3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 09:05:31 +00:00

Merge branch 'upstream-master' into develop

Conflicts:
	src/smt/params/smt_params.cpp
	src/smt/params/smt_params.h
	src/smt/smt_context.cpp
	src/smt/smt_context.h
This commit is contained in:
Murphy Berzish 2017-05-01 21:33:23 -04:00
commit 0862949e66
28 changed files with 691 additions and 170 deletions

View file

@ -63,7 +63,6 @@ namespace smt {
m_is_diseq_tmp(0),
m_units_to_reassert(m_manager),
m_qhead(0),
m_th_case_split_qhead(0),
m_simp_qhead(0),
m_simp_counter(0),
m_bvar_inc(1.0),
@ -341,7 +340,6 @@ namespace smt {
bool context::bcp() {
SASSERT(!inconsistent());
m_th_case_split_qhead = m_qhead;
while (m_qhead < m_assigned_literals.size()) {
if (get_cancel_flag()) {
return true;
@ -1777,7 +1775,7 @@ namespace smt {
unsigned qhead = m_qhead;
if (!bcp())
return false;
if (!propagate_th_case_split())
if (!propagate_th_case_split(qhead))
return false;
if (get_cancel_flag()) {
m_qhead = qhead;
@ -2977,7 +2975,6 @@ namespace smt {
public:
case_split_insert_trail(literal l):
l(l) {
}
virtual void undo(context & ctx) {
ctx.undo_th_case_split(l);
@ -2988,23 +2985,19 @@ namespace smt {
TRACE("theory_case_split", display_literals_verbose(tout << "theory case split: ", num_lits, lits); tout << std::endl;);
// If we don't use the theory case split heuristic,
// for each pair of literals (l1, l2) we add the clause (~l1 OR ~l2)
// to enforce the condition that more than one literal can't be
// assigned 'true' simultaneously.
// to enforce the condition that at most one literal can be assigned 'true'.
if (!m_fparams.m_theory_case_split) {
for (unsigned i = 0; i < num_lits; ++i) {
for (unsigned j = i+1; j < num_lits; ++j) {
literal l1 = lits[i];
literal l2 = lits[j];
literal excl[2] = {~l1, ~l2};
justification * j_excl = 0;
mk_clause(2, excl, j_excl);
mk_clause(~l1, ~l2, (justification*) 0);
}
}
} else {
literal_vector new_case_split; // TODO is it okay to allocate this on the stack?
literal_vector new_case_split;
for (unsigned i = 0; i < num_lits; ++i) {
literal l = lits[i];
// TODO do we need to enforce this invariant? can we make undo information work without it?
SASSERT(!m_all_th_case_split_literals.contains(l.index()));
m_all_th_case_split_literals.insert(l.index());
push_trail(case_split_insert_trail(l));
@ -3020,11 +3013,11 @@ namespace smt {
m_literal2casesplitsets[l.index()].push_back(new_case_split);
}
TRACE("theory_case_split", tout << "tracking case split literal set { ";
for (unsigned i = 0; i < num_lits; ++i) {
tout << lits[i].index() << " ";
}
tout << "}" << std::endl;
);
for (unsigned i = 0; i < num_lits; ++i) {
tout << lits[i].index() << " ";
}
tout << "}" << std::endl;
);
}
}
@ -3041,7 +3034,7 @@ namespace smt {
}
}
bool context::propagate_th_case_split() {
bool context::propagate_th_case_split(unsigned qhead) {
if (m_all_th_case_split_literals.empty())
return true;
@ -3049,46 +3042,33 @@ namespace smt {
// not counting any literals that get assigned by this method
// this relies on bcp() to give us its old m_qhead and therefore
// bcp() should always be called before this method
unsigned assigned_literal_idx = m_th_case_split_qhead;
unsigned assigned_literal_end = m_assigned_literals.size();
while(assigned_literal_idx < assigned_literal_end) {
literal l = m_assigned_literals[assigned_literal_idx];
for (; qhead < assigned_literal_end; ++qhead) {
literal l = m_assigned_literals[qhead];
TRACE("theory_case_split", tout << "check literal " << l.index() << std::endl; display_literal_verbose(tout, l); tout << std::endl;);
++assigned_literal_idx;
// check if this literal participates in any theory case split
if (m_all_th_case_split_literals.contains(l.index())) {
TRACE("theory_case_split", tout << "assigned literal " << l.index() << " is a theory case split literal" << std::endl;);
// now find the sets of literals which contain l
vector<literal_vector> case_split_sets = m_literal2casesplitsets.get(l.index(), vector<literal_vector>());
for (vector<literal_vector>::const_iterator it = case_split_sets.begin(); it != case_split_sets.end(); ++it) {
literal_vector case_split_set = *it;
TRACE("theory_case_split", tout << "found case split set { ";
for(literal_vector::iterator set_it = case_split_set.begin(); set_it != case_split_set.end(); ++set_it) {
tout << set_it->index() << " ";
}
tout << "}" << std::endl;);
for(literal_vector::iterator set_it = case_split_set.begin(); set_it != case_split_set.end(); ++set_it) {
literal l2 = *set_it;
if (l2 != l) {
b_justification js(l);
switch (get_assignment(l2)) {
case l_false:
TRACE("theory_case_split", tout << "case split literal " << l2.index() << " is already assigned False" << std::endl;);
break;
// TODO these next two cases can be combined. I'm doing this for debugging purposes
case l_undef:
TRACE("theory_case_split", tout << "case split literal " << l2.index() << " is not assigned" << std::endl;);
assign(~l2, js);
break;
case l_true:
TRACE("theory_case_split", tout << "case split literal " << l2.index() << " is already assigned True" << std::endl;);
assign(~l2, js);
break;
}
if (inconsistent()) {
TRACE("theory_case_split", tout << "conflict detected!" << std::endl;);
return false;
}
if (!m_all_th_case_split_literals.contains(l.index())) {
continue;
}
TRACE("theory_case_split", tout << "assigned literal " << l.index() << " is a theory case split literal" << std::endl;);
// now find the sets of literals which contain l
vector<literal_vector> const& case_split_sets = m_literal2casesplitsets[l.index()];
for (vector<literal_vector>::const_iterator it = case_split_sets.begin(); it != case_split_sets.end(); ++it) {
literal_vector case_split_set = *it;
TRACE("theory_case_split", tout << "found case split set { ";
for(literal_vector::iterator set_it = case_split_set.begin(); set_it != case_split_set.end(); ++set_it) {
tout << set_it->index() << " ";
}
tout << "}" << std::endl;);
for(literal_vector::iterator set_it = case_split_set.begin(); set_it != case_split_set.end(); ++set_it) {
literal l2 = *set_it;
if (l2 != l) {
b_justification js(l);
TRACE("theory_case_split", tout << "case split literal "; l2.display(tout, m_manager, m_bool_var2expr.c_ptr()););
assign(~l2, js);
if (inconsistent()) {
TRACE("theory_case_split", tout << "conflict detected!" << std::endl;);
return false;
}
}
}

