mirror of
https://github.com/Z3Prover/z3
synced 2025-04-18 14:49:01 +00:00
rework elim_unconstrained
This commit is contained in:
parent
fbf3012864
commit
0a404f94be
|
@ -42,6 +42,73 @@ proof production is work in progress.
|
|||
reconstruct_term should assign proof objects with nodes by applying
|
||||
monotonicity or reflexivity rules.
|
||||
|
||||
Maintain term nodes.
|
||||
Each term node has a root. The root of the root is itself.
|
||||
The root of a term node can be updated.
|
||||
The parents of terms with same roots are combined.
|
||||
The depth of a parent is always greater than the depth of a child.
|
||||
The effective term of a node is reconstructed by taking the root and canonizing the children based on roots.
|
||||
The reference count of a term is the number of parents it has.
|
||||
|
||||
node: term -> node
|
||||
dirty: node -> bool
|
||||
root: node -> node
|
||||
top: node -> bool
|
||||
term: node -> term
|
||||
|
||||
invariant:
|
||||
- root(root(n)) = root(n)
|
||||
- term(node(t)) = t
|
||||
|
||||
parents: node -> node*
|
||||
parents(root(node)) = union of parents of n : root(n) = root(node).
|
||||
is_child(n, p) = term(root(n)) in args(term(root(p)))
|
||||
|
||||
set_root: node -> node -> void
|
||||
set_root(n, r) =
|
||||
r = root(r)
|
||||
n = root(n)
|
||||
if r = n then return
|
||||
parents(r) = parents(r) union parents(n)
|
||||
root(n) := r,
|
||||
top(r) := top(r) or top(n)
|
||||
set all parents of class(r) to dirty, recursively
|
||||
|
||||
reconstruct_term: node -> term
|
||||
reconstruct_term(n) =
|
||||
r = root(n)
|
||||
if dirty(r) then
|
||||
args = [reconstruct_term(c) | c in args(term(r))]
|
||||
term(r) := term(r).f(args)
|
||||
dirty(r) := false
|
||||
return term(r)
|
||||
|
||||
live : term -> bool
|
||||
live(t) =
|
||||
n = node(t)
|
||||
is_root(n) & (top(n) or p in parents(n) : live(p))
|
||||
|
||||
Only live nodes require updates.
|
||||
|
||||
eliminate:
|
||||
while heap is not empty:
|
||||
v = heap.erase_min()
|
||||
n = node(v)
|
||||
if n.parents.size() > 1 then
|
||||
return
|
||||
if !is_root(n) or !live(n) or n.parents.size() != 1 then
|
||||
continue
|
||||
p = n.parents[0]
|
||||
if !is_child(n, p) or !is_root(p) then
|
||||
continue
|
||||
t = p.term
|
||||
args = [reconstruct_term(node(arg)) | arg in t]
|
||||
r = inverter(t.f, args)
|
||||
if r then
|
||||
set_root(n, r)
|
||||
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
|
||||
|
@ -54,15 +121,17 @@ monotonicity or reflexivity rules.
|
|||
elim_unconstrained::elim_unconstrained(ast_manager& m, dependent_expr_state& fmls) :
|
||||
dependent_expr_simplifier(m, fmls), m_inverter(m), m_lt(*this), m_heap(1024, m_lt), m_trail(m), m_args(m) {
|
||||
std::function<bool(expr*)> is_var = [&](expr* e) {
|
||||
return is_uninterp_const(e) && !m_fmls.frozen(e) && is_node(e) && get_node(e).m_refcount <= 1;
|
||||
return is_uninterp_const(e) && !m_fmls.frozen(e) && get_node(e).is_root() && get_node(e).num_parents() <= 1;
|
||||
};
|
||||
m_inverter.set_is_var(is_var);
|
||||
}
|
||||
|
||||
bool elim_unconstrained::is_var_lt(int v1, int v2) const {
