3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-19 20:33:38 +00:00

Polysat: forbidden intervals updates (#5230)

* Pop assign_eh

* Fix scoped_ptr_vector constructors, add detach()

* Need to copy the returned lemma

* Add test

* Basic inequality tests

* Return disjunctive lemma to caller
This commit is contained in:
Jakob Rath 2021-04-30 17:41:50 +02:00 committed by GitHub
parent d6e41de344
commit 0c4824f194
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 189 additions and 24 deletions

View file

@ -62,6 +62,7 @@ namespace polysat {
bool_var bvar() const { return m_bool_var; } bool_var bvar() const { return m_bool_var; }
bool sign() const { return m_sign; } bool sign() const { return m_sign; }
void assign_eh(bool is_true) { m_status = (is_true ^ !m_sign) ? l_true : l_false; } void assign_eh(bool is_true) { m_status = (is_true ^ !m_sign) ? l_true : l_false; }
void unassign_eh() { m_status = l_undef; }
bool is_positive() const { return m_status == l_true; } bool is_positive() const { return m_status == l_true; }
bool is_negative() const { return m_status == l_false; } bool is_negative() const { return m_status == l_false; }
bool is_undef() const { return m_status == l_undef; } bool is_undef() const { return m_status == l_undef; }
@ -70,5 +71,26 @@ namespace polysat {
inline std::ostream& operator<<(std::ostream& out, constraint const& c) { return c.display(out); } inline std::ostream& operator<<(std::ostream& out, constraint const& c) { return c.display(out); }
class clause {
scoped_ptr_vector<constraint> m_literals;
public:
clause() {}
clause(scoped_ptr_vector<constraint>&& literals): m_literals(std::move(literals)) {
SASSERT(std::all_of(m_literals.begin(), m_literals.end(), [](constraint* c) { return c != nullptr; }));
SASSERT(empty() || std::all_of(m_literals.begin(), m_literals.end(), [this](constraint* c) { return c->level() == level(); }));
}
bool empty() const { return m_literals.empty(); }
unsigned size() const { return m_literals.size(); }
constraint* operator[](unsigned idx) const { return m_literals[idx]; }
using const_iterator = typename scoped_ptr_vector<constraint>::const_iterator;
const_iterator begin() const { return m_literals.begin(); }
const_iterator end() const { return m_literals.end(); }
ptr_vector<constraint> detach() { return m_literals.detach(); }
unsigned level() const { SASSERT(!empty()); return m_literals[0]->level(); }
};
} }

View file

@ -62,7 +62,7 @@ namespace polysat {
return true; return true;
} }
bool forbidden_intervals::explain(solver& s, ptr_vector<constraint> const& conflict, pvar v, scoped_ptr_vector<constraint>& out_lemma) { bool forbidden_intervals::explain(solver& s, ptr_vector<constraint> const& conflict, pvar v, clause& out_lemma) {
// Extract forbidden intervals from conflicting constraints // Extract forbidden intervals from conflicting constraints
vector<fi_record> records; vector<fi_record> records;
@ -137,6 +137,7 @@ namespace polysat {
// - the upper bound of each interval is contained in the next interval, // - the upper bound of each interval is contained in the next interval,
// then the forbidden intervals cover the whole domain and we have a conflict. // then the forbidden intervals cover the whole domain and we have a conflict.
// We learn the negation of this conjunction. // We learn the negation of this conjunction.
scoped_ptr_vector<constraint> literals;
for (unsigned seq_i = seq.size(); seq_i-- > 0; ) { for (unsigned seq_i = seq.size(); seq_i-- > 0; ) {
unsigned const i = seq[seq_i]; unsigned const i = seq[seq_i];
unsigned const next_i = seq[(seq_i+1) % seq.size()]; unsigned const next_i = seq[(seq_i+1) % seq.size()];
@ -149,14 +150,15 @@ namespace polysat {
auto const& rhs = next_hi - next_lo; auto const& rhs = next_hi - next_lo;
constraint* c = constraint::ult(lemma_lvl, s.m_next_bvar++, neg_t, lhs, rhs, lemma_dep); constraint* c = constraint::ult(lemma_lvl, s.m_next_bvar++, neg_t, lhs, rhs, lemma_dep);
LOG("constraint: " << *c); LOG("constraint: " << *c);
out_lemma.push_back(c); literals.push_back(c);
// Side conditions // Side conditions
// TODO: check whether the condition is subsumed by c? maybe at the end do a "lemma reduction" step, to try and reduce branching? // TODO: check whether the condition is subsumed by c? maybe at the end do a "lemma reduction" step, to try and reduce branching?
scoped_ptr<constraint>& cond = records[i].cond; scoped_ptr<constraint>& cond = records[i].cond;
if (cond) if (cond)
out_lemma.push_back(cond.detach()); literals.push_back(cond.detach());
} }
out_lemma = std::move(literals);
return true; return true;
} }

View file

@ -23,7 +23,7 @@ namespace polysat {
class forbidden_intervals { class forbidden_intervals {
public: public:
static bool explain(solver& s, ptr_vector<constraint> const& conflict, pvar v, scoped_ptr_vector<constraint>& out_lemma); static bool explain(solver& s, ptr_vector<constraint> const& conflict, pvar v, clause& out_lemma);
}; };
} }

View file

@ -102,7 +102,8 @@ namespace polysat {
} }
lbool solver::check_sat() { lbool solver::check_sat() {
TRACE("polysat", tout << "check\n";); LOG("Starting");
m_disjunctive_lemma.reset();
while (m_lim.inc()) { while (m_lim.inc()) {
LOG_H1("Next solving loop iteration"); LOG_H1("Next solving loop iteration");
LOG("Free variables: " << m_free_vars); LOG("Free variables: " << m_free_vars);
@ -114,7 +115,8 @@ namespace polysat {
} }
}); });
if (is_conflict() && at_base_level()) { LOG_H2("UNSAT"); return l_false; } if (pending_disjunctive_lemma()) { LOG_H2("UNDEF (handle lemma externally)"); return l_undef; }
else if (is_conflict() && at_base_level()) { LOG_H2("UNSAT"); return l_false; }
else if (is_conflict()) resolve_conflict(); else if (is_conflict()) resolve_conflict();
else if (can_propagate()) propagate(); else if (can_propagate()) propagate();
else if (!can_decide()) { LOG_H2("SAT"); return l_true; } else if (!can_decide()) { LOG_H2("SAT"); return l_true; }
@ -141,7 +143,6 @@ namespace polysat {
void solver::del_var() { void solver::del_var() {
// TODO also remove v from all learned constraints. // TODO also remove v from all learned constraints.
pvar v = m_viable.size() - 1; pvar v = m_viable.size() - 1;
m_free_vars.del_var_eh(v);
m_viable.pop_back(); m_viable.pop_back();
m_cjust.pop_back(); m_cjust.pop_back();
m_value.pop_back(); m_value.pop_back();
@ -222,6 +223,8 @@ namespace polysat {
} }
c->assign_eh(is_true); c->assign_eh(is_true);
add_watch(*c); add_watch(*c);
m_assign_eh_history.push_back(v);
m_trail.push_back(trail_instr_t::assign_eh_i);
c->narrow(*this); c->narrow(*this);
} }
@ -263,6 +266,7 @@ namespace polysat {
} }
void solver::pop_levels(unsigned num_levels) { void solver::pop_levels(unsigned num_levels) {
LOG("Pop " << num_levels << " levels; current level is " << m_level);
while (num_levels > 0) { while (num_levels > 0) {
switch (m_trail.back()) { switch (m_trail.back()) {
case trail_instr_t::qhead_i: { case trail_instr_t::qhead_i: {
@ -297,6 +301,14 @@ namespace polysat {
m_cjust_trail.pop_back(); m_cjust_trail.pop_back();
break; break;
} }
case trail_instr_t::assign_eh_i: {
auto bvar = m_assign_eh_history.back();
constraint* c = get_bv2c(bvar);
erase_watch(*c);
c->unassign_eh();
m_assign_eh_history.pop_back();
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -375,7 +387,6 @@ namespace polysat {
++m_stats.m_num_decisions; ++m_stats.m_num_decisions;
else else
++m_stats.m_num_propagations; ++m_stats.m_num_propagations;
TRACE("polysat", tout << "v" << v << " := " << val << " " << j << "\n";);
LOG("pvar " << v << " := " << val << " by " << j); LOG("pvar " << v << " := " << val << " by " << j);
SASSERT(is_viable(v, val)); SASSERT(is_viable(v, val));
m_value[v] = val; m_value[v] = val;
@ -385,15 +396,15 @@ namespace polysat {
} }
void solver::set_conflict(constraint& c) { void solver::set_conflict(constraint& c) {
LOG("conflict: " << c);
SASSERT(m_conflict.empty()); SASSERT(m_conflict.empty());
TRACE("polysat", tout << "conflict " << c << "\n";);
m_conflict.push_back(&c); m_conflict.push_back(&c);
} }
void solver::set_conflict(pvar v) { void solver::set_conflict(pvar v) {
SASSERT(m_conflict.empty()); SASSERT(m_conflict.empty());
m_conflict.append(m_cjust[v]); m_conflict.append(m_cjust[v]);
TRACE("polysat", tout << "conflict "; for (auto* c : m_conflict) tout << *c << "\n";); LOG("conflict for pvar " << v << ": " << m_conflict);
if (m_cjust[v].empty()) if (m_cjust[v].empty())
m_conflict.push_back(nullptr); m_conflict.push_back(nullptr);
} }
@ -440,14 +451,27 @@ namespace polysat {
if (conflict_var != null_var) { if (conflict_var != null_var) {
LOG_H2("Conflict due to empty viable set for pvar " << conflict_var); LOG_H2("Conflict due to empty viable set for pvar " << conflict_var);
scoped_ptr_vector<constraint> disjunctive_lemma; clause new_lemma;
if (forbidden_intervals::explain(*this, m_conflict, conflict_var, disjunctive_lemma)) { if (forbidden_intervals::explain(*this, m_conflict, conflict_var, new_lemma)) {
LOG_H3("Learning disjunctive lemma"); // << disjunctive_lemma); LOG_H3("Learning disjunctive lemma");
SASSERT(disjunctive_lemma.size() > 0); SASSERT(new_lemma.size() > 0);
if (disjunctive_lemma.size() == 1) { if (new_lemma.size() == 1) {
lemma = new_lemma.detach()[0];
// TODO: continue normally? // TODO: continue normally?
} else { } else {
// TODO: solver needs to return l_undef and allow external handling of disjunctive lemma SASSERT(m_disjunctive_lemma.empty());
reset_marks();
for (constraint* c : new_lemma) {
m_disjunctive_lemma.push_back(c->bvar());
insert_bv2c(c->bvar(), c);
for (auto v : c->vars())
set_mark(v);
}
m_redundant_clauses.push_back(std::move(new_lemma));
backtrack(m_search.size()-1, lemma);
SASSERT(pending_disjunctive_lemma());
m_conflict.reset();
return;
} }
} }
} }
@ -635,13 +659,15 @@ namespace polysat {
} }
void solver::push() { void solver::push() {
LOG("Push user scope");
push_level(); push_level();
m_base_levels.push_back(m_level); m_base_levels.push_back(m_level);
} }
void solver::pop(unsigned num_scopes) { void solver::pop(unsigned num_scopes) {
unsigned base_level = m_base_levels[m_base_levels.size() - num_scopes]; unsigned base_level = m_base_levels[m_base_levels.size() - num_scopes];
pop_levels(m_level - base_level - 1); LOG("Pop " << num_scopes << " user scopes; lowest popped level = " << base_level << "; current level = " << m_level);
pop_levels(m_level - base_level + 1);
} }
bool solver::at_base_level() const { bool solver::at_base_level() const {

View file

@ -65,6 +65,10 @@ namespace polysat {
// Per constraint state // Per constraint state
scoped_ptr_vector<constraint> m_constraints; scoped_ptr_vector<constraint> m_constraints;
scoped_ptr_vector<constraint> m_redundant; scoped_ptr_vector<constraint> m_redundant;
vector<clause> m_redundant_clauses;
bool_var_vector m_disjunctive_lemma;
bool_var_vector m_assign_eh_history;
// Map boolean variables to constraints // Map boolean variables to constraints
bool_var m_next_bvar = 2; // TODO: later, bool vars come from external supply bool_var m_next_bvar = 2; // TODO: later, bool vars come from external supply
@ -249,7 +253,8 @@ namespace polysat {
* Returns the disjunctive lemma that should be learned, * Returns the disjunctive lemma that should be learned,
* or an empty vector if check_sat() terminated for a different reason. * or an empty vector if check_sat() terminated for a different reason.
*/ */
bool_var_vector get_lemma() { NOT_IMPLEMENTED_YET(); return {}; }; bool_var_vector get_lemma() { return m_disjunctive_lemma; }
bool pending_disjunctive_lemma() { return !m_disjunctive_lemma.empty(); }
/** /**
* retrieve unsat core dependencies * retrieve unsat core dependencies

View file

@ -22,7 +22,8 @@ namespace polysat {
inc_level_i, inc_level_i,
viable_i, viable_i,
assign_i, assign_i,
just_i just_i,
assign_eh_i,
}; };

