3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

implement the case of small factor in basic proportional

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2018-08-29 18:53:04 +08:00
parent ee6e21c614
commit 08c9953a36

View file

@ -537,32 +537,33 @@ struct solver::imp {
}
}
if (!monomial)
out << m_lar_solver.get_column_name(j) << " = " << m_lar_solver.get_column_value(j) << "\n";
out << m_lar_solver.get_column_name(j) << " = " << m_lar_solver.get_column_value(j);
return out;
}
std::ostream& print_ineq_vars(const ineq & in, std::ostream & out) const {
for (const auto & p : in.m_term) {
print_var(p.var(), out);
}
return out;
}
std::ostream & print_lemma(lemma& l, std::ostream & out) const {
for (auto & in: l) {
out << "("; print_ineq(in, out) << ")";
for (unsigned i = 0; i < l.size(); i++) {
print_ineq(l[i], out);
if (i + 1 < l.size()) out << " or ";
}
out << std::endl;
std::unordered_set<lpvar> vars;
for (auto & in: l) {
print_ineq_vars(in, out);
for (const auto & p: in.m_term)
vars.insert(p.var());
}
for (lpvar j : vars) {
print_var(j, out);
}
return out;
}
std::ostream & print_explanation_and_lemma(std::ostream & out) const {
out << "explanation:\n";
print_explanation(out) << "lemma = ";
print_lemma(*m_lemma, out) << "\n";
print_explanation(out) << "lemma: ";
print_lemma(*m_lemma, out);
out << "\n";
return out;
}
/**
@ -777,14 +778,26 @@ struct solver::imp {
}
}
void add_explanation_of_small_value(lpvar j, expl_set & expl) {
lpci ci;
rational b;
bool strict;
m_lar_solver.has_lower_bound(j, ci, b, strict);
SASSERT(b >= -rational(1));
expl.insert(ci);
m_lar_solver.has_upper_bound(j, ci, b, strict);
SASSERT(b <= rational(1));
expl.insert(ci);
}
void large_lemma_for_proportion_case_on_known_signs(const mon_eq& m,
unsigned j,
int m_sign,
int mon_sign,
int j_sign) {
// Imagine that the signs are all positive and flip them afterwards.
// For this case we would have x[j] < 0 || x[m.var()] < 0 || x[m.var] >= x[j]
// But for the general case we have
// j_sign * x[j] < 0 || m_sign * x[m.var()] < 0 || m_sign * x[m.var()] >= j_sign * x[j]
// j_sign * x[j] < 0 || mon_sign * x[m.var()] < 0 || mon_sign * x[m.var()] >= j_sign * x[j]
// the first literal
lp::lar_term t;
t.add_monomial(rational(j_sign), j);
@ -792,12 +805,12 @@ struct solver::imp {
t.clear();
// the second literal
t.add_monomial(rational(m_sign), m.var());
t.add_monomial(rational(mon_sign), m.var());
m_lemma->push_back(ineq(lp::lconstraint_kind::LT, t));
t.clear();
// the third literal
t.add_monomial(rational(m_sign), m.var());
t.add_monomial(rational(mon_sign), m.var());
t.add_monomial(- rational(j_sign), j);
m_lemma->push_back(ineq(lp::lconstraint_kind::GE, t));
}
@ -821,10 +834,59 @@ struct solver::imp {
}
m_expl->clear();
m_expl->add(expl);
int m_sign = m_val < rational(0) ? -1 : 1;
large_lemma_for_proportion_case_on_known_signs(m, j, m_sign, j_sign);
int mon_sign = m_val < rational(0) ? -1 : 1;
large_lemma_for_proportion_case_on_known_signs(m, j, mon_sign, j_sign);
return true;
}
bool small_lemma_for_proportion_case(const mon_eq& m, const svector<unsigned> & mask,
const svector<unsigned> & _small, unsigned j) {
TRACE("niil_solver", );
const rational j_val = m_lar_solver.get_column_value_rational(j);
const rational m_val = m_lar_solver.get_column_value_rational(m.m_v);
const rational m_abs_val = lp::abs(m_lar_solver.get_column_value_rational(m.m_v));
// since the abs of the masked factor is less than or equal to one
// j_val has to be greater than or equal to m_abs_val
if (j_val <= - m_abs_val || j_val > m_abs_val)
