3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00

abstract arithmetic value extraction

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-08-12 12:42:26 -07:00
parent abd902d58c
commit 0af00e62de
8 changed files with 405 additions and 57 deletions

View file

@ -13,6 +13,7 @@ z3_add_component(smt
old_interval.cpp
qi_queue.cpp
smt_almost_cg_table.cpp
smt_arith_value.cpp
smt_case_split_queue.cpp
smt_cg_table.cpp
smt_checker.cpp

113
src/smt/smt_arith_value.cpp Normal file
View file

@ -0,0 +1,113 @@
/*++
Copyright (c) 2018 Microsoft Corporation
Module Name:
smt_arith_value.cpp
Abstract:
Utility to extract arithmetic values from context.
Author:
Nikolaj Bjorner (nbjorner) 2018-12-08.
Revision History:
--*/
#pragma once;
#include "smt/smt_arith_value.h"
#include "smt/theory_lra.h"
#include "smt/theory_arith.h"
namespace smt {
arith_value::arith_value(context& ctx):
m_ctx(ctx), m(ctx.get_manager()), a(m) {}
bool arith_value::get_lo(expr* e, rational& lo, bool& is_strict) {
if (!m_ctx.e_internalized(e)) return false;
expr_ref _lo(m);
family_id afid = a.get_family_id();
is_strict = false;
enode* next = m_ctx.get_enode(e), *n = next;
bool found = false;
bool is_strict1;
rational lo1;
theory* th = m_ctx.get_theory(afid);
theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
theory_i_arith* thi = dynamic_cast<theory_i_arith*>(th);
theory_lra* thr = dynamic_cast<theory_lra*>(th);
do {
if (tha && tha->get_lower(next, _lo) && a.is_numeral(_lo, lo1)) {
if (!found || lo1 > lo) lo = lo1;
found = true;
}
else if (thi && thi->get_lower(next, _lo) && a.is_numeral(_lo, lo1)) {
if (!found || lo1 > lo) lo = lo1;
found = true;
}
else if (thr && thr->get_lower(next, lo1, is_strict1)) {
if (!found || lo1 > lo || (lo == lo1 && is_strict1)) lo = lo1, is_strict = is_strict1;
found = true;
}
next = next->get_next();
}
while (n != next);
return found;
}
bool arith_value::get_up(expr* e, rational& up, bool& is_strict) {
if (!m_ctx.e_internalized(e)) return false;
expr_ref _up(m);
family_id afid = a.get_family_id();
is_strict = false;
enode* next = m_ctx.get_enode(e), *n = next;
bool found = false, is_strict1;
rational up1;
theory* th = m_ctx.get_theory(afid);
theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
theory_i_arith* thi = dynamic_cast<theory_i_arith*>(th);
theory_lra* thr = dynamic_cast<theory_lra*>(th);
do {
if (tha && tha->get_upper(next, _up) && a.is_numeral(_up, up1)) {
if (!found || up1 < up) up = up1;
found = true;
}
else if (thi && thi->get_upper(next, _up) && a.is_numeral(_up, up1)) {
if (!found || up1 < up) up = up1;
found = true;
}
else if (thr && thr->get_upper(next, up1, is_strict1)) {
if (!found || up1 < up || (up1 == up && is_strict1)) up = up1, is_strict = is_strict1;
found = true;
}
next = next->get_next();
}
while (n != next);
return found;
}
bool arith_value::get_value(expr* e, rational& val) {
if (!m_ctx.e_internalized(e)) return false;
expr_ref _val(m);
enode* next = m_ctx.get_enode(e), *n = next;
family_id afid = a.get_family_id();
theory* th = m_ctx.get_theory(afid);
theory_mi_arith* tha = dynamic_cast<theory_mi_arith*>(th);
theory_i_arith* thi = dynamic_cast<theory_i_arith*>(th);
theory_lra* thr = dynamic_cast<theory_lra*>(th);
do {
e = next->get_owner();
if (tha && tha->get_value(next, _val) && a.is_numeral(_val, val)) return true;
if (thi && thi->get_value(next, _val) && a.is_numeral(_val, val)) return true;
if (thr && thr->get_value(next, val)) return true;
next = next->get_next();
}
while (next != n);
return false;
}
};