View file

@ -16,7 +16,7 @@ namespace polysat {
lbool result = check_sat(); lbool result = check_sat();
if (result != l_undef) if (result != l_undef)
return result; return result;
auto const& new_lemma = get_lemma(); auto const new_lemma = get_lemma();
// Empty lemma => check_sat() terminated for another reason, e.g., resource limits // Empty lemma => check_sat() terminated for another reason, e.g., resource limits
if (new_lemma.empty()) if (new_lemma.empty())
return l_undef; return l_undef;
@ -46,6 +46,24 @@ namespace polysat {
} }
}; };
/**
* Testing the solver's internal state.
*/
/// Creates two separate conflicts (from narrowing) before solving loop is started.
static void test_add_conflicts() {
scoped_solver s;
auto a = s.var(s.add_var(3));
auto b = s.var(s.add_var(3));
s.add_eq(a + 1);
s.add_eq(a + 2);
s.add_eq(b + 1);
s.add_eq(b + 2);
s.check();
}
/** /**
* most basic linear equation solving. * most basic linear equation solving.
* they should be solvable. * they should be solvable.
@ -125,6 +143,73 @@ namespace polysat {
s.check(); s.check();
} }
// Unique solution: u = 5
static void test_ineq_basic1() {
scoped_solver s;
auto u = s.var(s.add_var(4));
auto zero = u - u;
s.add_ule(u, zero + 5);
s.add_ule(zero + 5, u);
s.check();
}
// Unsatisfiable
static void test_ineq_basic2() {
scoped_solver s;
auto u = s.var(s.add_var(4));
auto zero = u - u;
s.add_ult(u, zero + 5);
s.add_ule(zero + 5, u);
s.check();
}
// Solutions with u = v = w
static void test_ineq_basic3() {
scoped_solver s;
auto u = s.var(s.add_var(4));
auto v = s.var(s.add_var(4));
auto w = s.var(s.add_var(4));
s.add_ule(u, v);
s.add_ule(v, w);
s.add_ule(w, u);
s.check();
}
// Unsatisfiable
static void test_ineq_basic4() {
scoped_solver s;
auto u = s.var(s.add_var(4));
auto v = s.var(s.add_var(4));
auto w = s.var(s.add_var(4));
s.add_ule(u, v);
s.add_ult(v, w);
s.add_ule(w, u);
s.check();
}
// Satisfiable
// Without forbidden intervals, we just try values for u until it works
static void test_ineq_basic5() {
scoped_solver s;
auto u = s.var(s.add_var(4));
auto v = s.var(s.add_var(4));
auto zero = u - u;
s.add_ule(zero + 12, u + v);
s.add_ule(v, zero + 2);
s.check();
}
// Like 5 but the other forbidden interval will be the longest
static void test_ineq_basic6() {
scoped_solver s;
auto u = s.var(s.add_var(4));
auto v = s.var(s.add_var(4));
auto zero = u - u;
s.add_ule(zero + 14, u + v);
s.add_ule(v, zero + 2);
s.check();
}
/** /**
* Check unsat of: * Check unsat of:
@ -290,6 +375,7 @@ namespace polysat {
void tst_polysat() { void tst_polysat() {
polysat::test_add_conflicts();
polysat::test_l1(); polysat::test_l1();
polysat::test_l2(); polysat::test_l2();
polysat::test_l3(); polysat::test_l3();

View file

@ -26,7 +26,22 @@ template<typename T>
class scoped_ptr_vector { class scoped_ptr_vector {
ptr_vector<T> m_vector; ptr_vector<T> m_vector;
public: public:
scoped_ptr_vector() = default;
~scoped_ptr_vector() { reset(); } ~scoped_ptr_vector() { reset(); }
scoped_ptr_vector(scoped_ptr_vector& other) = delete;
scoped_ptr_vector& operator=(scoped_ptr_vector& other) = delete;
scoped_ptr_vector(scoped_ptr_vector&& other) noexcept {
m_vector.swap(other.m_vector);
}
scoped_ptr_vector& operator=(scoped_ptr_vector&& other) {
if (this == &other)
return *this;
reset();
m_vector.swap(other.m_vector);
return *this;
}
void reset() { std::for_each(m_vector.begin(), m_vector.end(), delete_proc<T>()); m_vector.reset(); } void reset() { std::for_each(m_vector.begin(), m_vector.end(), delete_proc<T>()); m_vector.reset(); }
void push_back(T * ptr) { m_vector.push_back(ptr); } void push_back(T * ptr) { m_vector.push_back(ptr); }
void pop_back() { SASSERT(!empty()); set(size()-1, nullptr); m_vector.pop_back(); } void pop_back() { SASSERT(!empty()); set(size()-1, nullptr); m_vector.pop_back(); }
@ -65,7 +80,15 @@ public:
ptr = m_vector.back(); ptr = m_vector.back();
m_vector[m_vector.size()-1] = tmp; m_vector[m_vector.size()-1] = tmp;
} }
typename ptr_vector<T>::const_iterator begin() const { return m_vector.begin(); }
typename ptr_vector<T>::const_iterator end() const { return m_vector.end(); } ptr_vector<T> detach() {
ptr_vector<T> tmp(std::move(m_vector));
SASSERT(m_vector.empty());
return tmp;
}
using const_iterator = typename ptr_vector<T>::const_iterator;
const_iterator begin() const { return m_vector.begin(); }
const_iterator end() const { return m_vector.end(); }
}; };

View file

@ -532,7 +532,7 @@ public:
return m_data; return m_data;
} }
void swap(vector & other) { void swap(vector & other) noexcept {
std::swap(m_data, other.m_data); std::swap(m_data, other.m_data);
} }