3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

var_eqs compiles but broken

This commit is contained in:
Lev Nachmanson 2019-04-02 21:30:36 -07:00
parent f828dc9451
commit 09152013b3
10 changed files with 407 additions and 47 deletions

View file

@ -2092,7 +2092,7 @@ public:
for (auto const& mon : poly) {
SASSERT(!mon.empty());
if (mon.size() == 1) {
term.add_coeff_var(mon.get_coeff(), mon[0]);
term.add_var(mon[0]);
}
else {
// create the expression corresponding to the product.
@ -2107,7 +2107,7 @@ public:
app_ref t(a.mk_mul(mul.size(), mul.c_ptr()), m);
VERIFY(internalize_term(t));
theory_var w = ctx().get_enode(t)->get_th_var(get_id());
term.add_coeff_var(mon.get_coeff(), lp().external_to_local(w));
term.add_var(lp().external_to_local(w));
}
}
return term;

View file

@ -32,6 +32,7 @@ z3_add_component(lp
square_dense_submatrix.cpp
square_sparse_matrix.cpp
static_matrix.cpp
var_eqs.cpp
COMPONENT_DEPENDENCIES
util
polynomial

View file

@ -18,6 +18,8 @@ Revision History:
--*/
#pragma once
#include <unordered_set>
#include "util/lp/lp_utils.h"
namespace lp {
class explanation {
vector<std::pair<mpq, constraint_index>> m_explanation;

View file

@ -26,11 +26,9 @@ Revision History:
#include <iomanip>
#include "util/lp/lp_utils.h"
#include "util/stopwatch.h"
#include "util/lp/lp_types.h"
namespace lp {
typedef unsigned var_index;
typedef unsigned constraint_index;
typedef unsigned row_index;
enum class column_type {
free_column = 0,

25
src/util/lp/lp_types.h Normal file
View file

@ -0,0 +1,25 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
namespace lp {
typedef unsigned var_index;
typedef unsigned constraint_index;
typedef unsigned row_index;
}

View file

@ -18,7 +18,6 @@ namespace nla {
// fields
lp::var_index m_v;
svector<lp::var_index> m_vs;
rational m_coeff;
public:
// constructors
monomial(lp::var_index v, unsigned sz, lp::var_index const* vs):
@ -38,7 +37,6 @@ namespace nla {
svector<lp::var_index>::const_iterator end() const { return m_vs.end(); }
const svector<lp::var_index> vars() const { return m_vs; }
bool empty() const { return m_vs.empty(); }
const rational& get_coeff() const { return m_coeff; }
};
typedef std::unordered_map<lp::var_index, rational> variable_map_type;

View file

@ -21,7 +21,7 @@
#include <map>
#include "util/lp/monomial.h"
#include "util/lp/lp_utils.h"
#include "util/lp/vars_equivalence.h"
#include "util/lp/var_eqs.h"
#include "util/lp/factorization.h"
#include "util/lp/rooted_mons.h"
namespace nla {
@ -34,6 +34,7 @@ bool try_insert(const A& elem, B& collection) {
collection.insert(elem);
return true;
}
typedef lp::constraint_index lpci;
typedef lp::lconstraint_kind llc;
struct point {
@ -85,7 +86,7 @@ struct solver::imp {
};
//fields
vars_equivalence m_vars_equivalence;
var_eqs m_vars_equivalence;
vector<monomial> m_monomials;
rooted_mon_table m_rm_table;
@ -113,7 +114,7 @@ struct solver::imp {
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p)
:
m_vars_equivalence([this](unsigned h){return vvr(h);}),
m_vars_equivalence(),
m_lar_solver(s)
// m_limit(lim),
// m_params(p)
@ -193,21 +194,19 @@ struct solver::imp {
}
// the value of the factor is equal to the value of the variable multiplied
// by the flip_sign
rational flip_sign(const factor& f) const {
// by the canonize_sign
rational canonize_sign(const factor& f) const {
return f.is_var()?
flip_sign_of_var(f.index()) : m_rm_table.rms()[f.index()].orig_sign();
canonize_sign_of_var(f.index()) : m_rm_table.rms()[f.index()].orig_sign();
}
rational flip_sign_of_var(lpvar j) const {
rational sign(1);
m_vars_equivalence.map_to_root(j, sign);
return sign;
rational canonize_sign_of_var(lpvar j) const {
return m_vars_equivalence.find_sign(j);
}
// the value of the rooted monomias is equal to the value of the variable multiplied
// by the flip_sign
rational flip_sign(const rooted_mon& m) const {
// by the canonize_sign
rational canonize_sign(const rooted_mon& m) const {
return m.orig().sign();
}
@ -269,8 +268,9 @@ struct solver::imp {
return product_value(m) == m_lar_solver.get_column_value_rational(m.var());
}
void explain(const monomial& m, lp::explanation& exp) const {
m_vars_equivalence.explain(m, exp);
void explain(const monomial& m, lp::explanation& exp) const {
for (lpvar j : m)
explain(j, exp);
}
void explain(const rooted_mon& rm, lp::explanation& exp) const {
@ -280,9 +280,9 @@ struct solver::imp {
void explain(const factor& f, lp::explanation& exp) const {
if (f.type() == factor_type::VAR) {
m_vars_equivalence.explain(f.index(), exp);
explain(f.index(), exp);
} else {
m_vars_equivalence.explain(m_monomials[m_rm_table.rms()[f.index()].orig_index()], exp);
explain(m_monomials[m_rm_table.rms()[f.index()].orig_index()], exp);
}
}
@ -618,7 +618,7 @@ struct solver::imp {
svector<lpvar> ret;
sign = 1;
for (lpvar v : vars) {
unsigned root = m_vars_equivalence.map_to_root(v, sign);
unsigned root = m_vars_equivalence.find(v, sign);
SASSERT(m_vars_equivalence.is_root(root));
TRACE("nla_solver_eq",
print_var(v,tout);
@ -841,6 +841,7 @@ struct solver::imp {
return rat_sign(vvr(m)) != rat_sign(m);
}
/*
unsigned_vector eq_vars(lpvar j) const {
TRACE("nla_solver_eq", tout << "j = "; print_var(j, tout); tout << "eqs = ";
for(auto jj : m_vars_equivalence.eq_vars(j)) {
@ -848,7 +849,7 @@ struct solver::imp {
});
return m_vars_equivalence.eq_vars(j);
}
*/
// Monomials m and n vars have the same values, up to "sign"
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign) {
@ -1090,7 +1091,7 @@ struct solver::imp {
if (!(var_has_positive_lower_bound(j) || var_has_negative_upper_bound(j))) {
return 0;
}
m_vars_equivalence.map_to_root(j, sign);
sign *= m_vars_equivalence.find_sign(j);
}
return rat_sign(sign);
}
@ -1338,10 +1339,10 @@ struct solver::imp {
bool vars_are_equiv(lpvar a, lpvar b) const {
SASSERT(abs(vvr(a)) == abs(vvr(b)));
return m_vars_equivalence.vars_are_equiv(a, b) ||
(var_is_fixed(a) && var_is_fixed(b));
return m_vars_equivalence.vars_are_equiv(a, b);
}
void explain_equiv_vars(lpvar a, lpvar b) {
SASSERT(abs(vvr(a)) == abs(vvr(b)));
if (m_vars_equivalence.vars_are_equiv(a, b)) {
@ -1455,7 +1456,7 @@ struct solver::imp {
for (auto j : f){
lpvar var_j = var(j);
if (not_one == var_j) continue;
mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : flip_sign(j) * vvr(j));
mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : canonize_sign(j) * vvr(j));
}
if (not_one == static_cast<lpvar>(-1)) {
@ -1549,7 +1550,7 @@ struct solver::imp {
for (auto j : f){
lpvar var_j = var(j);
if (not_one == var_j) continue;
mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : flip_sign(j) * vvr(j));
mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : canonize_sign(j) * vvr(j));
}
if (not_one == static_cast<lpvar>(-1)) {
@ -1837,8 +1838,40 @@ struct solver::imp {
add_equivalence_maybe(s.terms()[i], s.get_column_upper_bound_witness(j), s.get_column_lower_bound_witness(j));
}
}
collect_equivs_of_fixed_vars();
}
void collect_equivs_of_fixed_vars() {
std::unordered_map<rational, svector<lpvar> > abs_map;
for (lpvar j = 0; j < m_lar_solver.number_of_vars(); j++) {
if (!var_is_fixed(j))
continue;
rational v = abs(vvr(j));
auto it = abs_map.find(v);
if (it == abs_map.end()) {
abs_map[v] = svector<lpvar>();
abs_map[v].push_back(j);
} else {
it->second.push_back(j);
}
}
for (auto p : abs_map) {
svector<lpvar>& v = p.second;
lpvar head = v[0];
auto c0 = m_lar_solver.get_column_upper_bound_witness(head);
auto c1 = m_lar_solver.get_column_lower_bound_witness(head);
for (unsigned k = 1; k < v.size(); k++) {
auto c2 = m_lar_solver.get_column_upper_bound_witness(v[k]);
auto c3 = m_lar_solver.get_column_lower_bound_witness(v[k]);
if (vvr(head) == vvr(v[k]))
m_vars_equivalence.merge_plus(head, v[k], eq_justification({c0, c1, c2, c3}));
else
m_vars_equivalence.merge_minus(head, v[k], eq_justification({c0, c1, c2, c3}));
}
}
}
void add_equivalence_maybe(const lp::lar_term *t, lpci c0, lpci c1) {
if (t->size() != 2)
return;
@ -1860,16 +1893,18 @@ struct solver::imp {
j = p.var();
}
SASSERT(j != static_cast<unsigned>(-1));
rational sign((seen_minus && seen_plus)? 1 : -1);
m_vars_equivalence.add_equiv(i, j, sign, c0, c1);
bool sign = (seen_minus && seen_plus)? false : true;
if (sign)
m_vars_equivalence.merge_minus(i, j, eq_justification({c0, c1}));
else
m_vars_equivalence.merge_plus(i, j, eq_justification({c0, c1}));
}
// x is equivalent to y if x = +- y
void init_vars_equivalence() {
SASSERT(m_vars_equivalence.empty());
/* SASSERT(m_vars_equivalence.empty());*/
collect_equivs();
m_vars_equivalence.create_tree();
TRACE("nla_solver_details", tout << "number of equivs = " << m_vars_equivalence.size(););
/* TRACE("nla_solver_details", tout << "number of equivs = " << m_vars_equivalence.size(););*/
SASSERT((settings().random_next() % 100) || tables_are_ok());
}
@ -1976,7 +2011,6 @@ struct solver::imp {
void clear() {
m_var_to_its_monomial.clear();
m_vars_equivalence.clear();
m_rm_table.clear();
m_monomials_containing_var.clear();
m_lemma_vec->clear();
@ -2046,14 +2080,14 @@ struct solver::imp {
}
void negate_factor_relation(const rational& a_sign, const factor& a, const rational& b_sign, const factor& b) {
rational a_fs = flip_sign(a);
rational b_fs = flip_sign(b);
rational a_fs = canonize_sign(a);
rational b_fs = canonize_sign(b);
llc cmp = a_sign*vvr(a) < b_sign*vvr(b)? llc::GE : llc::LE;
mk_ineq(a_fs*a_sign, var(a), - b_fs*b_sign, var(b), cmp);
}
void negate_var_factor_relation(const rational& a_sign, lpvar a, const rational& b_sign, const factor& b) {
rational b_fs = flip_sign(b);
rational b_fs = canonize_sign(b);
llc cmp = a_sign*vvr(a) < b_sign*vvr(b)? llc::GE : llc::LE;
mk_ineq(a_sign, a, - b_fs*b_sign, var(b), cmp);
}
@ -2068,8 +2102,8 @@ struct solver::imp {
const factor& b,
llc ab_cmp) {
add_empty_lemma();
mk_ineq(rational(c_sign) * flip_sign(c), var(c), llc::LE);
mk_ineq(flip_sign(ac), var(ac), -flip_sign(bc), var(bc), ab_cmp);
mk_ineq(rational(c_sign) * canonize_sign(c), var(c), llc::LE);
mk_ineq(canonize_sign(ac), var(ac), -canonize_sign(bc), var(bc), ab_cmp);
explain(ac, current_expl());
explain(a, current_expl());
explain(bc, current_expl());
@ -2091,7 +2125,7 @@ struct solver::imp {
mk_ineq(c_sign, c, llc::LE);
explain(c, current_expl()); // this explains c == +- d
negate_var_factor_relation(c_sign, a, d_sign, b);
mk_ineq(ac.var(), -flip_sign(bd), var(bd), ab_cmp);
mk_ineq(ac.var(), -canonize_sign(bd), var(bd), ab_cmp);
explain(bd, current_expl());
explain(b, current_expl());
explain(d, current_expl());
@ -2210,7 +2244,7 @@ struct solver::imp {
SASSERT(abs(vvr(i)) == abs(vvr(c)));
auto it = m_var_to_its_monomial.find(i);
if (it == m_var_to_its_monomial.end()) {
i = m_vars_equivalence.map_to_root(i);
i = m_vars_equivalence.find(i);
if (try_insert(i, found_vars)) {
r.push_back(factor(i, factor_type::VAR));
}
@ -2252,7 +2286,7 @@ struct solver::imp {
TRACE("nla_solver", tout << "orig_sign = " << rm.orig_sign() << "\n";);
rational sign = rm.orig_sign();
for(factor f: ab)
sign *= flip_sign(f);
sign *= canonize_sign(f);
const rational & fv = vvr(ab[0]) * vvr(ab[1]);
const rational mv = sign * vvr(m);
TRACE("nla_solver",
@ -2348,7 +2382,7 @@ struct solver::imp {
void order_lemma_on_factor_binomial_explore(const monomial& m, unsigned k) {
SASSERT(m.size() == 2);
lpvar c = m[k];
lpvar d = m_vars_equivalence.map_to_root(c);
lpvar d = m_vars_equivalence.find(c);
auto it = m_rm_table.var_map().find(d);
SASSERT(it != m_rm_table.var_map().end());
for (unsigned bd_i : it->second) {
@ -2359,7 +2393,7 @@ struct solver::imp {
}
void order_lemma_on_factor_binomial_rm(const monomial& ac, unsigned k, const rooted_mon& rm_bd) {
factor d(m_vars_equivalence.map_to_root(ac[k]), factor_type::VAR);
factor d(m_vars_equivalence.find(ac[k]), factor_type::VAR);
factor b;
if (!divide(rm_bd, d, b))
return;
@ -2373,7 +2407,7 @@ struct solver::imp {
int p = (k + 1) % 2;
lpvar a = ac[p];
lpvar c = ac[k];
SASSERT(m_vars_equivalence.map_to_root(c) == d);
SASSERT(m_vars_equivalence.find(c) == d);
rational acv = vvr(ac);
rational av = vvr(a);
rational c_sign = rrat_sign(vvr(c));

