mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
remove stale functionality, finish implementation for super-slices
This commit is contained in:
parent
6b12bd6dcd
commit
0d3a465e75
2 changed files with 18 additions and 178 deletions
|
@ -33,15 +33,16 @@ namespace polysat {
|
|||
// 2^(w-hi+1)* x >=
|
||||
bool fixed_bits::check(rational const& val, fi_record& fi) {
|
||||
unsigned sz = c.size(m_var);
|
||||
rational bw = rational::power_of_two(sz);
|
||||
for (auto const& s : m_fixed_slices) {
|
||||
rational bw = rational::power_of_two(s.length);
|
||||
rational sbw = rational::power_of_two(s.length);
|
||||
// slice is properly contained in bit-vector variable
|
||||
if (s.length <= sz && s.value != mod(machine_div2k(val, s.offset + 1), bw)) {
|
||||
if (s.length <= sz && s.value != mod(machine_div2k(val, s.offset + 1), sbw)) {
|
||||
SASSERT(s.offset + s.length <= sz);
|
||||
rational hi_val = s.value;
|
||||
rational lo_val = mod(s.value + 1, bw);
|
||||
pdd lo = c.value(rational::power_of_two(sz - s.offset - s.length) * lo_val, c.size(m_var));
|
||||
pdd hi = c.value(rational::power_of_two(sz - s.offset - s.length) * hi_val, c.size(m_var));
|
||||
rational lo_val = mod(s.value + 1, sbw);
|
||||
pdd lo = c.value(rational::power_of_two(sz - s.offset - s.length) * lo_val, sz);
|
||||
pdd hi = c.value(rational::power_of_two(sz - s.offset - s.length) * hi_val, sz);
|
||||
fi.reset();
|
||||
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
||||
fi.deps.push_back(dependency({ m_var, s }));
|
||||
|
@ -51,8 +52,17 @@ namespace polysat {
|
|||
}
|
||||
// slice, properly contains variable.
|
||||
// s.offset refers to offset in containing value.
|
||||
if (s.length > sz) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
if (s.length > sz && mod(machine_div2k(s.value, s.offset), bw) != val) {
|
||||
rational hi_val = mod(machine_div2k(s.value, s.offset), bw);
|
||||
rational lo_val = mod(hi_val + 1, bw);
|
||||
pdd lo = c.value(lo_val, sz);
|
||||
pdd hi = c.value(hi_val, sz);
|
||||
fi.reset();
|
||||
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
||||
fi.deps.push_back(dependency({ m_var, s }));
|
||||
fi.bit_width = sz;
|
||||
fi.coeff = 1;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
@ -62,167 +72,6 @@ namespace polysat {
|
|||
for (auto const& s : m_fixed_slices)
|
||||
out << s.value << "[" << s.length << "]@" << s.offset << "\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
/**
|
||||
* 2^k * x = 2^k * b
|
||||
* ==> x[N-k-1:0] = b[N-k-1:0]
|
||||
*/
|
||||
bool get_eq_fixed_lsb(pdd const& p, fixed_slice& out) {
|
||||
SASSERT(!p.is_val());
|
||||
unsigned const N = p.power_of_2();
|
||||
// Recognize p = 2^k * a * x - 2^k * b
|
||||
if (!p.hi().is_val())
|
||||
return false;
|
||||
if (!p.lo().is_val())
|
||||
return false;
|
||||
// p = c * x - d
|
||||
rational const c = p.hi().val();
|
||||
rational const d = (-p.lo()).val();
|
||||
SASSERT(!c.is_zero());
|
||||
#if 1
|
||||
// NOTE: ule_constraint::simplify removes odd factors of the leading term
|
||||
unsigned k;
|
||||
VERIFY(c.is_power_of_two(k));
|
||||
if (d.parity(N) < k)
|
||||
return false;
|
||||
rational const b = machine_div2k(d, k);
|
||||
out = fixed_slice(b, 0, N - k);
|
||||
SASSERT_EQ(d, b * rational::power_of_two(k));
|
||||
SASSERT_EQ(p, (p.manager().mk_var(p.var()) - out.value) * rational::power_of_two(k));
|
||||
return true;
|
||||
#else
|
||||
// branch if we want to support non-simplifed constraints (not recommended)
|
||||
//
|
||||
// 2^k * a * x = 2^k * b
|
||||
// ==> x[N-k-1:0] = a^-1 * b[N-k-1:0]
|
||||
// for odd a
|
||||
unsigned k = c.parity(N);
|
||||
if (d.parity(N) < k)
|
||||
return false;
|
||||
rational const a = machine_div2k(c, k);
|
||||
SASSERT(a.is_odd());
|
||||
SASSERT(a.is_one()); // TODO: ule-simplify will multiply with a_inv already, so we can drop the check here.
|
||||
rational a_inv;
|
||||
VERIFY(a.mult_inverse(N, a_inv));
|
||||
rational const b = machine_div2k(d, k);
|
||||
out.hi = N - k - 1;
|
||||
out.lo = 0;
|
||||
out.value = a_inv * b;
|
||||
SASSERT_EQ(p, (p.manager().mk_var(p.var()) - out.value) * a * rational::power_of_two(k));
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool get_eq_fixed_slice(pdd const& p, fixed_slice& out) {
|
||||
if (get_eq_fixed_lsb(p, out))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constraint lhs <= rhs.
|
||||
*
|
||||
* -2^(k - 2) * x > 2^(k - 1)
|
||||
* <=> 2 + x[1:0] > 2 (mod 4)
|
||||
* ==> x[1:0] = 1
|
||||
* -- TODO: Generalize [the obvious solution does not work]
|
||||
*/
|
||||
bool get_ule_fixed_lsb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_slice& out) {
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constraint lhs <= rhs.
|
||||
*
|
||||
* x <= 2^k - 1 ==> x[N-1:k] = 0
|
||||
* x < 2^k ==> x[N-1:k] = 0
|
||||
*/
|
||||
bool get_ule_fixed_msb(pdd const& p, pdd const& q, bool is_positive, fixed_slice& out) {
|
||||
SASSERT(!q.is_zero()); // equalities are handled elsewhere
|
||||
unsigned const N = p.power_of_2();
|
||||
pdd const& lhs = is_positive ? p : q;
|
||||
pdd const& rhs = is_positive ? q : p;
|
||||
bool const is_strict = !is_positive;
|
||||
if (lhs.is_var() && rhs.is_val()) {
|
||||
// x <= c
|
||||
// find smallest k such that c <= 2^k - 1, i.e., c+1 <= 2^k
|
||||
// ==> x <= 2^k - 1 ==> x[N-1:k] = 0
|
||||
//
|
||||
// x < c
|
||||
// find smallest k such that c <= 2^k
|
||||
// ==> x < 2^k ==> x[N-1:k] = 0
|
||||
rational const c = is_strict ? rhs.val() : (rhs.val() + 1);
|
||||
unsigned const k = c.next_power_of_two();
|
||||
if (k < N) {
|
||||
out.length = N - k;
|
||||
out.offset = k;
|
||||
out.value = 0;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2^(N-1) <= 2^(N-1-i) * x
|
||||
bool get_ule_fixed_bit(pdd const& p, pdd const& q, bool is_positive, fixed_slice& out) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool get_ule_fixed_slice(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_slice& out) {
|
||||
SASSERT(ule_constraint::is_simplified(lhs, rhs));
|
||||
if (rhs.is_zero())
|
||||
return is_positive ? get_eq_fixed_slice(lhs, out) : false;
|
||||
if (get_ule_fixed_msb(lhs, rhs, is_positive, out))
|
||||
return true;
|
||||
if (get_ule_fixed_lsb(lhs, rhs, is_positive, out))
|
||||
return true;
|
||||
if (get_ule_fixed_bit(lhs, rhs, is_positive, out))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool get_fixed_slice(signed_constraint c, fixed_slice& out) {
|
||||
SASSERT_EQ(c.vars().size(), 1); // this only makes sense for univariate constraints
|
||||
if (c.is_ule())
|
||||
return get_ule_fixed_slice(c.to_ule().lhs(), c.to_ule().rhs(), c.is_positive(), out);
|
||||
// if (c->is_op())
|
||||
// ; // TODO: x & constant = constant ==> bitmask ... but we have trouble recognizing that because we introduce a new variable for '&' before we see the equality.
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
// 2^(k - d) * x = m * 2^(k - d)
|
||||
// Special case [still seems to occur frequently]: -2^(k - 2) * x > 2^(k - 1) - TODO: Generalize [the obvious solution does not work] => lsb(x, 2) = 1
|
||||
bool get_lsb(pdd lhs, pdd rhs, pdd& p, trailing_bits& info, bool pos) {
|
||||
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
|
||||
SASSERT(rhs.is_univariate() && rhs.degree() <= 1);
|
||||
|
||||
else { // inequality - check for special case
|
||||
if (pos || lhs.power_of_2() < 3)
|
||||
return false;
|
||||
auto it = lhs.begin();
|
||||
if (it == lhs.end())
|
||||
return false;
|
||||
if (it->vars.size() != 1)
|
||||
return false;
|
||||
rational coeff = it->coeff;
|
||||
it++;
|
||||
if (it != lhs.end())
|
||||
return false;
|
||||
if ((mod2k(-coeff, lhs.power_of_2())) != rational::power_of_two(lhs.power_of_2() - 2))
|
||||
return false;
|
||||
p = lhs.div(coeff);
|
||||
SASSERT(p.is_var());
|
||||
info.bits = 1;
|
||||
info.length = 2;
|
||||
info.positive = true; // this is a conjunction
|
||||
return true;
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
} // namespace polysat
|
||||
|
|
|
@ -20,15 +20,6 @@ namespace polysat {
|
|||
|
||||
class core;
|
||||
|
||||
bool get_eq_fixed_lsb(pdd const& p, fixed_slice& out);
|
||||
bool get_eq_fixed_slice(pdd const& p, fixed_slice& out);
|
||||
|
||||
bool get_ule_fixed_lsb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_slice& out);
|
||||
bool get_ule_fixed_msb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_slice& out);
|
||||
bool get_ule_fixed_bit(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_slice& out);
|
||||
bool get_ule_fixed_slice(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_slice& out);
|
||||
bool get_fixed_slice(signed_constraint c, fixed_slice& out);
|
||||
|
||||
class fixed_bits {
|
||||
core& c;
|
||||
pvar m_var = null_var;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue