3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

call normalize_e_by_gcd() only when moving an entry from F to S

This commit is contained in:
Lev Nachmanson 2025-02-04 12:38:16 -10:00 committed by Lev Nachmanson
parent 99538567a7
commit 0bf3ca87e7

View file

@ -1075,7 +1075,12 @@ namespace lp {
} }
template <typename K> template <typename K>
mpq gcd_of_coeffs(const K& k) { mpq gcd_of_coeffs(const K& k, bool check_for_one) {
if (check_for_one)
for (const auto& p : k)
if (p.coeff().is_one() || p.coeff().is_minus_one())
return mpq(1);
mpq g(0); mpq g(0);
for (const auto& p : k) { for (const auto& p : k) {
SASSERT(p.coeff().is_int()); SASSERT(p.coeff().is_int());
@ -1125,10 +1130,10 @@ namespace lp {
// If there is no conflict the entry is divided, normalized, by gcd. // If there is no conflict the entry is divided, normalized, by gcd.
// The function returns true if and only if there is no conflict. In the case of a conflict a branch // The function returns true if and only if there is no conflict. In the case of a conflict a branch
// can be returned as well. // can be returned as well.
bool normalize_e_by_gcd(unsigned ei) { bool normalize_e_by_gcd(unsigned ei, mpq& g) {
mpq & e = m_sum_of_fixed[ei]; mpq & e = m_sum_of_fixed[ei];
TRACE("dioph_eq", print_entry(ei, tout) << std::endl;); TRACE("dioph_eq", print_entry(ei, tout) << std::endl;);
mpq g = gcd_of_coeffs(m_e_matrix.m_rows[ei]); g = gcd_of_coeffs(m_e_matrix.m_rows[ei], false);
if (g.is_zero() || g.is_one()) { if (g.is_zero() || g.is_one()) {
SASSERT(g.is_one() || e.is_zero()); SASSERT(g.is_one() || e.is_zero());
return true; return true;
@ -1159,20 +1164,6 @@ namespace lp {
return false; return false;
} }
// iterate over F: return true if no conflict is found and false otherwise
bool normalize_by_gcd() {
for (unsigned l = 0; l < m_e_matrix.row_count(); l++) {
if (!belongs_to_f(l)) continue;
if (!normalize_e_by_gcd(l)) {
SASSERT(entry_invariant(l));
m_conflict_index = l;
return false;
}
SASSERT(entry_invariant(l));
}
return true;
}
void init_term_from_constraint(term_o& t, const lar_base_constraint& c) { void init_term_from_constraint(term_o& t, const lar_base_constraint& c) {
for (const auto& p : c.coeffs()) { for (const auto& p : c.coeffs()) {
t.add_monomial(p.first, p.second); t.add_monomial(p.first, p.second);
@ -1438,7 +1429,7 @@ namespace lp {
SASSERT( SASSERT(
fix_vars(term_to_tighten + open_ml(m_term_with_index.to_term())) == fix_vars(term_to_tighten + open_ml(m_term_with_index.to_term())) ==
term_to_lar_solver(remove_fresh_vars(create_term_from_ind_c()))); term_to_lar_solver(remove_fresh_vars(create_term_from_ind_c())));
mpq g = gcd_of_coeffs(m_indexed_work_vector); mpq g = gcd_of_coeffs(m_indexed_work_vector, true);
TRACE("dioph_eq", tout << "after process_q_with_S\nt:"; TRACE("dioph_eq", tout << "after process_q_with_S\nt:";
print_term_o(create_term_from_ind_c(), tout) << std::endl; print_term_o(create_term_from_ind_c(), tout) << std::endl;
tout << "g:" << g << std::endl; tout << "g:" << g << std::endl;
@ -1578,23 +1569,10 @@ namespace lp {
} }
lia_move process_f() { lia_move process_f() {
bool progress = true; while (rewrite_eqs()) {}
while (progress) { if (m_conflict_index != UINT_MAX) {
if (!normalize_by_gcd()) { lra.stats().m_dio_rewrite_conflicts++;
if (m_report_branch) { return lia_move::conflict;
lra.stats().m_dio_branch_from_proofs++;
m_report_branch = false;
return lia_move::branch;
} else {
lra.stats().m_dio_normalize_conflicts++;
}
return lia_move::conflict;
}
progress = rewrite_eqs();
if (m_conflict_index != UINT_MAX) {
lra.stats().m_dio_rewrite_conflicts++;
return lia_move::conflict;
}
} }
return lia_move::undef; return lia_move::undef;
} }
@ -1956,7 +1934,7 @@ namespace lp {
return ret; return ret;
} }
SASSERT(ret == lia_move::undef); SASSERT(ret == lia_move::undef);
m_max_number_of_iterations = std::max((unsigned)5, (unsigned)m_max_number_of_iterations/2); m_max_number_of_iterations = (unsigned)m_max_number_of_iterations/2;
return lia_move::undef; return lia_move::undef;
} }
@ -2336,6 +2314,7 @@ namespace lp {
return false; return false;
} }
} }
auto [ahk, k, k_sign] = find_minimal_abs_coeff(ei); auto [ahk, k, k_sign] = find_minimal_abs_coeff(ei);
if (ahk.is_one()) { if (ahk.is_one()) {
TRACE("dioph_eq", tout << "push to S:\n"; print_entry(ei, tout);); TRACE("dioph_eq", tout << "push to S:\n"; print_entry(ei, tout););
@ -2343,6 +2322,20 @@ namespace lp {
eliminate_var_in_f(ei, k, k_sign); eliminate_var_in_f(ei, k, k_sign);
return true; return true;
} }
mpq gcd;
if (!normalize_e_by_gcd(ei, gcd)) {
m_conflict_index = ei;
return false;
}
if (!gcd.is_one()){
ahk /= gcd;
if (ahk.is_one()) {
TRACE("dioph_eq", tout << "push to S:\n"; print_entry(ei, tout););
move_entry_from_f_to_s(k, ei);
eliminate_var_in_f(ei, k, k_sign);
return true;
}
}
if (n == 0 || the_smallest_ahk > ahk) { if (n == 0 || the_smallest_ahk > ahk) {
n = 1; n = 1;
@ -2358,7 +2351,7 @@ namespace lp {
kh_sign = k_sign; kh_sign = k_sign;
} }
} }
if (h == -1) return false; if (h == UINT_MAX) return false;
SASSERT(!the_smallest_ahk.is_one()); SASSERT(!the_smallest_ahk.is_one());
fresh_var_step(h, kh, the_smallest_ahk * mpq(kh_sign)); fresh_var_step(h, kh, the_smallest_ahk * mpq(kh_sign));
return true; return true;