View file

@ -234,7 +234,6 @@ namespace smt {
uint_set m_all_th_case_split_literals;
vector<literal_vector> m_th_case_split_sets;
u_map< vector<literal_vector> > m_literal2casesplitsets; // returns the case split literal sets that a literal participates in
unsigned m_th_case_split_qhead;
// -----------------------------------
//
@ -851,7 +850,7 @@ namespace smt {
// helper function for trail
void undo_th_case_split(literal l);
bool propagate_th_case_split();
bool propagate_th_case_split(unsigned qhead);
bool_var mk_bool_var(expr * n);

View file

@ -405,7 +405,6 @@ namespace smt {
bool context::validate_justification(bool_var v, bool_var_data const& d, b_justification const& j) {
if (j.get_kind() == b_justification::CLAUSE && v != true_bool_var) {
clause* cls = j.get_clause();
unsigned num_lits = cls->get_num_literals();
literal l = cls->get_literal(0);
if (l.var() != v) {
l = cls->get_literal(1);

View file

@ -552,6 +552,7 @@ namespace smt {
bool is_int(theory_var v) const { return m_data[v].m_is_int; }
bool is_int_src(theory_var v) const { return m_util.is_int(var2expr(v)); }
bool is_real(theory_var v) const { return !is_int(v); }
bool is_real_src(theory_var v) const { return !is_int_src(v); }
bool get_implied_old_value(theory_var v, inf_numeral & r) const;
inf_numeral const & get_implied_value(theory_var v) const;
inf_numeral const & get_quasi_base_value(theory_var v) const { return get_implied_value(v); }

View file

@ -465,7 +465,7 @@ namespace smt {
TRACE("arith_axiom", tout << mk_pp(ante, m) << "\n" << mk_pp(conseq, m) << "\n";
tout << s_ante << "\n" << s_conseq << "\n";);
literal lits[2] = {l_ante, l_conseq};
// literal lits[2] = {l_ante, l_conseq};
mk_clause(l_ante, l_conseq, 0, 0);
if (ctx.relevancy()) {
if (l_ante == false_literal) {

View file

@ -444,7 +444,7 @@ namespace smt {
m_asserted_bounds.push_back(new_bound);
// copy justification to new bound
dependency2new_bound(dep, *new_bound);
TRACE("buggy_bound", new_bound->display(*this, tout); tout << "\n";);
TRACE("non_linear", new_bound->display(*this, tout); tout << "\n";);
}
/**
@ -457,8 +457,19 @@ namespace smt {
bool r = false;
if (!i.minus_infinity()) {
inf_numeral new_lower(i.get_lower_value());
if (i.is_lower_open())
new_lower += get_epsilon(v);
if (i.is_lower_open()) {
if (is_int(v)) {
if (new_lower.is_int()) {
new_lower += rational::one();
}
else {
new_lower = ceil(new_lower.get_rational());
}
}
else {
new_lower += get_epsilon(v);
}
}
bound * old_lower = lower(v);
if (old_lower == 0 || new_lower > old_lower->get_value()) {
TRACE("non_linear", tout << "NEW lower bound for v" << v << " " << new_lower << "\n";
@ -469,8 +480,19 @@ namespace smt {
}
if (!i.plus_infinity()) {
inf_numeral new_upper(i.get_upper_value());
if (i.is_upper_open())
new_upper -= get_epsilon(v);
if (i.is_upper_open()) {
if (is_int(v)) {
if (new_upper.is_int()) {
new_upper -= rational::one();
}
else {
new_upper = floor(new_upper.get_rational());
}
}
else {
new_upper -= get_epsilon(v);
}
}
bound * old_upper = upper(v);
if (old_upper == 0 || new_upper < old_upper->get_value()) {
TRACE("non_linear", tout << "NEW upper bound for v" << v << " " << new_upper << "\n";
@ -819,6 +841,7 @@ namespace smt {
if (is_fixed(_var))
r *= lower_bound(_var).get_rational();
}
TRACE("arith", tout << mk_pp(m, get_manager()) << " " << r << "\n";);
return r;
}
@ -896,7 +919,7 @@ namespace smt {
// Assert the equality
// (= (* x_1 ... x_n) k)
TRACE("non_linear", tout << "all variables are fixed.\n";);
TRACE("non_linear", tout << "all variables are fixed, and bound is: " << k << "\n";);
new_lower = alloc(derived_bound, v, inf_numeral(k), B_LOWER);
new_upper = alloc(derived_bound, v, inf_numeral(k), B_UPPER);
}
@ -953,7 +976,8 @@ namespace smt {
new_upper->m_eqs.append(new_lower->m_eqs);
TRACE("non_linear",
tout << "lower: " << new_lower << " upper: " << new_upper << "\n";
new_lower->display(*this, tout << "lower: "); tout << "\n";
new_upper->display(*this, tout << "upper: "); tout << "\n";
for (unsigned j = 0; j < new_upper->m_lits.size(); ++j) {
ctx.display_detailed_literal(tout, new_upper->m_lits[j]);
tout << " ";

View file

@ -762,6 +762,21 @@ namespace smt {
TRACE("bv", tout << mk_pp(cond, get_manager()) << "\n"; tout << l << "\n";); \
}
void theory_bv::internalize_sub(app *n) {
SASSERT(!get_context().e_internalized(n));
SASSERT(n->get_num_args() == 2);
process_args(n);
ast_manager & m = get_manager();
enode * e = mk_enode(n);
expr_ref_vector arg1_bits(m), arg2_bits(m), bits(m);
get_arg_bits(e, 0, arg1_bits);
get_arg_bits(e, 1, arg2_bits);
SASSERT(arg1_bits.size() == arg2_bits.size());
expr_ref carry(m);
m_bb.mk_subtracter(arg1_bits.size(), arg1_bits.c_ptr(), arg2_bits.c_ptr(), bits, carry);
init_bits(e, bits);
}
MK_UNARY(internalize_not, mk_not);
MK_UNARY(internalize_redand, mk_redand);
MK_UNARY(internalize_redor, mk_redor);
@ -848,6 +863,7 @@ namespace smt {
switch (term->get_decl_kind()) {
case OP_BV_NUM: internalize_num(term); return true;
case OP_BADD: internalize_add(term); return true;
case OP_BSUB: internalize_sub(term); return true;
case OP_BMUL: internalize_mul(term); return true;
case OP_BSDIV_I: internalize_sdiv(term); return true;
case OP_BUDIV_I: internalize_udiv(term); return true;

View file

@ -172,6 +172,7 @@ namespace smt {
bool get_fixed_value(theory_var v, numeral & result) const;
void internalize_num(app * n);
void internalize_add(app * n);
void internalize_sub(app * n);
void internalize_mul(app * n);
void internalize_udiv(app * n);
void internalize_sdiv(app * n);

View file

@ -3874,8 +3874,8 @@ void theory_seq::new_eq_eh(dependency* deps, enode* n1, enode* n2) {
}
else if (n1 != n2 && m_util.is_re(n1->get_owner())) {
warning_msg("equality between regular expressions is not yet supported");
eautomaton* a1 = get_automaton(n1->get_owner());
eautomaton* a2 = get_automaton(n2->get_owner());
// eautomaton* a1 = get_automaton(n1->get_owner());
// eautomaton* a2 = get_automaton(n2->get_owner());
// eautomaton* b1 = mk_difference(*a1, *a2);
// eautomaton* b2 = mk_difference(*a2, *a1);
// eautomaton* c = mk_union(*b1, *b2);