3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-10-01 17:47:50 -07:00
parent 79162b96f3
commit 08a87b102c
10 changed files with 163 additions and 138 deletions

View file

@ -26,19 +26,19 @@ namespace fpa {
euf::th_euf_solver(ctx, ctx.get_manager().mk_family_id("fpa")),
m_th_rw(ctx.get_manager()),
m_converter(ctx.get_manager(), m_th_rw),
m_rw(ctx.get_manager(), m_converter, params_ref()),
m_rw(ctx.get_manager(), m_converter, params_ref()),
m_fpa_util(m_converter.fu()),
m_bv_util(m_converter.bu()),
m_arith_util(m_converter.au())
{
params_ref p;
p.set_bool("arith_lhs", true);
m_th_rw.updt_params(p);
m_th_rw.updt_params(p);
}
solver::~solver() {
dec_ref_map_key_values(m, m_conversions);
SASSERT(m_conversions.empty());
dec_ref_map_key_values(m, m_conversions);
SASSERT(m_conversions.empty());
}
@ -82,7 +82,7 @@ namespace fpa {
return conds;
}
void solver::attach_new_th_var(enode * n) {
void solver::attach_new_th_var(enode* n) {
theory_var v = mk_var(n);
ctx.attach_th_var(n, this, v);
TRACE("t_fpa", tout << "new theory var: " << mk_ismt2_pp(n->get_expr(), m) << " := " << v << "\n";);
@ -125,7 +125,7 @@ namespace fpa {
sat::literal atom(ctx.get_si().add_bool_var(e), false);
atom = ctx.attach_lit(atom, e);
sat::literal bv_atom = b_internalize(m_rw.convert_atom(m_th_rw, e));
sat::literal_vector conds = mk_side_conditions();
sat::literal_vector conds = mk_side_conditions();
conds.push_back(bv_atom);
add_equiv_and(atom, conds);
if (root) {
@ -133,48 +133,47 @@ namespace fpa {
atom.neg();
add_unit(atom);
}
return true;
}
switch (a->get_decl_kind()) {
else {
switch (a->get_decl_kind()) {
case OP_FPA_TO_FP:
case OP_FPA_TO_UBV:
case OP_FPA_TO_SBV:
case OP_FPA_TO_REAL:
case OP_FPA_TO_IEEE_BV: {
expr_ref conv = convert(e);
expr_ref eq = ctx.mk_eq(e, conv);
expr_ref eq = ctx.mk_eq(e, conv);
add_unit(b_internalize(eq));
add_units(mk_side_conditions());
break;
}
default: /* ignore */;
default: /* ignore */
break;
}
}
return true;
}
void solver::apply_sort_cnstr(enode * n, sort * s) {
void solver::apply_sort_cnstr(enode* n, sort* s) {
TRACE("t_fpa", tout << "apply sort cnstr for: " << mk_ismt2_pp(n->get_expr(), m) << "\n";);
SASSERT(s->get_family_id() == get_id());
SASSERT(m_fpa_util.is_float(s) || m_fpa_util.is_rm(s));
SASSERT(m_fpa_util.is_float(n->get_expr()) || m_fpa_util.is_rm(n->get_expr()));
SASSERT(n->get_decl()->get_range() == s);
expr * owner = n->get_expr();
expr* owner = n->get_expr();
if (is_attached_to_var(n))
return;
attach_new_th_var(n);
if (m_fpa_util.is_rm(s)) {
if (m_fpa_util.is_rm(s) && !m_fpa_util.is_bv2rm(owner)) {
// For every RM term, we need to make sure that it's
// associated bit-vector is within the valid range.