View file

@ -54,6 +54,12 @@ struct rooted_mon {
}
};
struct hash_svector {
size_t operator()(const unsigned_vector & v) const {
return svector_hash<unsigned_hash>()(v);
}
};
struct rooted_mon_table {
std::unordered_map<svector<lpvar>,

114
src/util/lp/var_eqs.cpp Normal file
View file

@ -0,0 +1,114 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#include "util/lp/var_eqs.h"
namespace nla {
var_eqs::var_eqs(): m_uf(m_ufctx) {}
void var_eqs::push() {
m_trail_lim.push_back(m_trail.size());
m_ufctx.get_trail_stack().push_scope();
}
void var_eqs::pop(unsigned n) {
unsigned old_sz = m_trail_lim[m_trail_lim.size() - n];
for (unsigned i = m_trail.size(); i-- > old_sz; ) {
auto const& sv = m_trail[i];
m_eqs[sv.first.index()].pop_back();
m_eqs[sv.second.index()].pop_back();
m_eqs[(~sv.first).index()].pop_back();
m_eqs[(~sv.second).index()].pop_back();
}
m_trail_lim.shrink(n);
m_trail.shrink(old_sz);
m_ufctx.get_trail_stack().pop_scope(n);
}
void var_eqs::merge(signed_var v1, signed_var v2, eq_justification const& j) {
unsigned max_i = std::max(v1.index(), v2.index()) + 1;
m_eqs.reserve(max_i);
while (m_uf.get_num_vars() <= max_i) m_uf.mk_var();
m_uf.merge(v1.index(), v2.index());
m_uf.merge((~v1).index(), (~v2).index());
m_eqs[v1.index()].push_back(justified_var(v2, j));
m_eqs[v2.index()].push_back(justified_var(v1, j));
m_eqs[(~v1).index()].push_back(justified_var(~v2, j));
m_eqs[(~v2).index()].push_back(justified_var(~v1, j));
}
signed_var var_eqs::find(signed_var v) const {
if (v.index() >= m_uf.get_num_vars()) {
return v;
}
unsigned idx = m_uf.find(v.index());
return signed_var(idx);
}
void var_eqs::explain(signed_var v1, signed_var v2, lp::explanation& e) const {
SASSERT(find(v1) == find(v2));
unsigned_vector ret;
if (v1 == v2) {
return;
}
m_todo.push_back(dfs_frame(v1, 0));
m_dfs_trail.reset();
m_marked.reserve(m_eqs.size(), false);
SASSERT(m_marked_trail.empty());
while (true) {
SASSERT(!m_todo.empty());
dfs_frame& f = m_todo.back();
signed_var v = f.m_var;
if (v == v2) {
break;
}
auto const& next = m_eqs[v.index()];
unsigned sz = next.size();
bool seen_all = true;
for (unsigned i = f.m_index; !seen_all && i < sz; ++i) {
justified_var const& jv = next[i];
if (!m_marked[jv.m_var.index()]) {
seen_all = false;
f.m_index = i + 1;
m_todo.push_back(dfs_frame(jv.m_var, 0));
m_dfs_trail.push_back(jv.m_j);
m_marked[jv.m_var.index()] = true;
}
}
if (seen_all) {
m_todo.pop_back();
m_dfs_trail.pop_back();
}
}
for (eq_justification const& j : m_dfs_trail) {
j.explain(e);
}
m_dfs_trail.reset();
for (unsigned idx : m_marked_trail) {
m_marked[idx] = false;
}
m_marked_trail.reset();
}
}

