mirror of
https://github.com/Z3Prover/z3
synced 2025-04-23 09:05:31 +00:00
added polynomial evaluation at algebraic point
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
bf2340850a
commit
0d230375be
9 changed files with 266 additions and 26 deletions
|
@ -49,21 +49,24 @@ struct expr2polynomial::imp {
|
|||
polynomial::polynomial_ref_vector m_presult_stack;
|
||||
polynomial::scoped_numeral_vector m_dresult_stack;
|
||||
|
||||
bool m_use_var_idxs;
|
||||
|
||||
volatile bool m_cancel;
|
||||
|
||||
imp(expr2polynomial & w, ast_manager & am, polynomial::manager & pm, expr2var * e2v):
|
||||
imp(expr2polynomial & w, ast_manager & am, polynomial::manager & pm, expr2var * e2v, bool use_var_idxs):
|
||||
m_wrapper(w),
|
||||
m_am(am),
|
||||
m_autil(am),
|
||||
m_pm(pm),
|
||||
m_expr2var(e2v == 0 ? alloc(expr2var, am) : e2v),
|
||||
m_expr2var_owner(e2v == 0),
|
||||
m_expr2var(e2v == 0 && !use_var_idxs ? alloc(expr2var, am) : e2v),
|
||||
m_expr2var_owner(e2v == 0 && !use_var_idxs),
|
||||
m_var2expr(am),
|
||||
m_cached_domain(am),
|
||||
m_cached_polynomials(pm),
|
||||
m_cached_denominators(pm.m()),
|
||||
m_presult_stack(pm),
|
||||
m_dresult_stack(pm.m()),
|
||||
m_use_var_idxs(use_var_idxs),
|
||||
m_cancel(false) {
|
||||
}
|
||||
|
||||
|
@ -95,6 +98,14 @@ struct expr2polynomial::imp {
|
|||
cooperate("expr2polynomial");
|
||||
}
|
||||
|
||||
void throw_not_polynomial() {
|
||||
throw default_exception("the given expression is not a polynomial");
|
||||
}
|
||||
|
||||
void throw_no_int_var() {
|
||||
throw default_exception("integer variables are not allowed in the given polynomial");
|
||||
}
|
||||
|
||||
void push_frame(app * t) {
|
||||
m_frame_stack.push_back(frame(t));
|
||||
}
|
||||
|
@ -127,14 +138,26 @@ struct expr2polynomial::imp {
|
|||
}
|
||||
|
||||
void store_var_poly(expr * t) {
|
||||
polynomial::var x = m_expr2var->to_var(t);
|
||||
if (x == UINT_MAX) {
|
||||
bool is_int = m_autil.is_int(t);
|
||||
x = m_wrapper.mk_var(is_int);
|
||||
m_expr2var->insert(t, x);
|
||||
if (x >= m_var2expr.size())
|
||||
m_var2expr.resize(x+1, 0);
|
||||
m_var2expr.set(x, t);
|
||||
polynomial::var x;
|
||||
if (m_use_var_idxs) {
|
||||
SASSERT(::is_var(t));
|
||||
if (m_autil.is_int(t))
|
||||
throw_no_int_var();
|
||||
unsigned idx = to_var(t)->get_idx();
|
||||
while (idx >= m_pm.num_vars())
|
||||
m_pm.mk_var();
|
||||
x = static_cast<polynomial::var>(idx);
|
||||
}
|
||||
else {
|
||||
x = m_expr2var->to_var(t);
|
||||
if (x == UINT_MAX) {
|
||||
bool is_int = m_autil.is_int(t);
|
||||
x = m_wrapper.mk_var(is_int);
|
||||
m_expr2var->insert(t, x);
|
||||
if (x >= m_var2expr.size())
|
||||
m_var2expr.resize(x+1, 0);
|
||||
m_var2expr.set(x, t);
|
||||
}
|
||||
}
|
||||
polynomial::numeral one(1);
|
||||
store_result(t, pm().mk_polynomial(x), one);
|
||||
|
@ -160,7 +183,10 @@ struct expr2polynomial::imp {
|
|||
rational k;
|
||||
SASSERT(t->get_num_args() == 2);
|
||||
if (!m_autil.is_numeral(t->get_arg(1), k) || !k.is_int() || !k.is_unsigned()) {
|
||||
store_var_poly(t);
|
||||
if (m_use_var_idxs)
|
||||
throw_not_polynomial();
|
||||
else
|
||||
store_var_poly(t);
|
||||
return true;
|
||||
}
|
||||
push_frame(t);
|
||||
|
@ -168,6 +194,8 @@ struct expr2polynomial::imp {
|
|||
}
|
||||
default:
|
||||
// can't handle operator
|
||||
if (m_use_var_idxs)
|
||||
throw_not_polynomial();
|
||||
store_var_poly(t);
|
||||
return true;
|
||||
}
|
||||
|
@ -190,6 +218,8 @@ struct expr2polynomial::imp {
|
|||
|
||||
SASSERT(is_app(t));
|
||||
if (!m_autil.is_arith_expr(t)) {
|
||||
if (m_use_var_idxs)
|
||||
throw_not_polynomial();
|
||||
store_var_poly(t);
|
||||
return true;
|
||||
}
|
||||
|
@ -378,19 +408,25 @@ struct expr2polynomial::imp {
|
|||