if (!m_fpa_util.is_bv2rm(owner)) {
expr_ref valid(m), limit(m);
limit = m_bv_util.mk_numeral(4, 3);
valid = m_bv_util.mk_ule(m_converter.wrap(owner), limit);
add_unit(b_internalize(valid));
}
expr_ref valid(m), limit(m);
limit = m_bv_util.mk_numeral(4, 3);
valid = m_bv_util.mk_ule(m_converter.wrap(owner), limit);
add_unit(b_internalize(valid));
}
activate(owner);
}
@ -307,19 +306,22 @@ namespace fpa {
expr* a = values.get(n->get_arg(0)->get_root_id());
expr* b = values.get(n->get_arg(1)->get_root_id());
expr* c = values.get(n->get_arg(2)->get_root_id());
value = bvs2fpa_value(m.get_sort(e), a, b, c);
value = m_converter.bv2fpa_value(m.get_sort(e), a, b, c);
}
else if (m_fpa_util.is_bv2rm(e)) {
SASSERT(n->num_args() == 1);
value = bv2rm_value(values.get(n->get_arg(0)->get_root_id()));
value = m_converter.bv2rm_value(values.get(n->get_arg(0)->get_root_id()));
}
else if (m_fpa_util.is_rm(e) && is_wrapped())
value = bv2rm_value(values.get(expr2enode(wrapped)->get_root_id()));
else if (m_fpa_util.is_rm(e) && is_wrapped())
value = m_converter.bv2rm_value(values.get(expr2enode(wrapped)->get_root_id()));
else if (m_fpa_util.is_rm(e))
value = m_fpa_util.mk_round_toward_zero();
else if (m_fpa_util.is_float(e) && is_wrapped()) {
expr* a = values.get(expr2enode(wrapped)->get_root_id());
value = bvs2fpa_value(m.get_sort(e), a, nullptr, nullptr);
value = m_converter.bv2fpa_value(m.get_sort(e), a);
}
else {
SASSERT(m_fpa_util.is_float(e));
unsigned ebits = m_fpa_util.get_ebits(m.get_sort(e));
unsigned sbits = m_fpa_util.get_sbits(m.get_sort(e));
value = m_fpa_util.mk_pzero(ebits, sbits);
@ -327,99 +329,6 @@ namespace fpa {
values.set(n->get_root_id(), value);
}
expr* solver::bv2rm_value(expr* b) {
app* result = nullptr;
unsigned bv_sz;
rational val(0);
VERIFY(m_bv_util.is_numeral(b, val, bv_sz));
SASSERT(bv_sz == 3);
switch (val.get_uint64()) {
case BV_RM_TIES_TO_AWAY: result = m_fpa_util.mk_round_nearest_ties_to_away(); break;
case BV_RM_TIES_TO_EVEN: result = m_fpa_util.mk_round_nearest_ties_to_even(); break;
case BV_RM_TO_NEGATIVE: result = m_fpa_util.mk_round_toward_negative(); break;
case BV_RM_TO_POSITIVE: result = m_fpa_util.mk_round_toward_positive(); break;
case BV_RM_TO_ZERO:
default: result = m_fpa_util.mk_round_toward_zero();
}
TRACE("t_fpa", tout << "result: " << mk_ismt2_pp(result, m) << std::endl;);
return result;
}
expr* solver::bvs2fpa_value(sort* s, expr* a, expr* b, expr* c) {
mpf_manager& mpfm = m_fpa_util.fm();
unsynch_mpz_manager& mpzm = mpfm.mpz_manager();
app* result;
unsigned ebits = m_fpa_util.get_ebits(s);
unsigned sbits = m_fpa_util.get_sbits(s);
scoped_mpz bias(mpzm);
mpzm.power(mpz(2), ebits - 1, bias);
mpzm.dec(bias);
scoped_mpz sgn_z(mpzm), sig_z(mpzm), exp_z(mpzm);
unsigned bv_sz;
if (b == nullptr) {
SASSERT(m_bv_util.is_bv(a));
SASSERT(m_bv_util.get_bv_size(a) == (ebits + sbits));