|
||||
node const& n1 = get_node(v1);
|
||||
node const& n2 = get_node(v2);
|
||||
return n1.m_refcount < n2.m_refcount;
|
||||
elim_unconstrained::~elim_unconstrained() {
|
||||
reset_nodes();
|
||||
}
|
||||
|
||||
bool elim_unconstrained::is_var_lt(int v1, int v2) const {
|
||||
return get_node(v1).num_parents() < get_node(v2).num_parents();
|
||||
}
|
||||
|
||||
void elim_unconstrained::eliminate() {
|
||||
|
@ -70,30 +139,29 @@ void elim_unconstrained::eliminate() {
|
|||
expr_ref r(m);
|
||||
int v = m_heap.erase_min();
|
||||
node& n = get_node(v);
|
||||
if (n.m_refcount == 0)
|
||||
if (!n.is_root() || n.is_top())
|
||||
continue;
|
||||
if (n.m_refcount > 1)
|
||||
unsigned num_parents = n.num_parents();
|
||||
if (num_parents == 0)
|
||||
continue;
|
||||
if (num_parents > 1)
|
||||
return;
|
||||
|
||||
if (n.m_parents.empty()) {
|
||||
n.m_refcount = 0;
|
||||
node& p = n.parent();
|
||||
if (!is_child(n, p) || !p.is_root())
|
||||
continue;
|
||||
}
|
||||
expr* e = get_parent(v);
|
||||
TRACE("elim_unconstrained", for (expr* p : n.m_parents) tout << "parent " << mk_bounded_pp(p, m) << " @ " << get_node(p).m_refcount << "\n";);
|
||||
if (!e || !is_app(e) || !is_ground(e)) {
|
||||
n.m_refcount = 0;
|
||||
expr* e = p.term();
|
||||
if (!e || !is_app(e) || !is_ground(e))
|
||||
continue;
|
||||
}
|
||||
if (m_heap.contains(root(e))) {
|
||||
TRACE("elim_unconstrained", tout << "already in heap " << mk_bounded_pp(e, m) << "\n");
|
||||
continue;
|
||||
}
|
||||
|
||||
SASSERT(!m_heap.contains(p.term()->get_id()));
|
||||
|
||||
app* t = to_app(e);
|
||||
TRACE("elim_unconstrained", tout << "eliminating " << mk_pp(t, m) << "\n";);
|
||||
TRACE("elim_unconstrained", tout << "eliminating " << mk_bounded_pp(t, m) << "\n";);
|
||||
unsigned sz = m_args.size();
|
||||
for (expr* arg : *to_app(t))
|
||||
m_args.push_back(reconstruct_term(get_node(arg)));
|
||||
m_args.push_back(reconstruct_term(root(arg)));
|
||||
expr_ref rr(m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz), m);
|
||||
bool inverted = m_inverter(t->get_decl(), t->get_num_args(), m_args.data() + sz, r);
|
||||
proof_ref pr(m);
|
||||
if (inverted && m_enable_proofs) {
|
||||
|
@ -103,67 +171,91 @@ void elim_unconstrained::eliminate() {
|
|||
proof * pr = m.mk_apply_def(s, r, pr1);
|
||||
m_trail.push_back(pr);
|
||||
}
|
||||
expr_ref rr(m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz), m);
|
||||
n.m_refcount = 0;
|
||||
m_args.shrink(sz);
|
||||
if (!inverted) {
|
||||
TRACE("elim_unconstrained", tout << "not inverted " << mk_bounded_pp(e, m) << "\n");
|
||||
if (!inverted)
|
||||
continue;
|
||||
}
|
||||
|
||||
IF_VERBOSE(11, verbose_stream() << "replace " << mk_pp(t, m) << " / " << rr << " -> " << r << "\n");
|
||||
IF_VERBOSE(1, verbose_stream() << "replace " << mk_bounded_pp(t, m) << " / " << mk_bounded_pp(rr, m) << " -> " << mk_bounded_pp(r, m) << "\n");
|
||||
|
||||
|
||||
TRACE("elim_unconstrained", tout << mk_pp(t, m) << " / " << rr << " -> " << r << "\n");
|
||||
TRACE("elim_unconstrained", tout << mk_bounded_pp(t, m) << " / " << mk_bounded_pp(rr, m) << " -> " << mk_bounded_pp(r, m) << "\n");
|
||||
SASSERT(r->get_sort() == t->get_sort());
|
||||
m_stats.m_num_eliminated++;
|
||||
m_trail.push_back(r);
|
||||
SASSERT(r);
|
||||
gc(e);
|
||||
invalidate_parents(e);
|
||||
freeze_rec(r);
|
||||
|
||||
m_root.setx(r->get_id(), e->get_id(), UINT_MAX);
|
||||
get_node(e).m_term = r;
|
||||
get_node(e).m_proof = pr;
|
||||
get_node(e).m_refcount++;
|
||||
get_node(e).m_dirty = false;
|
||||
IF_VERBOSE(11, verbose_stream() << "set " << &get_node(e) << " " << root(e) << " " << mk_bounded_pp(e, m) << " := " << mk_bounded_pp(r, m) << "\n");
|
||||
SASSERT(!m_heap.contains(root(e)));
|
||||
if (is_uninterp_const(r))
|
||||
m_heap.insert(root(e));
|
||||
node& rn = root(r);
|
||||
set_root(p, rn);
|
||||
expr* rt = rn.term();
|
||||
SASSERT(!m_heap.contains(rt->get_id()));
|
||||
if (is_uninterp_const(rt))
|
||||
m_heap.insert(rt->get_id());
|
||||
else
|
||||
m_created_compound = true;
|
||||
|
||||
IF_VERBOSE(11, verbose_stream() << mk_bounded_pp(get_node(v).m_orig, m) << " " << mk_bounded_pp(t, m) << " -> " << r << " " << get_node(e).m_refcount << "\n";);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
expr* elim_unconstrained::get_parent(unsigned n) const {
|
||||
for (expr* p : get_node(n).m_parents)
|
||||
if (get_node(p).m_refcount > 0 && get_node(p).m_term == get_node(p).m_orig)
|
||||
return p;
|
||||
return nullptr;
|
||||
void elim_unconstrained::set_root(node& n, node& r) {
|
||||
SASSERT(n.is_root());
|
||||
SASSERT(r.is_root());
|
||||
if (&n == &r)
|
||||
return;
|
||||
r.add_parents(n.parents());
|
||||
n.set_root(r);
|
||||
for (auto p : n.parents())
|
||||
invalidate_parents(*p);
|
||||
}
|
||||
|
||||
void elim_unconstrained::invalidate_parents(expr* e) {
|
||||
ptr_buffer<expr> todo;
|
||||
void elim_unconstrained::invalidate_parents(node& n) {
|
||||
ptr_buffer<node> todo;
|
||||
node* np = &n;
|
||||
do {
|
||||
node& n = get_node(e);
|
||||
if (!n.m_dirty && e == n.m_term) {
|
||||
n.m_dirty = true;
|
||||
for (expr* e : n.m_parents)
|
||||
todo.push_back(e);
|
||||
node& n = *np;
|
||||
if (!n.is_dirty()) {
|
||||
n.set_dirty();
|
||||
for (auto* p : n.parents())
|
||||
todo.push_back(p);
|
||||
}
|
||||
e = nullptr;
|
||||
np = nullptr;
|
||||
if (!todo.empty()) {
|
||||
e = todo.back();
|
||||
np = todo.back();
|
||||
todo.pop_back();
|
||||
}
|
||||
}
|
||||
while (e);
|
||||
while (np);
|
||||
}
|
||||
|
||||
bool elim_unconstrained::is_child(node const& ch, node const& p) {
|
||||
SASSERT(ch.is_root());
|
||||
return is_app(p.term()) && any_of(*to_app(p.term()), [&](expr* arg) { return &root(arg) == &ch; });
|
||||
}
|
||||
|
||||
elim_unconstrained::node& elim_unconstrained::get_node(expr* t) {
|
||||
unsigned id = t->get_id();
|
||||
if (m_nodes.size() <= id)
|
||||
m_nodes.resize(id + 1, nullptr);
|
||||
node* n = m_nodes[id];
|
||||
if (!n) {
|
||||
n = alloc(node, m, t);
|
||||
m_nodes[id] = n;
|
||||
if (is_app(t)) {
|
||||
for (auto arg : *to_app(t)) {
|
||||
node& ch = get_node(arg);
|
||||
SASSERT(ch.is_root());
|
||||
ch.add_parent(*n);
|
||||
}
|
||||
}
|
||||
else if (is_quantifier(t)) {
|
||||
node& ch = get_node(to_quantifier(t)->get_expr());
|
||||
SASSERT(ch.is_root());
|
||||
ch.add_parent(*n);
|
||||
}
|
||||
}
|
||||
return *n;
|
||||
}
|
||||
|
||||
void elim_unconstrained::reset_nodes() {
|
||||
for (node* n : m_nodes)
|
||||
dealloc(n);
|
||||
m_nodes.reset();
|
||||
}
|
||||
|
||||
/**
|
||||
* initialize node structure
|
||||
|
@ -182,201 +274,93 @@ void elim_unconstrained::init_nodes() {
|
|||
m_enable_proofs = true;
|
||||
}
|
||||
|
||||
m_trail.append(terms);
|
||||
m_heap.reset();
|
||||
m_root.reset();
|
||||
m_nodes.reset();
|
||||
reset_nodes();
|
||||
|
||||
// initialize nodes for terms in the original goal
|
||||
init_terms(terms);
|
||||
|
||||
// top-level terms have reference count > 0
|
||||
for (expr* e : terms)
|
||||
inc_ref(e);
|
||||
|
||||
m_inverter.set_produce_proofs(m_enable_proofs);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Create nodes for all terms in the goal
|
||||
*/
|
||||
void elim_unconstrained::init_terms(expr_ref_vector const& terms) {
|
||||
unsigned max_id = 0;
|
||||
for (expr* e : subterms::all(terms))
|
||||
max_id = std::max(max_id, e->get_id());
|
||||
|
||||
m_nodes.reserve(max_id + 1);
|
||||
m_heap.reserve(max_id + 1);
|
||||
m_root.reserve(max_id + 1, UINT_MAX);
|
||||
|
||||
for (expr* e : subterms_postorder::all(terms)) {
|
||||
m_root.setx(e->get_id(), e->get_id(), UINT_MAX);
|
||||
node& n = get_node(e);
|
||||
if (n.m_term)
|
||||
continue;
|
||||
n.m_orig = e;
|
||||
n.m_term = e;
|
||||
n.m_refcount = 0;
|
||||
|
||||
SASSERT(n.is_root());
|
||||
if (is_uninterp_const(e))
|
||||
m_heap.insert(root(e));
|
||||
if (is_quantifier(e)) {
|
||||
expr* body = to_quantifier(e)->get_expr();
|
||||
get_node(body).m_parents.push_back(e);
|
||||
inc_ref(body);
|
||||
}
|
||||
else if (is_app(e)) {
|
||||
for (expr* arg : *to_app(e)) {
|
||||
get_node(arg).m_parents.push_back(e);
|
||||
inc_ref(arg);
|
||||
}
|
||||
}
|
||||
m_heap.insert(e->get_id());
|
||||
}
|
||||
}
|
||||
|
||||
void elim_unconstrained::freeze_rec(expr* r) {
|
||||
expr_ref_vector children(m);
|
||||
if (is_quantifier(r))
|
||||
children.push_back(to_quantifier(r)->get_expr());
|
||||
else if (is_app(r))
|
||||
children.append(to_app(r)->get_num_args(), to_app(r)->get_args());
|
||||
else
|
||||
return;
|
||||
if (children.empty())
|
||||
return;
|
||||
for (expr* t : subterms::all(children))
|
||||
freeze(t);
|
||||
}
|
||||
// mark top level terms
|
||||
for (expr* e : terms)
|
||||
get_node(e).set_top();
|
||||
|
||||
void elim_unconstrained::freeze(expr* t) {
|
||||
if (!is_uninterp_const(t))
|
||||
return;
|
||||
if (m_nodes.size() <= t->get_id())
|
||||
return;
|
||||
if (m_nodes.size() <= root(t))
|
||||
return;
|
||||
node& n = get_node(t);
|
||||
if (!n.m_term)
|
||||
return;
|
||||
if (m_heap.contains(root(t))) {
|
||||
n.m_refcount = UINT_MAX / 2;
|
||||
m_heap.increased(root(t));
|
||||
}
|
||||
}
|
||||
|
||||
void elim_unconstrained::gc(expr* t) {
|
||||
ptr_vector<expr> todo;
|
||||
todo.push_back(t);
|
||||
while (!todo.empty()) {
|
||||
t = todo.back();
|
||||
todo.pop_back();
|
||||
m_inverter.set_produce_proofs(m_enable_proofs);
|
||||
|
||||
node& n = get_node(t);
|
||||
if (n.m_refcount == 0)
|
||||
continue;
|
||||
if (n.m_term && !is_node(n.m_term))
|
||||
continue;
|
||||
|
||||
dec_ref(t);
|
||||
if (n.m_refcount != 0)
|
||||
continue;
|
||||
if (n.m_term)
|
||||
t = n.m_term;
|
||||
if (is_app(t)) {
|
||||
for (expr* arg : *to_app(t))
|
||||
todo.push_back(arg);
|
||||
}
|
||||
else if (is_quantifier(t))
|
||||
todo.push_back(to_quantifier(t)->get_expr());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
expr_ref elim_unconstrained::reconstruct_term(node& n0) {
|
||||
expr* t = n0.m_term;
|
||||
if (!n0.m_dirty)
|
||||
return expr_ref(t, m);
|
||||
if (!is_node(t))
|
||||
return expr_ref(t, m);
|
||||
ptr_buffer<expr> todo;
|
||||
todo.push_back(t);
|
||||
expr* elim_unconstrained::reconstruct_term(node& n) {
|
||||
SASSERT(n.is_root());
|
||||
if (!n.is_dirty())
|
||||
return n.term();
|
||||
ptr_buffer<node> todo;
|
||||
todo.push_back(&n);
|
||||
expr_ref new_t(m);
|
||||
while (!todo.empty()) {
|
||||
t = todo.back();
|
||||
if (!is_node(t)) {
|
||||
UNREACHABLE();
|
||||
}
|
||||
node& n = get_node(t);
|
||||
node* np = todo.back();
|
||||
if (!np->is_dirty())
|
||||
continue;
|
||||
SASSERT(np->is_root());
|
||||
auto t = np->term();
|
||||
unsigned sz0 = todo.size();
|
||||
if (is_app(t)) {
|
||||
if (n.m_term != t) {
|
||||
n.m_dirty = false;
|
||||
todo.pop_back();
|
||||
continue;
|
||||
if (is_app(t)) {
|
||||
for (expr* arg : *to_app(t)) {
|
||||
node& r = root(arg);
|
||||
if (r.is_dirty())
|
||||
todo.push_back(&r);
|
||||
}
|
||||
for (expr* arg : *to_app(t))
|
||||
if (get_node(arg).m_dirty || !get_node(arg).m_term)
|
||||
todo.push_back(arg);
|
||||
if (todo.size() != sz0)
|
||||
continue;
|
||||
|
||||
unsigned sz = m_args.size();
|
||||
for (expr* arg : *to_app(t))
|
||||
m_args.push_back(get_node(arg).m_term);
|
||||
n.m_term = m.mk_app(to_app(t)->get_decl(), to_app(t)->get_num_args(), m_args.data() + sz);
|
||||
for (expr* arg : *to_app(t))
|
||||
m_args.push_back(root(arg).term());
|
||||
new_t = m.mk_app(to_app(t)->get_decl(), to_app(t)->get_num_args(), m_args.data() + sz);
|
||||
m_args.shrink(sz);
|
||||
}
|
||||
else if (is_quantifier(t)) {
|
||||
expr* body = to_quantifier(t)->get_expr();
|
||||
node& n2 = get_node(body);
|
||||
if (n2.m_dirty || !n2.m_term) {
|
||||
todo.push_back(body);
|
||||
node& n2 = root(body);
|
||||
if (n2.is_dirty()) {
|
||||
todo.push_back(&n2);
|
||||
continue;
|
||||
}
|
||||
n.m_term = m.update_quantifier(to_quantifier(t), n2.m_term);
|
||||
new_t = m.update_quantifier(to_quantifier(t), n2.term());
|
||||
}
|
||||
m_trail.push_back(n.m_term);
|
||||
m_root.setx(n.m_term->get_id(), n.m_term->get_id(), UINT_MAX);
|
||||
else
|
||||
new_t = t;
|
||||
node& new_n = get_node(new_t);
|
||||
set_root(*np, new_n);
|
||||
np->set_clean();
|
||||
todo.pop_back();
|
||||
n.m_dirty = false;
|
||||
}
|
||||
return expr_ref(n0.m_term, m);
|
||||
return n.root().term();
|
||||
}
|
||||
|
||||
/**
|
||||
* walk nodes starting from lowest depth and reconstruct their normalized forms.
|
||||
*/
|
||||
void elim_unconstrained::reconstruct_terms() {
|
||||
expr_ref_vector terms(m);
|
||||
for (unsigned i : indices())
|
||||
terms.push_back(m_fmls[i].fml());
|
||||
ptr_vector<node> nodes;
|
||||
for (node* n : m_nodes)
|
||||
if (n && n->is_root())
|
||||
nodes.push_back(n);
|
||||
|
||||
for (expr* e : subterms_postorder::all(terms)) {
|
||||
node& n = get_node(e);
|
||||
expr* t = n.m_term;
|
||||
if (t != n.m_orig)
|
||||
continue;
|
||||
if (is_app(t)) {
|
||||
bool change = false;
|
||||
m_args.reset();
|
||||
for (expr* arg : *to_app(t)) {
|
||||
node& n2 = get_node(arg);
|
||||
m_args.push_back(n2.m_term);
|
||||
change |= n2.m_term != n2.m_orig;
|
||||
}
|
||||
if (change) {
|
||||
n.m_term = m.mk_app(to_app(t)->get_decl(), m_args);
|
||||
m_trail.push_back(n.m_term);
|
||||
}
|
||||
}
|
||||
else if (is_quantifier(t)) {
|
||||
node& n2 = get_node(to_quantifier(t)->get_expr());
|
||||
if (n2.m_term != n2.m_orig) {
|
||||
n.m_term = m.update_quantifier(to_quantifier(t), n2.m_term);
|
||||
m_trail.push_back(n.m_term);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::stable_sort(nodes.begin(), nodes.end(), [&](node* a, node* b) { return get_depth(a->term()) < get_depth(b->term()); });
|
||||
|
||||
for (node* n : nodes)
|
||||
reconstruct_term(*n);
|
||||
}
|
||||
|
||||
|
||||
|
@ -384,12 +368,11 @@ void elim_unconstrained::assert_normalized(vector<dependent_expr>& old_fmls) {
|
|||
|
||||
for (unsigned i : indices()) {
|
||||
auto [f, p, d] = m_fmls[i]();
|
||||
node& n = get_node(f);
|
||||
expr* g = n.m_term;
|
||||
node& n = root(f);
|
||||
expr* g = n.term();
|
||||
if (f == g)
|
||||
continue;
|
||||
old_fmls.push_back(m_fmls[i]);
|
||||
IF_VERBOSE(11, verbose_stream() << mk_bounded_pp(f, m, 3) << " -> " << mk_bounded_pp(g, m, 3) << "\n");
|
||||
TRACE("elim_unconstrained", tout << mk_bounded_pp(f, m) << " -> " << mk_bounded_pp(g, m) << "\n");
|
||||
m_fmls.update(i, dependent_expr(m, g, nullptr, d));
|
||||
}
|
||||
|
@ -441,6 +424,6 @@ void elim_unconstrained::reduce() {
|
|||
vector<dependent_expr> old_fmls;
|
||||
assert_normalized(old_fmls);
|
||||
update_model_trail(*mc, old_fmls);
|
||||
mc->reset();
|
||||
mc->reset();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -24,14 +24,49 @@ class elim_unconstrained : public dependent_expr_simplifier {
|
|||
|
||||
friend class seq_simplifier;
|
||||
|
||||
struct node {
|
||||
unsigned m_refcount = 0;
|
||||
expr* m_term = nullptr;
|
||||
expr* m_orig = nullptr;
|
||||
proof* m_proof = nullptr;
|
||||
class node {
|
||||
expr_ref m_term;
|
||||
proof_ref m_proof;
|
||||
bool m_dirty = false;
|
||||
ptr_vector<expr> m_parents;
|
||||
ptr_vector<node> m_parents;
|
||||
node* m_root = nullptr;
|
||||
bool m_top = false;
|
||||
public:
|
||||
|
||||
node(ast_manager& m, expr* t) :
|
||||
m_term(t, m),
|
||||
m_proof(m),
|
||||
m_root(this) {
|
||||
}
|
||||
|
||||
void set_top() { m_top = true; }
|
||||
bool is_top() const { return m_top; }
|
||||
|
||||
void set_dirty() { m_dirty = true; }
|
||||
void set_clean() { m_dirty = false; }
|
||||
bool is_dirty() const { return m_dirty; }
|
||||
|
||||
unsigned num_parents() const { return m_parents.size(); }
|
||||
ptr_vector<node> const& parents() const { return m_parents; }
|
||||
void add_parent(node& p) { m_parents.push_back(&p); }
|
||||
void add_parents(ptr_vector<node> const& ps) { m_parents.append(ps); }
|
||||
node& parent() const { SASSERT(num_parents() == 1); return *m_parents[0]; }
|
||||
|
||||
bool is_root() const { return m_root == this; }
|
||||
node& root() { node* r = m_root; while (!r->is_root()) r = r->m_root; return *r; }
|
||||
node const& root() const { node* r = m_root; while (!r->is_root()) r = r->m_root; return *r; }
|
||||
void set_root(node& r) {
|
||||
SASSERT(r.is_root());
|
||||
m_root = &r;
|
||||
SASSERT(term()->get_sort() == r.term()->get_sort());
|
||||
}
|
||||
|
||||
void set_proof(proof* p) { m_proof = p; }
|
||||
proof* get_proof() const { return m_proof; }
|
||||
|
||||
expr* term() const { return m_term; }
|
||||
};
|
||||
|
||||
struct var_lt {
|
||||
elim_unconstrained& s;
|
||||
var_lt(elim_unconstrained& s) : s(s) {}
|
||||
|
@ -39,50 +74,44 @@ class elim_unconstrained : public dependent_expr_simplifier {
|
|||
return s.is_var_lt(v1, v2);
|
||||
}
|
||||
};
|
||||
|
||||
struct stats {
|
||||
unsigned m_num_eliminated = 0;
|
||||
void reset() { m_num_eliminated = 0; }
|
||||
};
|
||||
expr_inverter m_inverter;
|
||||
vector<node> m_nodes;
|
||||
ptr_vector<node> m_nodes;
|
||||
var_lt m_lt;
|
||||
heap<var_lt> m_heap;
|
||||
expr_ref_vector m_trail;
|
||||
expr_ref_vector m_args;
|
||||
stats m_stats;
|
||||
unsigned_vector m_root;
|
||||
bool m_created_compound = false;
|
||||
bool m_enable_proofs = false;
|
||||
|
||||
bool is_var_lt(int v1, int v2) const;
|
||||
bool is_node(unsigned n) const { return m_nodes.size() > n; }
|
||||
bool is_node(expr* t) const { return is_node(t->get_id()); }
|
||||
node& get_node(unsigned n) { return m_nodes[n]; }
|
||||
node const& get_node(unsigned n) const { return m_nodes[n]; }
|
||||
node& get_node(expr* t) { return m_nodes[root(t)]; }
|
||||
unsigned root(expr* t) const { return m_root[t->get_id()]; }
|
||||
node const& get_node(expr* t) const { return m_nodes[root(t)]; }
|
||||
unsigned get_refcount(expr* t) const { return get_node(t).m_refcount; }
|
||||
void inc_ref(expr* t) { ++get_node(t).m_refcount; if (is_uninterp_const(t)) m_heap.increased(root(t)); }
|
||||
void dec_ref(expr* t) { --get_node(t).m_refcount; if (is_uninterp_const(t)) m_heap.decreased(root(t)); }
|
||||
void freeze(expr* t);
|
||||
void freeze_rec(expr* r);
|
||||
void gc(expr* t);
|
||||
expr* get_parent(unsigned n) const;
|
||||
void init_terms(expr_ref_vector const& terms);
|
||||
node& get_node(unsigned n) const { return *m_nodes[n]; }
|
||||
node& get_node(expr* t);
|
||||
node& root(expr* t) { return get_node(t).root(); }
|
||||
void set_root(node& n, node& r);
|
||||
void invalidate_parents(node& n);
|
||||
bool is_child(node const& ch, node const& p);
|
||||
|
||||
void init_nodes();
|
||||
void reset_nodes();
|
||||
void eliminate();
|
||||
void reconstruct_terms();
|
||||
expr_ref reconstruct_term(node& n);
|
||||
expr* reconstruct_term(node& n);
|
||||
void assert_normalized(vector<dependent_expr>& old_fmls);
|
||||
void update_model_trail(generic_model_converter& mc, vector<dependent_expr> const& old_fmls);
|
||||
void invalidate_parents(expr* e);
|
||||
|
||||
|
||||
|
||||
|
||||
public:
|
||||
|
||||
elim_unconstrained(ast_manager& m, dependent_expr_state& fmls);
|
||||
|
||||
~elim_unconstrained() override;
|
||||
|
||||
char const* name() const override { return "elim-unconstrained"; }
|
||||
|
||||
void reduce() override;
|
||||
|
|
Loading…
Reference in a new issue