182
src/util/lp/var_eqs.h Normal file
View file

@ -0,0 +1,182 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "util/union_find.h"
#include "util/lp/lp_types.h"
#include "util/rational.h"
#include "util/lp/explanation.h"
namespace nla {
typedef lp::var_index lpvar;
typedef lp::constraint_index lpcindex;
class signed_var {
unsigned m_sv;
public:
// constructor, sign = true means minus
signed_var(lpvar v, bool sign): m_sv((v << 1) + (sign ? 1 : 0)) {}
// constructor
explicit signed_var(unsigned sv): m_sv(sv) {}
bool sign() const { return 0 != (m_sv & 0x1); }
lpvar var() const { return m_sv >> 1; }
unsigned index() const { return m_sv; }
void neg() { m_sv = m_sv ^ 1; }
friend signed_var operator~(signed_var const& sv) {
return signed_var(sv.var(), !sv.sign());
}
bool operator==(signed_var const& other) const {
return m_sv == other.m_sv;
}
bool operator!=(signed_var const& other) const {
return m_sv != other.m_sv;
}
};
class eq_justification {
svector<lpcindex> m_cs;
public:
eq_justification(std::initializer_list<lpcindex> cs) {
for (lpcindex c: cs)
m_cs.push_back(c);
}
void explain(lp::explanation& e) const {
for (lpcindex c : m_cs)
e.add(c);
}
};
class var_eqs {
struct justified_var {
signed_var m_var;
eq_justification m_j;
justified_var(signed_var v, eq_justification const& j): m_var(v), m_j(j) {}
};
typedef svector<justified_var> justified_vars;
struct dfs_frame {
signed_var m_var;
unsigned m_index;
dfs_frame(signed_var v, unsigned i): m_var(v), m_index(i) {}
};
typedef std::pair<signed_var, signed_var> signed_var_pair;
union_find_default_ctx m_ufctx;
union_find<> m_uf;
svector<signed_var_pair> m_trail;
unsigned_vector m_trail_lim;
vector<justified_vars> m_eqs; // signed_var-index -> justified_var corresponding to edges in a graph used to extract justifications.
mutable svector<dfs_frame> m_todo;
mutable svector<bool> m_marked;
mutable unsigned_vector m_marked_trail;
mutable svector<eq_justification> m_dfs_trail;
public:
var_eqs();
/**
\brief push a scope
*/
void push();
/**
\brief pop n scopes
*/
void pop(unsigned n);
/**
\brief merge equivalence classes for v1, v2 with justification j
*/
void merge(signed_var v1, signed_var v2, eq_justification const& j);
void merge_plus(lpvar v1, lpvar v2, eq_justification const& j) { merge(signed_var(v1, false), signed_var(v2, false), j); }
void merge_minus(lpvar v1, lpvar v2, eq_justification const& j) { merge(signed_var(v1, false), signed_var(v2, true), j); }
/**
\brief find equivalence class representative for v
*/
signed_var find(signed_var v) const;
inline lpvar find(lpvar j, rational& sign) const {
signed_var sv = find(signed_var(j, false));
sign = sv.sign()? rational(-1) : rational(1);
return sv.var();
}
inline rational find_sign(lpvar j) const {
signed_var sv = find(signed_var(j, false));
return sv.sign()? rational(-1) : rational(1);
}
inline lpvar find(lpvar j) const {
signed_var sv = find(signed_var(j, false));
return sv.var();
}
inline bool is_root(lpvar j) const {
signed_var sv = find(signed_var(j, false));
return sv.var() == j;
}
bool vars_are_equiv(lpvar j, lpvar k) const {
signed_var sj = find(signed_var(j, false));
signed_var sk = find(signed_var(k, false));
return sj.var() == sk.var();
}
/**
\brief Returns eq_justifications for
\pre find(v1) == find(v2)
*/
void explain(signed_var v1, signed_var v2, lp::explanation& e) const;
inline
void explain(lpvar v1, lpvar v2, lp::explanation & e) const {
return explain(signed_var(v1), signed_var(v2), e);
}
inline void explain(lpvar j, lp::explanation& e) const {
signed_var s(j, false);
return explain(find(s), s, e);
}
class iterator {
var_eqs& m_ve; // context.
unsigned m_idx; // index into a signed variable, same as union-find index
bool m_touched; // toggle between initial and final state
public:
iterator(var_eqs& ve, unsigned idx, bool t) : m_ve(ve), m_idx(idx), m_touched(t) {}
signed_var operator*() const { return signed_var(m_idx); }
iterator& operator++() { m_idx = m_ve.m_uf.next(m_idx); m_touched = true; return *this; }
bool operator==(iterator const& other) const { return m_idx == other.m_idx && m_touched == other.m_touched; }
bool operator!=(iterator const& other) const { return m_idx != other.m_idx || m_touched != other.m_touched; }
};
class eq_class {
var_eqs& m_ve;
signed_var m_v;
public:
eq_class(var_eqs& ve, signed_var v) : m_ve(ve), m_v(v) {}
iterator begin() { return iterator(m_ve, m_v.index(), false); }
iterator end() { return iterator(m_ve, m_v.index(), true); }
};
eq_class equiv_class(signed_var v) { return eq_class(*this, v); }
eq_class equiv_class(lpvar v) { return equiv_class(signed_var(v, false)); }
};
}