rational all_r(0);
scoped_mpz all_z(mpzm);
VERIFY(m_bv_util.is_numeral(a, all_r, bv_sz));
SASSERT(bv_sz == (ebits + sbits));
SASSERT(all_r.is_int());
mpzm.set(all_z, all_r.to_mpq().numerator());
mpzm.machine_div2k(all_z, ebits + sbits - 1, sgn_z);
mpzm.mod(all_z, mpfm.m_powers2(ebits + sbits - 1), all_z);
mpzm.machine_div2k(all_z, sbits - 1, exp_z);
mpzm.mod(all_z, mpfm.m_powers2(sbits - 1), all_z);
mpzm.set(sig_z, all_z);
}
else {
SASSERT(b);
SASSERT(c);
rational sgn_r(0), exp_r(0), sig_r(0);
bool r = m_bv_util.is_numeral(a, sgn_r, bv_sz);
SASSERT(r && bv_sz == 1);
r = m_bv_util.is_numeral(b, exp_r, bv_sz);
SASSERT(r && bv_sz == ebits);
r = m_bv_util.is_numeral(c, sig_r, bv_sz);
SASSERT(r && bv_sz == sbits - 1);
(void)r;
SASSERT(mpzm.is_one(sgn_r.to_mpq().denominator()));
SASSERT(mpzm.is_one(exp_r.to_mpq().denominator()));
SASSERT(mpzm.is_one(sig_r.to_mpq().denominator()));
mpzm.set(sgn_z, sgn_r.to_mpq().numerator());
mpzm.set(exp_z, exp_r.to_mpq().numerator());
mpzm.set(sig_z, sig_r.to_mpq().numerator());
}
scoped_mpz exp_u = exp_z - bias;
SASSERT(mpzm.is_int64(exp_u));
scoped_mpf f(mpfm);
mpfm.set(f, ebits, sbits, mpzm.is_one(sgn_z), mpzm.get_int64(exp_u), sig_z);
result = m_fpa_util.mk_value(f);
TRACE("t_fpa", tout << "result: [" <<
mpzm.to_string(sgn_z) << "," <<
mpzm.to_string(exp_z) << "," <<
mpzm.to_string(sig_z) << "] --> " <<
mk_ismt2_pp(result, m) << std::endl;);
return result;
}
void solver::add_dep(euf::enode* n, top_sort<euf::enode>& dep) {
expr* e = n->get_expr();
if (m_fpa_util.is_fp(e)) {
@ -432,13 +341,13 @@ namespace fpa {
dep.add(n, n->get_arg(0));
}
else if (m_fpa_util.is_rm(e) || m_fpa_util.is_float(e)) {
app_ref wrapped = m_converter.wrap(e);
if (expr2enode(wrapped))
dep.add(n, expr2enode(wrapped));
euf::enode* wrapped = expr2enode(m_converter.wrap(e));
if (wrapped)
dep.add(n, wrapped);
}
}
std::ostream& solver::display(std::ostream & out) const {
std::ostream& solver::display(std::ostream& out) const {
bool first = true;
for (enode* n : ctx.get_egraph().nodes()) {
theory_var v = n->get_th_var(m_fpa_util.get_family_id());
@ -450,11 +359,11 @@ namespace fpa {
}
}
// if there are no fpa theory variables, was fp ever used?
if (first)
if (first)
return out;
out << "bv theory variables:" << std::endl;
for (enode * n : ctx.get_egraph().nodes()) {
for (enode* n : ctx.get_egraph().nodes()) {
theory_var v = n->get_th_var(m_bv_util.get_family_id());
if (v != -1) out << v << " -> " <<
mk_ismt2_pp(n->get_expr(), m) << std::endl;
@ -468,14 +377,13 @@ namespace fpa {
}
out << "equivalence classes:\n";
for (enode * n : ctx.get_egraph().nodes()) {
expr * e = n->get_expr();
for (enode* n : ctx.get_egraph().nodes()) {
expr* e = n->get_expr();
out << n->get_root_id() << " --> " << mk_ismt2_pp(e, m) << std::endl;
}
return out;
}
void solver::finalize_model(model& mdl) {
model new_model(m);