return false;
expl_set expl;
add_explanation_of_reducing_to_mininal_monomial(m, expl);
for (unsigned k = 0; k < mask.size(); k++) {
if (mask[k] == 1)
add_explanation_of_small_value(m.m_vs[_small[k]], expl);
}
m_expl->clear();
m_expl->add(expl);
int mon_sign = m_val < rational(0) ? -1 : 1;
int j_sign = j_val >= rational(0)? 1: -1;
small_lemma_for_proportion_case_on_known_signs(m, j, mon_sign, j_sign);
return true;
}
// It is the case where |x[j]| >= |x[m.var()]| should hold in the model, but it does not.
void small_lemma_for_proportion_case_on_known_signs(const mon_eq& m, unsigned j, int mon_sign, int j_sign) {
// Imagine that the signs are all positive.
// For this case we would have x[j] < 0 || x[m.var()] < 0 || x[j] >= x[m.var()]
// But for the general case we have
// j_sign * x[j] < 0 || mon_sign * x[m.var()] < 0 || j_sign * x[j] >= mon_sign * x[m.var]
// the first literal
lp::lar_term t;
// the first literal
t.add_monomial(rational(j_sign), j);
m_lemma->push_back(ineq(lp::lconstraint_kind::LT, t));
//the second literal
t.clear();
t.add_monomial(rational(mon_sign), m.var());
m_lemma->push_back(ineq(lp::lconstraint_kind::LT, t));
// the third literal
t.clear();
t.add_monomial(rational(j_sign), j);
t.add_monomial(- rational(mon_sign), m.var());
m_lemma->push_back(ineq(lp::lconstraint_kind::GE, t));
}
bool large_basic_lemma_for_mon_proportionality(unsigned i_mon, const svector<unsigned>& large) {
svector<unsigned> mask(large.size(), (unsigned) 0); // init mask by zeroes
const auto & m = m_monomials[i_mon];
@ -853,18 +915,42 @@ struct solver::imp {
vars.push_back(vars_copy[large[k]]); // vars might become unsorted
}
}
TRACE("niil_solver", tout << "return false";);
return false; // we exhausted the mask and did not find the compliment monomial
}
bool small_basic_lemma_for_mon_proportionality(unsigned i_mon, const svector<unsigned>& _small) {
svector<unsigned> mask(_small.size(), (unsigned) 0);
svector<unsigned> mask(_small.size(), (unsigned) 0); // init mask by zeroes
const auto & m = m_monomials[i_mon];
int sign;
auto vars = reduce_monomial_to_minimal(m.m_vs, sign);
auto vars_copy = vars;
auto v = lp::abs(m_lar_solver.get_column_value_rational(m.m_v));
// We cross out from vars the "large" variables represented by the mask
for (unsigned k = 0; k < mask.size(); k++) {
if (mask[k] == 0) {
mask[k] = 1;
TRACE("niil_solver", tout << "_small[" << k << "] = " << _small[k];);
SASSERT(std::find(vars.begin(), vars.end(), vars_copy[_small[k]]) != vars.end());
vars.erase(vars_copy[_small[k]]);
std::sort(vars.begin(), vars.end());
// now the value of vars has to be v*sign
lpvar j;
if (find_compimenting_monomial(vars, j) &&
small_lemma_for_proportion_case(m, mask, _small, j)) {
TRACE("niil_solver", print_explanation_and_lemma(tout););
return true;
}
} else {
SASSERT(mask[k] == 1);
mask[k] = 0;
vars.push_back(vars_copy[_small[k]]); // vars might become unsorted
}
}
return false;
return false; // we exhausted the mask and did not find the compliment monomial
}
// we derive a lemma from |x| >= 1 => |xy| >= |y|
// we derive a lemma from |x| >= 1 => |xy| >= |y| or |x| <= 1 => |xy| <= |y|
bool basic_lemma_for_mon_proportionality_from_factors_to_product(unsigned i_mon) {
const mon_eq & m = m_monomials[i_mon];
svector<unsigned> large;
@ -895,7 +981,7 @@ struct solver::imp {
}
// we derive a lemma from |xy| > |y| => |x| >= 1 || |y| = 0
bool large_basic_lemma_for_mon_proportionality_from_product_to_factors(unsigned i_mon) {
SASSERT(false);
// SASSERT(false);
return false;
}