mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 10:25:18 +00:00
fix #6676 get rid of rem0 declare it to be mod0 semantics to simplify code paths
This commit is contained in:
parent
58a2a9c79c
commit
0b5c38dea5
|
@ -365,7 +365,6 @@ inline func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, bool is_real) {
|
|||
case OP_MOD: return m_i_mod_decl;
|
||||
case OP_DIV0: return m_manager->mk_func_decl(symbol("/0"), m_real_decl, m_real_decl, m_real_decl, func_decl_info(m_family_id, OP_DIV0));
|
||||
case OP_IDIV0: return m_manager->mk_func_decl(symbol("div0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_IDIV0));
|
||||
case OP_REM0: return m_manager->mk_func_decl(symbol("rem0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_REM0));
|
||||
case OP_MOD0: return m_manager->mk_func_decl(symbol("mod0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_MOD0));
|
||||
case OP_POWER0:
|
||||
if (is_real) {
|
||||
|
@ -612,7 +611,6 @@ void arith_decl_plugin::get_op_names(svector<builtin_name>& op_names, symbol con
|
|||
op_names.push_back(builtin_name("euler", OP_E));
|
||||
op_names.push_back(builtin_name("/0",OP_DIV0));
|
||||
op_names.push_back(builtin_name("div0",OP_IDIV0));
|
||||
op_names.push_back(builtin_name("rem0",OP_REM0));
|
||||
op_names.push_back(builtin_name("mod0",OP_MOD0));
|
||||
}
|
||||
}
|
||||
|
@ -821,7 +819,7 @@ bool arith_util::is_considered_uninterpreted(func_decl* f, unsigned n, expr* con
|
|||
}
|
||||
if (is_decl_of(f, arith_family_id, OP_REM) && n == 2 && is_numeral(args[1], r) && r.is_zero()) {
|
||||
sort* rs[2] = { mk_int(), mk_int() };
|
||||
f_out = m_manager.mk_func_decl(arith_family_id, OP_REM0, 0, nullptr, 2, rs, mk_int());
|
||||
f_out = m_manager.mk_func_decl(arith_family_id, OP_MOD0, 0, nullptr, 2, rs, mk_int());
|
||||
return true;
|
||||
}
|
||||
if (is_decl_of(f, arith_family_id, OP_POWER) && n == 2 && is_numeral(args[1], r) && r.is_zero() && is_numeral(args[0], r) && r.is_zero()) {
|
||||
|
@ -857,7 +855,7 @@ func_decl* arith_util::mk_idiv0() {
|
|||
|
||||
func_decl* arith_util::mk_rem0() {
|
||||
sort* rs[2] = { mk_int(), mk_int() };
|
||||
return m_manager.mk_func_decl(arith_family_id, OP_REM0, 0, nullptr, 2, rs, mk_int());
|
||||
return m_manager.mk_func_decl(arith_family_id, OP_MOD0, 0, nullptr, 2, rs, mk_int());
|
||||
}
|
||||
|
||||
func_decl* arith_util::mk_mod0() {
|
||||
|
@ -942,7 +940,6 @@ bool arith_util::is_underspecified(expr* e) const {
|
|||
case OP_MOD:
|
||||
case OP_DIV0:
|
||||
case OP_IDIV0:
|
||||
case OP_REM0:
|
||||
case OP_MOD0:
|
||||
return true;
|
||||
default:
|
||||
|
|
|
@ -50,7 +50,6 @@ enum arith_op_kind {
|
|||
OP_IDIVIDES,
|
||||
OP_REM,
|
||||
OP_MOD,
|
||||
OP_REM0,
|
||||
OP_MOD0,
|
||||
OP_TO_REAL,
|
||||
OP_TO_INT,
|
||||
|
@ -216,7 +215,6 @@ public:
|
|||
case OP_U_ACOS:
|
||||
case OP_DIV0:
|
||||
case OP_IDIV0:
|
||||
case OP_REM0:
|
||||
case OP_MOD0:
|
||||
case OP_POWER0:
|
||||
return true;
|
||||
|
@ -270,7 +268,7 @@ public:
|
|||
|
||||
bool is_div0(func_decl const * n) const { return is_decl_of(n, arith_family_id, OP_DIV0); }
|
||||
bool is_idiv0(func_decl const * n) const { return is_decl_of(n, arith_family_id, OP_IDIV0); }
|
||||
bool is_rem0(func_decl const * n) const { return is_decl_of(n, arith_family_id, OP_REM0); }
|
||||
