mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 13:28:47 +00:00
abstract arithmetic value extraction
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
abd902d58c
commit
0af00e62de
|
@ -13,6 +13,7 @@ z3_add_component(smt
|
|||
old_interval.cpp
|
||||
qi_queue.cpp
|
||||
smt_almost_cg_table.cpp
|
||||
smt_arith_value.cpp
|
||||
smt_case_split_queue.cpp
|
||||
smt_cg_table.cpp
|
||||
smt_checker.cpp
|
||||
|
|
113
src/smt/smt_arith_value.cpp
Normal file
113
src/smt/smt_arith_value.cpp
Normal file
|
@ -0,0 +1,113 @@
|
|||
|
||||
/*++
|
||||
Copyright (c) 2018 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
smt_arith_value.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Utility to extract arithmetic values from context.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2018-12-08.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#pragma once;
|
||||
|
||||
#include "smt/smt_arith_value.h"
|
||||
#include "smt/theory_lra.h"
|
||||
#include "smt/theory_arith.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
arith_value::arith_value(context& ctx):
|
||||
m_ctx(ctx), m(ctx.get_manager()), a(m) {}
|
||||
|
||||
bool arith_value::get_lo(expr* e, rational& lo, bool& is_strict) {
|
||||
if (!m_ctx.e_internalized(e)) return false;
|
||||
expr_ref _lo(m);
|
||||
family_id afid = a.get_family_id();
|
||||
is_strict = false;
|
||||
enode* next = m_ctx.get_enode(e), *n = next;
|
||||
bool found = false;
|
||||
bool is_strict1;
|
||||
rational lo1;
|
||||
theory* th = m_ctx.get_theory(afid);
|
||||
theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
|
||||
theory_i_arith* thi = dynamic_cast<theory_i_arith*>(th);
|
||||
theory_lra* thr = dynamic_cast<theory_lra*>(th);
|
||||
do {
|
||||
if (tha && tha->get_lower(next, _lo) && a.is_numeral(_lo, lo1)) {
|
||||
if (!found || lo1 > lo) lo = lo1;
|
||||
found = true;
|
||||
}
|
||||
else if (thi && thi->get_lower(next, _lo) && a.is_numeral(_lo, lo1)) {
|
||||
if (!found || lo1 > lo) lo = lo1;
|
||||
found = true;
|
||||
}
|
||||
else if (thr && thr->get_lower(next, lo1, is_strict1)) {
|
||||
if (!found || lo1 > lo || (lo == lo1 && is_strict1)) lo = lo1, is_strict = is_strict1;
|
||||
found = true;
|
||||
}
|
||||
next = next->get_next();
|
||||
}
|
||||
while (n != next);
|
||||
return found;
|
||||
}
|
||||
|
||||
bool arith_value::get_up(expr* e, rational& up, bool& is_strict) {
|
||||
if (!m_ctx.e_internalized(e)) return false;
|
||||
expr_ref _up(m);
|
||||
family_id afid = a.get_family_id();
|
||||
is_strict = false;
|
||||
enode* next = m_ctx.get_enode(e), *n = next;
|
||||
bool found = false, is_strict1;
|
||||
rational up1;
|
||||
theory* th = m_ctx.get_theory(afid);
|
||||
theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
|
||||
theory_i_arith* thi = dynamic_cast<theory_i_arith*>(th);
|
||||
theory_lra* thr = dynamic_cast<theory_lra*>(th);
|
||||
do {
|
||||
if (tha && tha->get_upper(next, _up) && a.is_numeral(_up, up1)) {
|
||||
if (!found || up1 < up) up = up1;
|
||||
found = true;
|
||||
}
|
||||
else if (thi && thi->get_upper(next, _up) && a.is_numeral(_up, up1)) {
|
||||
if (!found || up1 < up) up = up1;
|
||||
found = true;
|
||||
}
|
||||
else if (thr && thr->get_upper(next, up1, is_strict1)) {
|
||||
if (!found || up1 < up || (up1 == up && is_strict1)) up = up1, is_strict = is_strict1;
|
||||
found = true;
|
||||
}
|
||||
next = next->get_next();
|
||||
}
|
||||
while (n != next);
|
||||
return found;
|
||||
}
|
||||
|
||||
bool arith_value::get_value(expr* e, rational& val) {
|
||||
if (!m_ctx.e_internalized(e)) return false;
|
||||
expr_ref _val(m);
|
||||
enode* next = m_ctx.get_enode(e), *n = next;
|
||||
family_id afid = a.get_family_id();
|
||||
theory* th = m_ctx.get_theory(afid);
|
||||
theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
|
||||
theory_i_arith* thi = dynamic_cast<theory_i_arith*>(th);
|
||||
theory_lra* thr = dynamic_cast<theory_lra*>(th);
|
||||
do {
|
||||
e = next->get_owner();
|
||||
if (tha && tha->get_value(next, _val) && a.is_numeral(_val, val)) return true;
|
||||
if (thi && thi->get_value(next, _val) && a.is_numeral(_val, val)) return true;
|
||||
if (thr && thr->get_value(next, val)) return true;
|
||||
next = next->get_next();
|
||||
}
|
||||
while (next != n);
|
||||
return false;
|
||||
}
|
||||
};
|
37
src/smt/smt_arith_value.h
Normal file
37
src/smt/smt_arith_value.h
Normal file
|
@ -0,0 +1,37 @@
|
|||
|
||||
/*++
|
||||
Copyright (c) 2018 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
smt_arith_value.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Utility to extract arithmetic values from context.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2018-12-08.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#pragma once;
|
||||
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "smt/smt_context.h"
|
||||
|
||||
|
||||
namespace smt {
|
||||
class arith_value {
|
||||
context& m_ctx;
|
||||
ast_manager& m;
|
||||
arith_util a;
|
||||
public:
|
||||
arith_value(context& ctx);
|
||||
bool get_lo(expr* e, rational& lo, bool& strict);
|
||||
bool get_up(expr* e, rational& up, bool& strict);
|
||||
bool get_value(expr* e, rational& value);
|
||||
};
|
||||
};
|
|
@ -1243,6 +1243,11 @@ namespace smt {
|
|||
public:
|
||||
bool can_propagate() const;
|
||||
|
||||
// Retrieve arithmetic values.
|
||||
bool get_arith_lo(expr* e, rational& lo, bool& strict);
|
||||
bool get_arith_up(expr* e, rational& up, bool& strict);
|
||||
bool get_arith_value(expr* e, rational& value);
|
||||
|
||||
// -----------------------------------
|
||||
//
|
||||
// Model checking... (must be improved)
|
||||
|
|
|
@ -14,10 +14,39 @@ Author:
|
|||
|
||||
Revision History:
|
||||
|
||||
TODO:
|
||||
|
||||
- arithmetic interface
|
||||
|
||||
- propagation queue:
|
||||
- register theory variables for catching when jobs are bound to resources
|
||||
- register bounds on start times to propagate energy constraints
|
||||
- more general registration mechanism for arithmetic theory.
|
||||
- csp_cmds
|
||||
- use predicates for add_ feature set? Closed world.
|
||||
set up environment in one swoop.
|
||||
- interact with opt
|
||||
- jobs without resources
|
||||
- complain or add dummy resource? At which level.
|
||||
|
||||
Features:
|
||||
- properties
|
||||
- priority
|
||||
- try mss based from outside
|
||||
- job-goal
|
||||
- try optimization based on arithmetic solver.
|
||||
- earliest start, latest start
|
||||
- constraint level
|
||||
- resource groups
|
||||
- resource groups like a resource
|
||||
- resources bound to resource groups within time intervals
|
||||
- job can require to use K resources from a resource group simultaneously.
|
||||
|
||||
--*/
|
||||
|
||||
#include "smt/theory_jobscheduler.h"
|
||||
#include "smt/smt_context.h"
|
||||
#include "smt/smt_arith_value.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
|
@ -79,16 +108,18 @@ namespace smt {
|
|||
|
||||
final_check_status theory_jobscheduler::final_check_eh() {
|
||||
|
||||
// ensure that each job starts within an avaialable interval.
|
||||
// ! (end_previous_interval < start(j) < start_of_next_interval)
|
||||
|
||||
bool blocked = false;
|
||||
for (unsigned r = 0; r < m_resources.size(); ++r) {
|
||||
if (constrain_resource_energy(r)) {
|
||||
blocked = true;
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned j = 0; j < m_jobs.size(); ++j) {
|
||||
if (constrain_end_time_interval(j, resource(j))) {
|
||||
blocked = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (blocked) return FC_CONTINUE;
|
||||
return FC_DONE;
|
||||
}
|
||||
|
@ -204,9 +235,56 @@ namespace smt {
|
|||
*
|
||||
* r = resource(j) & t1 >= start(j) >= t0 => end(j) = start(j) + ect(j, r, t0) - t0
|
||||
*/
|
||||
void theory_jobscheduler::propagate_end_time_interval(unsigned j, unsigned r) {
|
||||
// TBD
|
||||
// establish maximal intervals around start, such that end time is a linear function of start.
|
||||
bool theory_jobscheduler::constrain_end_time_interval(unsigned j, unsigned r) {
|
||||
unsigned idx1 = 0, idx2 = 0;
|
||||
time_t s = start(j);
|
||||
if (!resource_available(r, s, idx1)) return false;
|
||||
vector<res_available>& available = m_resources[r].m_available;
|
||||
time_t e = ect(j, r, s);
|
||||
if (!resource_available(r, e, idx2)) return false;
|
||||
time_t start1 = available[idx1].m_start;
|
||||
time_t end1 = available[idx1].m_end;
|
||||
unsigned cap1 = available[idx1].m_loadpct;
|
||||
time_t start2 = available[idx2].m_start;
|
||||
time_t end2 = available[idx2].m_end;
|
||||
unsigned cap2 = available[idx2].m_loadpct;
|
||||
// calculate minimal start1 <= t0 <= s, such that ect(j, r, t0) >= start2
|
||||
// calculate maximal s <= t1 <= end1, such that ect(j, r, t1) <= end2
|
||||
time_t delta1 = (s - start1)*cap1;
|
||||
time_t delta2 = (e - start2)*cap2;
|
||||
time_t t0, t1;
|
||||
if (delta1 <= delta2) {
|
||||
t0 = start1;
|
||||
}
|
||||
else {
|
||||
// solve for t0:
|
||||
// (s - t0)*cap1 = (e - start2)*cap2;
|
||||
t0 = s - (delta2 / cap1);
|
||||
}
|
||||
delta1 = (end1 - s)*cap1;
|
||||
delta2 = (end2 - e)*cap2;
|
||||
if (delta1 <= delta2) {
|
||||
t1 = end1;
|
||||
}
|
||||
else {
|
||||
// solve for t1:
|
||||
// (t1 - s)*cap1 = (end2 - e)*cap2
|
||||
t1 = s + (delta2 / cap1);
|
||||
}
|
||||
|
||||
time_t delta = ect(j, r, t0) - t0;
|
||||
if (end(j) == start(j) + delta) {
|
||||
return false;
|
||||
}
|
||||
literal_vector lits;
|
||||
lits.push_back(~mk_eq(u.mk_job2resource(j), u.mk_resource(r), false));
|
||||
lits.push_back(~mk_ge_lit(u.mk_start(j), t0));
|
||||
lits.push_back(~mk_le_lit(u.mk_start(j), t1));
|
||||
expr_ref rhs(a.mk_add(u.mk_start(j), a.mk_int(rational(delta, rational::ui64()))), m);
|
||||
lits.push_back(mk_eq(u.mk_end(j), rhs, false));
|
||||
context& ctx = get_context();
|
||||
ctx.mk_clause(lits.size(), lits.c_ptr(), nullptr, CLS_AUX_LEMMA, nullptr);
|
||||
return true;
|
||||
}
|
||||
|
||||
void theory_jobscheduler::propagate_resource_energy(unsigned r) {
|
||||
|
@ -268,8 +346,10 @@ namespace smt {
|
|||
// m_jobs[j].m_start <= m_jobs[max_j].m_start;
|
||||
// m_jobs[max_j].m_start <= m_jobs[j].m_end;
|
||||
lits.push_back(~mk_eq(u.mk_job2resource(j), u.mk_resource(r), false));
|
||||
lits.push_back(~mk_le(m_jobs[j].m_start, m_jobs[max_j].m_start));
|
||||
lits.push_back(~mk_le(m_jobs[max_j].m_start, m_jobs[max_j].m_end));
|
||||
if (j != max_j) {
|
||||
lits.push_back(~mk_le(m_jobs[j].m_start, m_jobs[max_j].m_start));
|
||||
lits.push_back(~mk_le(m_jobs[max_j].m_start, m_jobs[j].m_end));
|
||||
}
|
||||
if (j == last_job) break;
|
||||
}
|
||||
context& ctx = get_context();
|
||||
|
@ -281,7 +361,6 @@ namespace smt {
|
|||
job_info const& ji = m_jobs[j];
|
||||
unsigned r = resource(j);
|
||||
propagate_end_time(j, r);
|
||||
propagate_end_time_interval(j, r);
|
||||
}
|
||||
for (unsigned r = 0; r < m_resources.size(); ++r) {
|
||||
// TBD: check energy constraints on resources.
|
||||
|
@ -345,13 +424,23 @@ namespace smt {
|
|||
}
|
||||
|
||||
time_t theory_jobscheduler::est(unsigned j) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
arith_value av(get_context());
|
||||
rational val;
|
||||
bool is_strict;
|
||||
if (av.get_lo(u.mk_start(j), val, is_strict) && !is_strict && val.is_uint64()) {
|
||||
return val.get_uint64();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
time_t theory_jobscheduler::lst(unsigned j) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return 0;
|
||||
arith_value av(get_context());
|
||||
rational val;
|
||||
bool is_strict;
|
||||
if (av.get_up(u.mk_start(j), val, is_strict) && !is_strict && val.is_uint64()) {
|
||||
return val.get_uint64();
|
||||
}
|
||||
return std::numeric_limits<time_t>::max();
|
||||
}
|
||||
|
||||
time_t theory_jobscheduler::ect(unsigned j) {
|
||||
|
@ -379,9 +468,15 @@ namespace smt {
|
|||
return 0;
|
||||
}
|
||||
|
||||
void theory_jobscheduler::set_preemptable(unsigned j, bool is_preemptable) {
|
||||
m_jobs.reserve(j + 1);
|
||||
m_jobs[j].m_is_preemptable = is_preemptable;
|
||||
}
|
||||
|
||||
void theory_jobscheduler::add_job_resource(unsigned j, unsigned r, unsigned cap, unsigned loadpct, time_t end) {
|
||||
void theory_jobscheduler::add_job_resource(unsigned j, unsigned r, unsigned cap, unsigned loadpct, time_t end, properties const& ps) {
|
||||
SASSERT(get_context().at_base_level());
|
||||
SASSERT(1 <= loadpct && loadpct <= 100);
|
||||
SASSERT(0 < cap);
|
||||
m_jobs.reserve(j + 1);
|
||||
m_resources.reserve(r + 1);
|
||||
job_info& ji = m_jobs[j];
|
||||
|
@ -389,16 +484,17 @@ namespace smt {
|
|||
throw default_exception("resource already bound to job");
|
||||
}
|
||||
ji.m_resource2index.insert(r, ji.m_resources.size());
|
||||
ji.m_resources.push_back(job_resource(r, cap, loadpct, end));
|
||||
ji.m_resources.push_back(job_resource(r, cap, loadpct, end, ps));
|
||||
SASSERT(!m_resources[r].m_jobs.contains(j));
|
||||
m_resources[r].m_jobs.push_back(j);
|
||||
}
|
||||
|
||||
void theory_jobscheduler::add_resource_available(unsigned r, unsigned max_loadpct, time_t start, time_t end) {
|
||||
void theory_jobscheduler::add_resource_available(unsigned r, unsigned max_loadpct, time_t start, time_t end, properties const& ps) {
|
||||
SASSERT(get_context().at_base_level());
|
||||
SASSERT(1 <= max_loadpct && max_loadpct <= 100);
|
||||
SASSERT(start <= end);
|
||||
m_resources.reserve(r + 1);
|
||||
m_resources[r].m_available.push_back(res_available(max_loadpct, start, end));
|
||||
m_resources[r].m_available.push_back(res_available(max_loadpct, start, end, ps));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -411,7 +507,18 @@ namespace smt {
|
|||
* Ensure that the availability slots for each resource is sorted by time.
|
||||
*/
|
||||
void theory_jobscheduler::add_done() {
|
||||
context & ctx = get_context();
|
||||
context & ctx = get_context();
|
||||
|
||||
// sort availability intervals
|
||||
for (unsigned r = 0; r < m_resources.size(); ++r) {
|
||||
res_info& ri = m_resources[r];
|
||||
vector<res_available>& available = ri.m_available;
|
||||
res_available::compare cmp;
|
||||
std::sort(available.begin(), available.end(), cmp);
|
||||
}
|
||||
|
||||
expr_ref fml(m);
|
||||
|
||||
for (unsigned j = 0; j < m_jobs.size(); ++j) {
|
||||
job_info const& ji = m_jobs[j];
|
||||
expr_ref_vector disj(m);
|
||||
|
@ -419,38 +526,83 @@ namespace smt {
|
|||
if (ji.m_resources.empty()) {
|
||||
throw default_exception("every job should be associated with at least one resource");
|
||||
}
|
||||
// resource(j) = r => end(j) <= end(j, r)
|
||||
// resource(j) = r => start(j) <= lst(j, r, end(j, r))
|
||||
|
||||
// start(j) <= end(j)
|
||||
fml = a.mk_le(ji.m_start->get_owner(), ji.m_end->get_owner());
|
||||
ctx.assert_expr(fml);
|
||||
|
||||
time_t start_lb = std::numeric_limits<time_t>::max();
|
||||
time_t end_ub = 0;
|
||||
for (job_resource const& jr : ji.m_resources) {
|
||||
// resource(j) = r => end(j) <= end(j, r)
|
||||
// resource(j) = r => start(j) <= lst(j, r, end(j, r))
|
||||
unsigned r = jr.m_resource_id;
|
||||
app_ref res(u.mk_resource(r), m);
|
||||
expr_ref eq(m.mk_eq(job, res), m);
|
||||
expr_ref imp(m.mk_implies(eq, mk_le(ji.m_end, jr.m_end)), m);
|
||||
ctx.assert_expr(imp);
|
||||
imp = m.mk_implies(eq, mk_le(ji.m_start, lst(j, r)));
|
||||
time_t t;
|
||||
if (!lst(j, r, t)) {
|
||||
imp = m.mk_implies(eq, mk_le(ji.m_start, t));
|
||||
}
|
||||
else {
|
||||
imp = m.mk_not(eq);
|
||||
}
|
||||
ctx.assert_expr(imp);
|
||||
disj.push_back(eq);
|
||||
res_info const& ri = m_resources[r];
|
||||
start_lb = std::min(start_lb, ri.m_available[0].m_start);
|
||||
end_ub = std::max(end_ub, ri.m_available.back().m_end);
|
||||
|
||||
}
|
||||
// resource(j) = r1 || ... || resource(j) = r_n
|
||||
expr_ref fml = mk_or(disj);
|
||||
ctx.assert_expr(fml);
|
||||
|
||||
// start(j) >= 0
|
||||
fml = mk_ge(ji.m_start, 0);
|
||||
// start(j) >= start_lb
|
||||
fml = mk_ge(ji.m_start, start_lb);
|
||||
ctx.assert_expr(fml);
|
||||
|
||||
// end(j) <= time_t::max
|
||||
// is implied by resource(j) = r => end(j) <= end(j, r)
|
||||
// end(j) <= end_ub
|
||||
fml = mk_le(ji.m_end, end_ub);
|
||||
ctx.assert_expr(fml);
|
||||
}
|
||||
for (unsigned r = 0; r < m_resources.size(); ++r) {
|
||||
vector<res_available>& available = m_resources[r].m_available;
|
||||
res_available::compare cmp;
|
||||
std::sort(available.begin(), available.end(), cmp);
|
||||
for (unsigned i = 0; i < available.size(); ++i) {
|
||||
if (i + 1 < available.size() &&
|
||||
available[i].m_end > available[i + 1].m_start) {
|
||||
res_info& ri = m_resources[r];
|
||||
vector<res_available>& available = ri.m_available;
|
||||
if (available.empty()) continue;
|
||||
app_ref res(u.mk_resource(r), m);
|
||||
for (unsigned j : ri.m_jobs) {
|
||||
// resource(j) == r => start(j) >= available[0].m_start;
|
||||
app_ref job(u.mk_job(j), m);
|
||||
expr_ref eq(m.mk_eq(job, res), m);
|
||||
expr_ref ge(mk_ge(u.mk_start(j), available[0].m_start), m);
|
||||
expr_ref fml(m.mk_implies(eq, ge), m);
|
||||
ctx.assert_expr(fml);
|
||||
}
|
||||
for (unsigned i = 0; i + 1 < available.size(); ++i) {
|
||||
if (available[i].m_end > available[i + 1].m_start) {
|
||||
throw default_exception("availability intervals should be disjoint");
|
||||
}
|
||||
for (unsigned j : ri.m_jobs) {
|
||||
// jobs start within an interval.
|
||||
// resource(j) == r => start(j) <= available[i].m_end || start(j) >= available[i + 1].m_start;
|
||||
app_ref job(u.mk_job(j), m);
|
||||
expr_ref eq(m.mk_eq(job, res), m);
|
||||
expr_ref ge(mk_ge(u.mk_start(j), available[i + 1].m_start), m);
|
||||
expr_ref le(mk_le(u.mk_start(j), available[i].m_end), m);
|
||||
fml = m.mk_implies(eq, m.mk_or(le, ge));
|
||||
ctx.assert_expr(fml);
|
||||
|
||||
// if job is not pre-emptable, start and end have to align within contiguous interval.
|
||||
// resource(j) == r => end(j) <= available[i].m_end || start(j) >= available[i + 1].m_start
|
||||
if (!m_jobs[j].m_is_preemptable && available[i].m_end + 1 < available[i+1].m_start) {
|
||||
le = mk_le(u.mk_end(j), available[i].m_end);
|
||||
ge = mk_ge(u.mk_start(j), available[i+1].m_start);
|
||||
fml = m.mk_implies(eq, m.mk_or(le, ge));
|
||||
ctx.assert_expr(fml);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -473,6 +625,10 @@ namespace smt {
|
|||
if (ect(j, r, start(j)) > end(j)) {
|
||||
throw default_exception("job not assigned full capacity");
|
||||
}
|
||||
unsigned idx;
|
||||
if (!resource_available(r, start(j), idx)) {
|
||||
throw default_exception("resource is not available at job start time");
|
||||
}
|
||||
}
|
||||
for (unsigned r = 0; r < m_resources.size(); ++r) {
|
||||
// order jobs running on r by start, end-time intervals
|
||||
|
@ -601,7 +757,7 @@ namespace smt {
|
|||
/**
|
||||
* Compute last start time for job on resource r.
|
||||
*/
|
||||
time_t theory_jobscheduler::lst(unsigned j, unsigned r) {
|
||||
bool theory_jobscheduler::lst(unsigned j, unsigned r, time_t& start) {
|
||||
job_resource const& jr = get_job_resource(j, r);
|
||||
vector<res_available>& available = m_resources[r].m_available;
|
||||
unsigned j_load_pct = jr.m_loadpct;
|
||||
|
@ -619,10 +775,10 @@ namespace smt {
|
|||
cap -= delta;
|
||||
}
|
||||
if (cap == 0) {
|
||||
return start;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
throw default_exception("there is insufficient capacity on the resource to run the job");
|
||||
return false;
|
||||
}
|
||||
|
||||
};
|
||||
|
|
|
@ -28,16 +28,20 @@ Revision History:
|
|||
namespace smt {
|
||||
|
||||
typedef uint64_t time_t;
|
||||
|
||||
|
||||
class theory_jobscheduler : public theory {
|
||||
public:
|
||||
typedef map<symbol, double, symbol_hash_proc, symbol_eq_proc> properties;
|
||||
protected:
|
||||
|
||||
struct job_resource {
|
||||
unsigned m_resource_id; // id of resource
|
||||
unsigned m_capacity; // amount of resource to use
|
||||
unsigned m_loadpct; // assuming loadpct
|
||||
time_t m_end; // must run before
|
||||
job_resource(unsigned r, unsigned cap, unsigned loadpct, time_t end):
|
||||
m_resource_id(r), m_capacity(cap), m_loadpct(loadpct), m_end(end) {}
|
||||
properties m_properties;
|
||||
job_resource(unsigned r, unsigned cap, unsigned loadpct, time_t end, properties const& ps):
|
||||
m_resource_id(r), m_capacity(cap), m_loadpct(loadpct), m_end(end), m_properties(ps) {}
|
||||
};
|
||||
|
||||
struct job_time {
|
||||
|
@ -53,22 +57,25 @@ namespace smt {
|
|||
};
|
||||
|
||||
struct job_info {
|
||||
bool m_is_preemptable; // can job be pre-empted
|
||||
vector<job_resource> m_resources; // resources allowed to run job.
|
||||
u_map<unsigned> m_resource2index; // resource to index into vector
|
||||
enode* m_start;
|
||||
enode* m_end;
|
||||
enode* m_resource;
|
||||
job_info(): m_start(nullptr), m_end(nullptr), m_resource(nullptr) {}
|
||||
job_info(): m_is_preemptable(true), m_start(nullptr), m_end(nullptr), m_resource(nullptr) {}
|
||||
};
|
||||
|
||||
struct res_available {
|
||||
unsigned m_loadpct;
|
||||
time_t m_start;
|
||||
time_t m_end;
|
||||
res_available(unsigned load_pct, time_t start, time_t end):
|
||||
unsigned m_loadpct;
|
||||
time_t m_start;
|
||||
time_t m_end;
|
||||
properties m_properties;
|
||||
res_available(unsigned load_pct, time_t start, time_t end, properties const& ps):
|
||||
m_loadpct(load_pct),
|
||||
m_start(start),
|
||||
m_end(end)
|
||||
m_end(end),
|
||||
m_properties(ps)
|
||||
{}
|
||||
struct compare {
|
||||
bool operator()(res_available const& ra1, res_available const& ra2) const {
|
||||
|
@ -135,8 +142,9 @@ namespace smt {
|
|||
|
||||
public:
|
||||
// set up job/resource global constraints
|
||||
void add_job_resource(unsigned j, unsigned r, unsigned cap, unsigned loadpct, time_t end);
|
||||
void add_resource_available(unsigned r, unsigned max_loadpct, time_t start, time_t end);
|
||||
void set_preemptable(unsigned j, bool is_preemptable);
|
||||
void add_job_resource(unsigned j, unsigned r, unsigned cap, unsigned loadpct, time_t end, properties const& ps);
|
||||
void add_resource_available(unsigned r, unsigned max_loadpct, time_t start, time_t end, properties const& ps);
|
||||
void add_done();
|
||||
|
||||
// assignments
|
||||
|
@ -150,7 +158,7 @@ namespace smt {
|
|||
|
||||
// derived bounds
|
||||
time_t ect(unsigned j, unsigned r, time_t start);
|
||||
time_t lst(unsigned j, unsigned r);
|
||||
bool lst(unsigned j, unsigned r, time_t& t);
|
||||
|
||||
time_t solve_for_start(unsigned load_pct, unsigned job_load_pct, time_t end, time_t cap);
|
||||
time_t solve_for_end(unsigned load_pct, unsigned job_load_pct, time_t start, time_t cap);
|
||||
|
@ -165,10 +173,10 @@ namespace smt {
|
|||
|
||||
// propagation
|
||||
void propagate_end_time(unsigned j, unsigned r);
|
||||
void propagate_end_time_interval(unsigned j, unsigned r);
|
||||
void propagate_resource_energy(unsigned r);
|
||||
|
||||
// final check constraints
|
||||
bool constrain_end_time_interval(unsigned j, unsigned r);
|
||||
bool constrain_resource_energy(unsigned r);
|
||||
|
||||
void block_job_overlap(unsigned r, uint_set const& jobs, unsigned last_job);
|
||||
|
|
|
@ -2658,13 +2658,22 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
bool get_value(enode* n, expr_ref& r) {
|
||||
bool get_value(enode* n, rational& val) {
|
||||
theory_var v = n->get_th_var(get_id());
|
||||
if (!can_get_bound(v)) return false;
|
||||
lp::var_index vi = m_theory_var2var_index[v];
|
||||
rational val;
|
||||
if (m_solver->has_value(vi, val)) {
|
||||
if (is_int(n) && !val.is_int()) return false;
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool get_value(enode* n, expr_ref& r) {
|
||||
rational val;
|
||||
if (get_value(n, val)) {
|
||||
r = a.mk_numeral(val, is_int(n));
|
||||
return true;
|
||||
}
|
||||
|
@ -2673,7 +2682,7 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
bool get_lower(enode* n, expr_ref& r) {
|
||||
bool get_lower(enode* n, rational& val, bool& is_strict) {
|
||||
theory_var v = n->get_th_var(get_id());
|
||||
if (!can_get_bound(v)) {
|
||||
TRACE("arith", tout << "cannot get lower for " << v << "\n";);
|
||||
|
@ -2681,29 +2690,36 @@ public:
|
|||
}
|
||||
lp::var_index vi = m_theory_var2var_index[v];
|
||||
lp::constraint_index ci;
|
||||
rational val;
|
||||
return m_solver->has_lower_bound(vi, ci, val, is_strict);
|
||||
}
|
||||
|
||||
bool get_lower(enode* n, expr_ref& r) {
|
||||
bool is_strict;
|
||||
if (m_solver->has_lower_bound(vi, ci, val, is_strict)) {
|
||||
rational val;
|
||||
if (get_lower(n, val, is_strict) && !is_strict) {
|
||||
r = a.mk_numeral(val, is_int(n));
|
||||
return true;
|
||||
}
|
||||
TRACE("arith", m_solver->print_constraints(tout << "does not have lower bound " << vi << "\n"););
|
||||
return false;
|
||||
}
|
||||
|
||||
bool get_upper(enode* n, expr_ref& r) {
|
||||
bool get_upper(enode* n, rational& val, bool& is_strict) {
|
||||
theory_var v = n->get_th_var(get_id());
|
||||
if (!can_get_bound(v))
|
||||
return false;
|
||||
lp::var_index vi = m_theory_var2var_index[v];
|
||||
lp::constraint_index ci;
|
||||
rational val;
|
||||
return m_solver->has_upper_bound(vi, ci, val, is_strict);
|
||||
|
||||
}
|
||||
|
||||
bool get_upper(enode* n, expr_ref& r) {
|
||||
bool is_strict;
|
||||
if (m_solver->has_upper_bound(vi, ci, val, is_strict)) {
|
||||
rational val;
|
||||
if (get_upper(n, val, is_strict) && !is_strict) {
|
||||
r = a.mk_numeral(val, is_int(n));
|
||||
return true;
|
||||
}
|
||||
TRACE("arith", m_solver->print_constraints(tout << "does not have upper bound " << vi << "\n"););
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -3132,6 +3148,9 @@ void theory_lra::init_model(model_generator & m) {
|
|||
model_value_proc * theory_lra::mk_value(enode * n, model_generator & mg) {
|
||||
return m_imp->mk_value(n, mg);
|
||||
}
|
||||
bool theory_lra::get_value(enode* n, rational& r) {
|
||||
return m_imp->get_value(n, r);
|
||||
}
|
||||
bool theory_lra::get_value(enode* n, expr_ref& r) {
|
||||
return m_imp->get_value(n, r);
|
||||
}
|
||||
|
@ -3141,6 +3160,12 @@ bool theory_lra::get_lower(enode* n, expr_ref& r) {
|
|||
bool theory_lra::get_upper(enode* n, expr_ref& r) {
|
||||
return m_imp->get_upper(n, r);
|
||||
}
|
||||
bool theory_lra::get_lower(enode* n, rational& r, bool& is_strict) {
|
||||
return m_imp->get_lower(n, r, is_strict);
|
||||
}
|
||||
bool theory_lra::get_upper(enode* n, rational& r, bool& is_strict) {
|
||||
return m_imp->get_upper(n, r, is_strict);
|
||||
}
|
||||
|
||||
bool theory_lra::validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const {
|
||||
return m_imp->validate_eq_in_model(v1, v2, is_true);
|
||||
|
|
|
@ -80,6 +80,9 @@ namespace smt {
|
|||
bool get_value(enode* n, expr_ref& r) override;
|
||||
bool get_lower(enode* n, expr_ref& r);
|
||||
bool get_upper(enode* n, expr_ref& r);
|
||||
bool get_value(enode* n, rational& r);
|
||||
bool get_lower(enode* n, rational& r, bool& is_strict);
|
||||
bool get_upper(enode* n, rational& r, bool& is_strict);
|
||||
|
||||
bool validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const override;
|
||||
|
||||
|
|
Loading…
Reference in a new issue