37
src/smt/smt_arith_value.h Normal file
View file

@ -0,0 +1,37 @@
/*++
Copyright (c) 2018 Microsoft Corporation
Module Name:
smt_arith_value.h
Abstract:
Utility to extract arithmetic values from context.
Author:
Nikolaj Bjorner (nbjorner) 2018-12-08.
Revision History:
--*/
#pragma once;
#include "ast/arith_decl_plugin.h"
#include "smt/smt_context.h"
namespace smt {
class arith_value {
context& m_ctx;
ast_manager& m;
arith_util a;
public:
arith_value(context& ctx);
bool get_lo(expr* e, rational& lo, bool& strict);
bool get_up(expr* e, rational& up, bool& strict);
bool get_value(expr* e, rational& value);
};
};

View file

@ -1243,6 +1243,11 @@ namespace smt {
public:
bool can_propagate() const;
// Retrieve arithmetic values.
bool get_arith_lo(expr* e, rational& lo, bool& strict);
bool get_arith_up(expr* e, rational& up, bool& strict);
bool get_arith_value(expr* e, rational& value);
// -----------------------------------
//
// Model checking... (must be improved)

View file

@ -14,10 +14,39 @@ Author:
Revision History:
TODO:
- arithmetic interface
- propagation queue:
- register theory variables for catching when jobs are bound to resources
- register bounds on start times to propagate energy constraints
- more general registration mechanism for arithmetic theory.
- csp_cmds
- use predicates for add_ feature set? Closed world.
set up environment in one swoop.
- interact with opt
- jobs without resources
- complain or add dummy resource? At which level.
Features:
- properties
- priority
- try mss based from outside
- job-goal
- try optimization based on arithmetic solver.
- earliest start, latest start
- constraint level
- resource groups
- resource groups like a resource
- resources bound to resource groups within time intervals
- job can require to use K resources from a resource group simultaneously.
--*/
#include "smt/theory_jobscheduler.h"
#include "smt/smt_context.h"
#include "smt/smt_arith_value.h"
namespace smt {
@ -79,16 +108,18 @@ namespace smt {
final_check_status theory_jobscheduler::final_check_eh() {
// ensure that each job starts within an avaialable interval.
// ! (end_previous_interval < start(j) < start_of_next_interval)
bool blocked = false;
for (unsigned r = 0; r < m_resources.size(); ++r) {
if (constrain_resource_energy(r)) {
blocked = true;
}
}
for (unsigned j = 0; j < m_jobs.size(); ++j) {
if (constrain_end_time_interval(j, resource(j))) {
blocked = true;
}
}
if (blocked) return FC_CONTINUE;
return FC_DONE;
}
@ -204,9 +235,56 @@ namespace smt {
*
* r = resource(j) & t1 >= start(j) >= t0 => end(j) = start(j) + ect(j, r, t0) - t0
*/
void theory_jobscheduler::propagate_end_time_interval(unsigned j, unsigned r) {
// TBD
// establish maximal intervals around start, such that end time is a linear function of start.
bool theory_jobscheduler::constrain_end_time_interval(unsigned j, unsigned r) {
unsigned idx1 = 0, idx2 = 0;
time_t s = start(j);
if (!resource_available(r, s, idx1)) return false;
vector<res_available>& available = m_resources[r].m_available;
time_t e = ect(j, r, s);
if (!resource_available(r, e, idx2)) return false;
time_t start1 = available[idx1].m_start;
time_t end1 = available[idx1].m_end;
unsigned cap1 = available[idx1].m_loadpct;
time_t start2 = available[idx2].m_start;
time_t end2 = available[idx2].m_end;
unsigned cap2 = available[idx2].m_loadpct;
// calculate minimal start1 <= t0 <= s, such that ect(j, r, t0) >= start2
// calculate maximal s <= t1 <= end1, such that ect(j, r, t1) <= end2
time_t delta1 = (s - start1)*cap1;
time_t delta2 = (e - start2)*cap2;
time_t t0, t1;
if (delta1 <= delta2) {
t0 = start1;
}
else {
// solve for t0:
// (s - t0)*cap1 = (e - start2)*cap2;
t0 = s - (delta2 / cap1);
}
delta1 = (end1 - s)*cap1;
delta2 = (end2 - e)*cap2;
if (delta1 <= delta2) {
t1 = end1;
}
else {
// solve for t1:
// (t1 - s)*cap1 = (end2 - e)*cap2
t1 = s + (delta2 / cap1);
}
time_t delta = ect(j, r, t0) - t0;
if (end(j) == start(j) + delta) {
return false;
}
literal_vector lits;
lits.push_back(~mk_eq(u.mk_job2resource(j), u.mk_resource(r), false));
lits.push_back(~mk_ge_lit(u.mk_start(j), t0));
lits.push_back(~mk_le_lit(u.mk_start(j), t1));
expr_ref rhs(a.mk_add(u.mk_start(j), a.mk_int(rational(delta, rational::ui64()))), m);
lits.push_back(mk_eq(u.mk_end(j), rhs, false));
context& ctx = get_context();
ctx.mk_clause(lits.size(), lits.c_ptr(), nullptr, CLS_AUX_LEMMA, nullptr);
return true;
}
void theory_jobscheduler::propagate_resource_energy(unsigned r) {
@ -268,8 +346,10 @@ namespace smt {
// m_jobs[j].m_start <= m_jobs[max_j].m_start;
// m_jobs[max_j].m_start <= m_jobs[j].m_end;
lits.push_back(~mk_eq(u.mk_job2resource(j), u.mk_resource(r), false));
lits.push_back(~mk_le(m_jobs[j].m_start, m_jobs[max_j].m_start));
lits.push_back(~mk_le(m_jobs[max_j].m_start, m_jobs[max_j].m_end));
if (j != max_j) {
lits.push_back(~mk_le(m_jobs[j].m_start, m_jobs[max_j].m_start));
lits.push_back(~mk_le(m_jobs[max_j].m_start, m_jobs[j].m_end));
}
if (j == last_job) break;
}
context& ctx = get_context();
@ -281,7 +361,6 @@ namespace smt {
job_info const& ji = m_jobs[j];
unsigned r = resource(j);
propagate_end_time(j, r);
propagate_end_time_interval(j, r);
}
for (unsigned r = 0; r < m_resources.size(); ++r) {
// TBD: check energy constraints on resources.
@ -345,13 +424,23 @@ namespace smt {
}
time_t theory_jobscheduler::est(unsigned j) {
NOT_IMPLEMENTED_YET();
arith_value av(get_context());
rational val;
bool is_strict;
if (av.get_lo(u.mk_start(j), val, is_strict) && !is_strict && val.is_uint64()) {
return val.get_uint64();
}
return 0;
}
time_t theory_jobscheduler::lst(unsigned j) {
NOT_IMPLEMENTED_YET();
return 0;
arith_value av(get_context());
rational val;
bool is_strict;
if (av.get_up(u.mk_start(j), val, is_strict) && !is_strict && val.is_uint64()) {
return val.get_uint64();
}
return std::numeric_limits<time_t>::max();
}
time_t theory_jobscheduler::ect(unsigned j) {
@ -379,9 +468,15 @@ namespace smt {
return 0;
}
void theory_jobscheduler::set_preemptable(unsigned j, bool is_preemptable) {
m_jobs.reserve(j + 1);
m_jobs[j].m_is_preemptable = is_preemptable;
}
void theory_jobscheduler::add_job_resource(unsigned j, unsigned r, unsigned cap, unsigned loadpct, time_t end) {
void theory_jobscheduler::add_job_resource(unsigned j, unsigned r, unsigned cap, unsigned loadpct, time_t end, properties const& ps) {
SASSERT(get_context().at_base_level());
SASSERT(1 <= loadpct && loadpct <= 100);
SASSERT(0 < cap);
m_jobs.reserve(j + 1);
m_resources.reserve(r + 1);
job_info& ji = m_jobs[j];
@ -389,16 +484,17 @@ namespace smt {
throw default_exception("resource already bound to job");
}
ji.m_resource2index.insert(r, ji.m_resources.size());
ji.m_resources.push_back(job_resource(r, cap, loadpct, end));
ji.m_resources.push_back(job_resource(r, cap, loadpct, end, ps));
SASSERT(!m_resources[r].m_jobs.contains(j));
m_resources[r].m_jobs.push_back(j);
}
void theory_jobscheduler::add_resource_available(unsigned r, unsigned max_loadpct, time_t start, time_t end) {
void theory_jobscheduler::add_resource_available(unsigned r, unsigned max_loadpct, time_t start, time_t end, properties const& ps) {
SASSERT(get_context().at_base_level());
SASSERT(1 <= max_loadpct && max_loadpct <= 100);
SASSERT(start <= end);
m_resources.reserve(r + 1);
m_resources[r].m_available.push_back(res_available(max_loadpct, start, end));
m_resources[r].m_available.push_back(res_available(max_loadpct, start, end, ps));
}
/*
@ -411,7 +507,18 @@ namespace smt {
* Ensure that the availability slots for each resource is sorted by time.
*/
void theory_jobscheduler::add_done() {
context & ctx = get_context();
context & ctx = get_context();
// sort availability intervals
for (unsigned r = 0; r < m_resources.size(); ++r) {
res_info& ri = m_resources[r];
vector<res_available>& available = ri.m_available;
res_available::compare cmp;
std::sort(available.begin(), available.end(), cmp);
}
expr_ref fml(m);
for (unsigned j = 0; j < m_jobs.size(); ++j) {
job_info const& ji = m_jobs[j];
expr_ref_vector disj(m);
@ -419,38 +526,83 @@ namespace smt {
if (ji.m_resources.empty()) {
throw default_exception("every job should be associated with at least one resource");