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
margs.reset();
|
||||
polynomial::monomial * m = pm().get_monomial(p, i);
|
||||
polynomial::monomial * _m = pm().get_monomial(p, i);
|
||||
polynomial::numeral const & a = pm().coeff(p, i);
|
||||
if (!nm().is_one(a)) {
|
||||
margs.push_back(m_autil.mk_numeral(rational(a), is_int));
|
||||
}
|
||||
unsigned msz = pm().size(m);
|
||||
unsigned msz = pm().size(_m);
|
||||
for (unsigned j = 0; j < msz; j++) {
|
||||
polynomial::var x = pm().get_var(m, j);
|
||||
expr * t = m_var2expr.get(x);
|
||||
if (m_wrapper.is_int(x) && !is_int) {
|
||||
t = m_autil.mk_to_real(t);
|
||||
polynomial::var x = pm().get_var(_m, j);
|
||||
expr * t;
|
||||
if (m_use_var_idxs) {
|
||||
t = m().mk_var(x, m_autil.mk_real());
|
||||
}
|
||||
unsigned d = pm().degree(m, j);
|
||||
else {
|
||||
t = m_var2expr.get(x);
|
||||
if (m_wrapper.is_int(x) && !is_int) {
|
||||
t = m_autil.mk_to_real(t);
|
||||
}
|
||||
}
|
||||
unsigned d = pm().degree(_m, j);
|
||||
if (use_power && d > 1) {
|
||||
margs.push_back(m_autil.mk_power(t, m_autil.mk_numeral(rational(d), is_int)));
|
||||
}
|
||||
|
@ -426,8 +462,8 @@ struct expr2polynomial::imp {
|
|||
}
|
||||
};
|
||||
|
||||
expr2polynomial::expr2polynomial(ast_manager & am, polynomial::manager & pm, expr2var * e2v) {
|
||||
m_imp = alloc(imp, *this, am, pm, e2v);
|
||||
expr2polynomial::expr2polynomial(ast_manager & am, polynomial::manager & pm, expr2var * e2v, bool use_var_idxs) {
|
||||
m_imp = alloc(imp, *this, am, pm, e2v, use_var_idxs);
|
||||
}
|
||||
|
||||
expr2polynomial::~expr2polynomial() {
|
||||
|
@ -451,10 +487,12 @@ void expr2polynomial::to_expr(polynomial::polynomial_ref const & p, bool use_pow
|
|||
}
|
||||
|
||||
bool expr2polynomial::is_var(expr * t) const {
|
||||
SASSERT(!m_imp->m_use_var_idxs);
|
||||
return m_imp->m_expr2var->is_var(t);
|
||||
}
|
||||
|
||||
expr2var const & expr2polynomial::get_mapping() const {
|
||||
SASSERT(!m_imp->m_use_var_idxs);
|
||||
return *(m_imp->m_expr2var);
|
||||
}
|
||||
|
||||
|
|
|
@ -29,7 +29,24 @@ class expr2polynomial {
|
|||
struct imp;
|
||||
imp * m_imp;
|
||||
public:
|
||||
expr2polynomial(ast_manager & am, polynomial::manager & pm, expr2var * e2v);
|
||||
expr2polynomial(ast_manager & am,
|
||||
polynomial::manager & pm,
|
||||
expr2var * e2v,
|
||||
/*
|
||||
If true, the expressions converted into
|
||||
polynomials should only contain Z3 free variables.
|
||||
A Z3 variable x, with idx i, is converted into
|
||||
the variable i of the polynomial manager pm.
|
||||
|
||||
An exception is thrown if there is a mismatch between
|
||||
the sorts x and the variable in the polynomial manager.
|
||||
|
||||
The argument e2v is ignored when use_var_idxs is true.
|
||||
|
||||
Moreover, only real variables are allowed.
|
||||
*/
|
||||
bool use_var_idxs = false
|
||||
);
|
||||
virtual ~expr2polynomial();
|
||||
|
||||
ast_manager & m() const;
|
||||
|
@ -63,6 +80,8 @@ public:
|
|||
|
||||
/**
|
||||
\brief Return the mapping from expressions to variables
|
||||
|
||||
\pre the object was created using use_var_idxs = false.
|
||||
*/
|
||||
expr2var const & get_mapping() const;
|
||||
|
||||
|
@ -74,10 +93,10 @@ public:
|
|||
/**
|
||||
\brief Return true if the variable is associated with an expression of integer sort.
|
||||
*/
|
||||
virtual bool is_int(polynomial::var x) const = 0;
|
||||
virtual bool is_int(polynomial::var x) const { UNREACHABLE(); return false; }
|
||||
|
||||
protected:
|
||||
virtual polynomial::var mk_var(bool is_int) = 0;
|
||||
virtual polynomial::var mk_var(bool is_int) { UNREACHABLE(); return polynomial::null_var; }
|
||||
};
|
||||
|
||||
class default_expr2polynomial : public expr2polynomial {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue