false;
}
bool limit_denominator(rational &num) {
rational n, d;
n = numerator(num);
d = denominator(num);
if (d < m_limit) return false;
/*
Iteratively computes approximation using continuous fraction
decomposition
p(-1) = 0, p(0) = 1
p(j) = t(j)*p(j-1) + p(j-2)
q(-1) = 1, q(0) = 0
q(j) = t(j)*q(j-1) + q(j-2)
cf[t1; t2, ..., tr] = p(r) / q(r) for r >= 1
reference: https://www.math.u-bordeaux.fr/~pjaming/M1/exposes/MA2.pdf
*/
rational p0(0), p1(1);
rational q0(1), q1(0);
while (d != rational(0)) {
rational tj(0), rem(0);
rational p2(0), q2(0);
tj = div(n, d);
q2 = tj * q1 + q0;
p2 = tj * p1 + p0;
if (q2 >= m_limit) {
num = p2/q2;
return true;
}
rem = n - tj * d;
p0 = p1;
p1 = p2;
q0 = q1;
q1 = q2;
n = d;
d = rem;
}
return false;
}
br_status reduce_app(func_decl *f, unsigned num, expr *const *args,
expr_ref &result, proof_ref &result_pr) {
bool is_int;
rational val;
if (is_numeral(f, val, is_int) && !is_int) {
if (limit_denominator(val)) {
result = m_arith.mk_numeral(val, false);
return BR_DONE;
}
}
return BR_FAILED;
}
};
} // namespace
limit_num_generalizer::limit_num_generalizer(context &ctx,
unsigned failure_limit)
: lemma_generalizer(ctx), m_failure_limit(failure_limit) {}
bool limit_num_generalizer::limit_denominators(expr_ref_vector &lits,
rational &limit) {
ast_manager &m = m_ctx.get_ast_manager();
limit_denominator_rewriter_cfg rw_cfg(m, limit);
rewriter_tpl<limit_denominator_rewriter_cfg> rw(m, false, rw_cfg);
expr_ref lit(m);
bool dirty = false;
for (unsigned i = 0, sz = lits.size(); i < sz; ++i) {
rw(lits.get(i), lit);
dirty |= (lits.get(i) != lit.get());
lits[i] = lit;
}
return dirty;
}
void limit_num_generalizer::operator()(lemma_ref &lemma) {
if (lemma->get_cube().empty()) return;
m_st.count++;
scoped_watch _w_(m_st.watch);
unsigned uses_level;
pred_transformer &pt = lemma->get_pob()->pt();
ast_manager &m = pt.get_ast_manager();
expr_ref_vector cube(m);
unsigned weakness = lemma->weakness();
rational limit(100);
for (unsigned num_failures = 0; num_failures < m_failure_limit;
++num_failures) {
cube.reset();
cube.append(lemma->get_cube());
// try to limit denominators
if (!limit_denominators(cube, limit)) return;
// check that the result is inductive
if (pt.check_inductive(lemma->level(), cube, uses_level, weakness)) {
lemma->update_cube(lemma->get_pob(), cube);
lemma->set_level(uses_level);
// done
return;
}
++m_st.num_failures;
// increase limit
limit = limit * 10;
}
}
void limit_num_generalizer::collect_statistics(statistics &st) const {
st.update("time.spacer.solve.reach.gen.lim_num", m_st.watch.get_seconds());
st.update("limitted num gen", m_st.count);
st.update("limitted num gen failures", m_st.num_failures);
}
} // namespace spacer