}
// resource(j) = r => end(j) <= end(j, r)
// resource(j) = r => start(j) <= lst(j, r, end(j, r))
// start(j) <= end(j)
fml = a.mk_le(ji.m_start->get_owner(), ji.m_end->get_owner());
ctx.assert_expr(fml);
time_t start_lb = std::numeric_limits<time_t>::max();
time_t end_ub = 0;
for (job_resource const& jr : ji.m_resources) {
// resource(j) = r => end(j) <= end(j, r)
// resource(j) = r => start(j) <= lst(j, r, end(j, r))
unsigned r = jr.m_resource_id;
app_ref res(u.mk_resource(r), m);
expr_ref eq(m.mk_eq(job, res), m);
expr_ref imp(m.mk_implies(eq, mk_le(ji.m_end, jr.m_end)), m);
ctx.assert_expr(imp);
imp = m.mk_implies(eq, mk_le(ji.m_start, lst(j, r)));
time_t t;
if (!lst(j, r, t)) {
imp = m.mk_implies(eq, mk_le(ji.m_start, t));
}
else {
imp = m.mk_not(eq);
}
ctx.assert_expr(imp);
disj.push_back(eq);
res_info const& ri = m_resources[r];
start_lb = std::min(start_lb, ri.m_available[0].m_start);
end_ub = std::max(end_ub, ri.m_available.back().m_end);
}
// resource(j) = r1 || ... || resource(j) = r_n
expr_ref fml = mk_or(disj);
ctx.assert_expr(fml);
// start(j) >= 0
fml = mk_ge(ji.m_start, 0);
// start(j) >= start_lb
fml = mk_ge(ji.m_start, start_lb);
ctx.assert_expr(fml);
// end(j) <= time_t::max
// is implied by resource(j) = r => end(j) <= end(j, r)
// end(j) <= end_ub
fml = mk_le(ji.m_end, end_ub);
ctx.assert_expr(fml);
}
for (unsigned r = 0; r < m_resources.size(); ++r) {
vector<res_available>& available = m_resources[r].m_available;
res_available::compare cmp;
std::sort(available.begin(), available.end(), cmp);
for (unsigned i = 0; i < available.size(); ++i) {
if (i + 1 < available.size() &&
available[i].m_end > available[i + 1].m_start) {
res_info& ri = m_resources[r];
vector<res_available>& available = ri.m_available;
if (available.empty()) continue;
app_ref res(u.mk_resource(r), m);
for (unsigned j : ri.m_jobs) {
// resource(j) == r => start(j) >= available[0].m_start;
app_ref job(u.mk_job(j), m);
expr_ref eq(m.mk_eq(job, res), m);
expr_ref ge(mk_ge(u.mk_start(j), available[0].m_start), m);
expr_ref fml(m.mk_implies(eq, ge), m);
ctx.assert_expr(fml);
}
for (unsigned i = 0; i + 1 < available.size(); ++i) {
if (available[i].m_end > available[i + 1].m_start) {
throw default_exception("availability intervals should be disjoint");
}
for (unsigned j : ri.m_jobs) {
// jobs start within an interval.
// resource(j) == r => start(j) <= available[i].m_end || start(j) >= available[i + 1].m_start;
app_ref job(u.mk_job(j), m);
expr_ref eq(m.mk_eq(job, res), m);
expr_ref ge(mk_ge(u.mk_start(j), available[i + 1].m_start), m);
expr_ref le(mk_le(u.mk_start(j), available[i].m_end), m);
fml = m.mk_implies(eq, m.mk_or(le, ge));
ctx.assert_expr(fml);
// if job is not pre-emptable, start and end have to align within contiguous interval.
// resource(j) == r => end(j) <= available[i].m_end || start(j) >= available[i + 1].m_start
if (!m_jobs[j].m_is_preemptable && available[i].m_end + 1 < available[i+1].m_start) {
le = mk_le(u.mk_end(j), available[i].m_end);
ge = mk_ge(u.mk_start(j), available[i+1].m_start);
fml = m.mk_implies(eq, m.mk_or(le, ge));
ctx.assert_expr(fml);
}
}
}
}
}
@ -473,6 +625,10 @@ namespace smt {
if (ect(j, r, start(j)) > end(j)) {
throw default_exception("job not assigned full capacity");
}
unsigned idx;
if (!resource_available(r, start(j), idx)) {
throw default_exception("resource is not available at job start time");
}
}
for (unsigned r = 0; r < m_resources.size(); ++r) {
// order jobs running on r by start, end-time intervals
@ -601,7 +757,7 @@ namespace smt {
/**
* Compute last start time for job on resource r.
*/
time_t theory_jobscheduler::lst(unsigned j, unsigned r) {
bool theory_jobscheduler::lst(unsigned j, unsigned r, time_t& start) {
job_resource const& jr = get_job_resource(j, r);
vector<res_available>& available = m_resources[r].m_available;
unsigned j_load_pct = jr.m_loadpct;
@ -619,10 +775,10 @@ namespace smt {
cap -= delta;
}
if (cap == 0) {
return start;
return true;
}
}
throw default_exception("there is insufficient capacity on the resource to run the job");
return false;
}
};

View file

@ -28,16 +28,20 @@ Revision History:
namespace smt {
typedef uint64_t time_t;
class theory_jobscheduler : public theory {
public:
typedef map<symbol, double, symbol_hash_proc, symbol_eq_proc> properties;
protected:
struct job_resource {
unsigned m_resource_id; // id of resource
unsigned m_capacity; // amount of resource to use
unsigned m_loadpct; // assuming loadpct
time_t m_end; // must run before
job_resource(unsigned r, unsigned cap, unsigned loadpct, time_t end):
m_resource_id(r), m_capacity(cap), m_loadpct(loadpct), m_end(end) {}
properties m_properties;
job_resource(unsigned r, unsigned cap, unsigned loadpct, time_t end, properties const& ps):
m_resource_id(r), m_capacity(cap), m_loadpct(loadpct), m_end(end), m_properties(ps) {}
};
struct job_time {
@ -53,22 +57,25 @@ namespace smt {
};
struct job_info {
bool m_is_preemptable; // can job be pre-empted
vector<job_resource> m_resources; // resources allowed to run job.
u_map<unsigned> m_resource2index; // resource to index into vector
enode* m_start;
enode* m_end;
enode* m_resource;
job_info(): m_start(nullptr), m_end(nullptr), m_resource(nullptr) {}
job_info(): m_is_preemptable(true), m_start(nullptr), m_end(nullptr), m_resource(nullptr) {}
};
struct res_available {
unsigned m_loadpct;
time_t m_start;
time_t m_end;
res_available(unsigned load_pct, time_t start, time_t end):
unsigned m_loadpct;
time_t m_start;
time_t m_end;
properties m_properties;
res_available(unsigned load_pct, time_t start, time_t end, properties const& ps):
m_loadpct(load_pct),
m_start(start),
m_end(end)
m_end(end),
m_properties(ps)
{}
struct compare {
bool operator()(res_available const& ra1, res_available const& ra2) const {
@ -135,8 +142,9 @@ namespace smt {
public:
// set up job/resource global constraints
void add_job_resource(unsigned j, unsigned r, unsigned cap, unsigned loadpct, time_t end);
void add_resource_available(unsigned r, unsigned max_loadpct, time_t start, time_t end);
void set_preemptable(unsigned j, bool is_preemptable);
void add_job_resource(unsigned j, unsigned r, unsigned cap, unsigned loadpct, time_t end, properties const& ps);
void add_resource_available(unsigned r, unsigned max_loadpct, time_t start, time_t end, properties const& ps);
void add_done();
// assignments
@ -150,7 +158,7 @@ namespace smt {
// derived bounds
time_t ect(unsigned j, unsigned r, time_t start);
time_t lst(unsigned j, unsigned r);
bool lst(unsigned j, unsigned r, time_t& t);
time_t solve_for_start(unsigned load_pct, unsigned job_load_pct, time_t end, time_t cap);
time_t solve_for_end(unsigned load_pct, unsigned job_load_pct, time_t start, time_t cap);
@ -165,10 +173,10 @@ namespace smt {
// propagation
void propagate_end_time(unsigned j, unsigned r);
void propagate_end_time_interval(unsigned j, unsigned r);
void propagate_resource_energy(unsigned r);
// final check constraints
bool constrain_end_time_interval(unsigned j, unsigned r);
bool constrain_resource_energy(unsigned r);
void block_job_overlap(unsigned r, uint_set const& jobs, unsigned last_job);

View file

@ -2658,13 +2658,22 @@ public:
}
}
bool get_value(enode* n, expr_ref& r) {
bool get_value(enode* n, rational& val) {
theory_var v = n->get_th_var(get_id());
if (!can_get_bound(v)) return false;
lp::var_index vi = m_theory_var2var_index[v];
rational val;
if (m_solver->has_value(vi, val)) {
if (is_int(n) && !val.is_int()) return false;
return true;
}
else {
return false;
}
}
bool get_value(enode* n, expr_ref& r) {
rational val;
if (get_value(n, val)) {
r = a.mk_numeral(val, is_int(n));
return true;
}
@ -2673,7 +2682,7 @@ public:
}
}
bool get_lower(enode* n, expr_ref& r) {
bool get_lower(enode* n, rational& val, bool& is_strict) {
theory_var v = n->get_th_var(get_id());
if (!can_get_bound(v)) {
TRACE("arith", tout << "cannot get lower for " << v << "\n";);
@ -2681,29 +2690,36 @@ public:
}
lp::var_index vi = m_theory_var2var_index[v];
lp::constraint_index ci;
rational val;
return m_solver->has_lower_bound(vi, ci, val, is_strict);
}
bool get_lower(enode* n, expr_ref& r) {
bool is_strict;
if (m_solver->has_lower_bound(vi, ci, val, is_strict)) {
rational val;
if (get_lower(n, val, is_strict) && !is_strict) {
r = a.mk_numeral(val, is_int(n));
return true;
}
TRACE("arith", m_solver->print_constraints(tout << "does not have lower bound " << vi << "\n"););
return false;
}
bool get_upper(enode* n, expr_ref& r) {
bool get_upper(enode* n, rational& val, bool& is_strict) {
theory_var v = n->get_th_var(get_id());
if (!can_get_bound(v))
return false;
lp::var_index vi = m_theory_var2var_index[v];
lp::constraint_index ci;
rational val;
return m_solver->has_upper_bound(vi, ci, val, is_strict);
}
bool get_upper(enode* n, expr_ref& r) {
bool is_strict;
if (m_solver->has_upper_bound(vi, ci, val, is_strict)) {
rational val;
if (get_upper(n, val, is_strict) && !is_strict) {
r = a.mk_numeral(val, is_int(n));
return true;
}
TRACE("arith", m_solver->print_constraints(tout << "does not have upper bound " << vi << "\n"););
return false;
}
@ -3132,6 +3148,9 @@ void theory_lra::init_model(model_generator & m) {
model_value_proc * theory_lra::mk_value(enode * n, model_generator & mg) {
return m_imp->mk_value(n, mg);
}
bool theory_lra::get_value(enode* n, rational& r) {
return m_imp->get_value(n, r);
}
bool theory_lra::get_value(enode* n, expr_ref& r) {
return m_imp->get_value(n, r);
}
@ -3141,6 +3160,12 @@ bool theory_lra::get_lower(enode* n, expr_ref& r) {
bool theory_lra::get_upper(enode* n, expr_ref& r) {
return m_imp->get_upper(n, r);
}
bool theory_lra::get_lower(enode* n, rational& r, bool& is_strict) {
return m_imp->get_lower(n, r, is_strict);
}
bool theory_lra::get_upper(enode* n, rational& r, bool& is_strict) {
return m_imp->get_upper(n, r, is_strict);
}
bool theory_lra::validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const {
return m_imp->validate_eq_in_model(v1, v2, is_true);

View file

@ -80,6 +80,9 @@ namespace smt {
bool get_value(enode* n, expr_ref& r) override;
bool get_lower(enode* n, expr_ref& r);
bool get_upper(enode* n, expr_ref& r);
bool get_value(enode* n, rational& r);
bool get_lower(enode* n, rational& r, bool& is_strict);
bool get_upper(enode* n, rational& r, bool& is_strict);
bool validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const override;