bool is_rem0(func_decl const * n) const { return is_decl_of(n, arith_family_id, OP_MOD0); }
|
||||
bool is_mod0(func_decl const * n) const { return is_decl_of(n, arith_family_id, OP_MOD0); }
|
||||
bool is_power0(func_decl const * n) const { return is_decl_of(n, arith_family_id, OP_POWER0); }
|
||||
bool is_power(func_decl const * n) const { return is_decl_of(n, arith_family_id, OP_POWER); }
|
||||
|
@ -296,7 +294,7 @@ public:
|
|||
bool is_mod(expr const * n) const { return is_app_of(n, arith_family_id, OP_MOD); }
|
||||
bool is_rem(expr const * n) const { return is_app_of(n, arith_family_id, OP_REM); }
|
||||
bool is_mod0(expr const * n) const { return is_app_of(n, arith_family_id, OP_MOD0); }
|
||||
bool is_rem0(expr const * n) const { return is_app_of(n, arith_family_id, OP_REM0); }
|
||||
bool is_rem0(expr const * n) const { return is_app_of(n, arith_family_id, OP_MOD0); }
|
||||
bool is_to_real(expr const * n) const { return is_app_of(n, arith_family_id, OP_TO_REAL); }
|
||||
bool is_to_int(expr const * n) const { return is_app_of(n, arith_family_id, OP_TO_INT); }
|
||||
bool is_is_int(expr const * n) const { return is_app_of(n, arith_family_id, OP_IS_INT); }
|
||||
|
@ -355,7 +353,7 @@ public:
|
|||
MATCH_BINARY(is_div);
|
||||
MATCH_BINARY(is_idiv);
|
||||
MATCH_BINARY(is_mod0);
|
||||
MATCH_BINARY(is_rem0);
|
||||
// MATCH_BINARY(is_rem0);
|
||||
MATCH_BINARY(is_div0);
|
||||
MATCH_BINARY(is_idiv0);
|
||||
MATCH_BINARY(is_power);
|
||||
|
@ -465,7 +463,7 @@ public:
|
|||
app * mk_mod(expr * arg1, expr * arg2) { return m_manager.mk_app(arith_family_id, OP_MOD, arg1, arg2); }
|
||||
app * mk_div0(expr * arg1, expr * arg2) { return m_manager.mk_app(arith_family_id, OP_DIV0, arg1, arg2); }
|
||||
app * mk_idiv0(expr * arg1, expr * arg2) { return m_manager.mk_app(arith_family_id, OP_IDIV0, arg1, arg2); }
|
||||
app * mk_rem0(expr * arg1, expr * arg2) { return m_manager.mk_app(arith_family_id, OP_REM0, arg1, arg2); }
|
||||
app * mk_rem0(expr * arg1, expr * arg2) { return m_manager.mk_app(arith_family_id, OP_MOD0, arg1, arg2); }
|
||||
app * mk_mod0(expr * arg1, expr * arg2) { return m_manager.mk_app(arith_family_id, OP_MOD0, arg1, arg2); }
|
||||
app * mk_to_real(expr * arg1) { return m_manager.mk_app(arith_family_id, OP_TO_REAL, arg1); }
|
||||
app * mk_to_int(expr * arg1) { return m_manager.mk_app(arith_family_id, OP_TO_INT, arg1); }
|
||||
|
|
|
@ -311,7 +311,6 @@ struct expr2subpaving::imp {
|
|||
case OP_REM:
|
||||
case OP_IRRATIONAL_ALGEBRAIC_NUM:
|
||||
case OP_DIV0:
|
||||
case OP_REM0:
|
||||
case OP_MOD0:
|
||||
case OP_IDIV0:
|
||||
throw default_exception("you must apply arithmetic purifier before internalizing expressions into the subpaving module.");
|
||||
|
|
|
@ -154,7 +154,6 @@ namespace smt {
|
|||
case OP_MOD:
|
||||
case OP_DIV0:
|
||||
case OP_IDIV0:
|
||||
case OP_REM0:
|
||||
case OP_MOD0:
|
||||
return true;
|
||||
default:
|
||||
|
|
|
@ -469,7 +469,7 @@ class theory_lra::imp {
|
|||
st.to_ensure_var().push_back(n1);
|
||||
st.to_ensure_var().push_back(n2);
|
||||
}
|
||||
else if (a.is_idiv0(n, n1, n2) || a.is_mod0(n, n1, n2) || a.is_rem0(n, n1, n2)) {
|
||||
else if (a.is_idiv0(n, n1, n2) || a.is_mod0(n, n1, n2)) {
|
||||
st.to_ensure_var().push_back(n1);
|
||||
st.to_ensure_var().push_back(n2);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue