3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

Move proof dot printing into iuc_proof

This commit is contained in:
Arie Gurfinkel 2018-05-16 13:32:28 -07:00
parent 45500ff7d3
commit 07ad67ebad
4 changed files with 545 additions and 633 deletions

View file

@ -1,9 +1,12 @@
#include <unordered_map>
#include "ast/ast_pp_dot.h"
#include "muz/spacer/spacer_iuc_proof.h"
#include "ast/for_each_expr.h"
#include "ast/array_decl_plugin.h"
#include "ast/proofs/proof_utils.h"
#include "muz/spacer/spacer_proof_utils.h"
#include "muz/spacer/spacer_util.h"
namespace spacer {
/*
@ -191,4 +194,87 @@ void iuc_proof::dump_farkas_stats()
<< "\n total farkas lemmas " << fl_total
<< " farkas lemmas in lowest cut " << fl_lowcut << "\n";);
}
void iuc_proof::display_dot(std::ostream& out) {
out << "digraph proof { \n";
std::unordered_map<unsigned, unsigned> ids;
unsigned last_id = 0;
proof_post_order it(m_pr, m);
while (it.hasNext())
{
proof* curr = it.next();
SASSERT(ids.count(curr->get_id()) == 0);
ids.insert(std::make_pair(curr->get_id(), last_id));
std::string color = "white";
if (this->is_a_marked(curr) && !this->is_b_marked(curr))
color = "red";
else if(!this->is_a_marked(curr) && this->is_b_marked(curr))
color = "blue";
else if(this->is_a_marked(curr) && this->is_b_marked(curr) )
color = "purple";
// compute node label
std::ostringstream label_ostream;
label_ostream << mk_epp(m.get_fact(curr), m) << "\n";
std::string label = escape_dot(label_ostream.str());
// compute edge-label
std::string edge_label = "";
if (m.get_num_parents(curr) == 0) {
switch (curr->get_decl_kind())
{
case PR_ASSERTED:
edge_label = "asserted:";
break;
case PR_HYPOTHESIS:
edge_label = "hyp:";
color = "grey";
break;
case PR_TH_LEMMA:
if (is_farkas_lemma(m, curr))
edge_label = "th_axiom(farkas):";
else if (is_arith_lemma(m, curr))
edge_label = "th_axiom(arith):";
else
edge_label = "th_axiom:";
break;
default:
edge_label = "unknown axiom:";
}
}
else {
if (curr->get_decl_kind() == PR_LEMMA)
edge_label = "lemma:";
else if (curr->get_decl_kind() == PR_TH_LEMMA) {
if (is_farkas_lemma(m, curr))
edge_label = "th_lemma(farkas):";
else if (is_arith_lemma(m, curr))
edge_label = "th_lemma(arith):";
else
edge_label = "th_lemma(other):";
}
}
// generate entry for node in dot-file
out << "node_" << last_id << " " << "["
<< "shape=box,style=\"filled\","
<< "label=\"" << edge_label << " " << label << "\", "
<< "fillcolor=\"" << color << "\"" << "]\n";
// add entry for each edge to that node
for (unsigned i = m.get_num_parents(curr); i > 0 ; --i)
{
proof* premise = to_app(curr->get_arg(i-1));
unsigned pid = ids.at(premise->get_id());
out << "node_" << pid << " -> " << "node_" << last_id << ";\n";
}
++last_id;
}
out << "\n}" << std::endl;
}
}

View file

@ -1,6 +1,7 @@
#ifndef IUC_PROOF_H_
#define IUC_PROOF_H_
#include <ostream>
#include "ast/ast.h"
namespace spacer {
@ -35,6 +36,7 @@ public:
return !is_h_marked (p) && is_core_pure(m.get_fact (p));
}
void display_dot(std::ostream &out);
// debug method
void dump_farkas_stats();
private:

File diff suppressed because it is too large Load diff

View file

@ -22,67 +22,74 @@ Revision History:
namespace spacer {
bool is_arith_lemma(ast_manager& m, proof* pr);
bool is_farkas_lemma(ast_manager& m, proof* pr);
bool is_arith_lemma(ast_manager& m, proof* pr);
bool is_farkas_lemma(ast_manager& m, proof* pr);
/*
* prints the proof pr in dot representation to the file proof.dot
* if iuc_pr is not nullptr, then it is queried for coloring partitions
*/
class iuc_proof;
void pp_proof_dot(ast_manager& m, proof* pr, iuc_proof* iuc_pr = nullptr);
class theory_axiom_reducer {
public:
theory_axiom_reducer(ast_manager& m) : m(m), m_pinned(m) {}
class theory_axiom_reducer
{
public:
theory_axiom_reducer(ast_manager& m) : m(m), m_pinned(m) {}
// reduce theory axioms and return transformed proof
proof_ref reduce(proof* pr);
// reduce theory axioms and return transformed proof
proof_ref reduce(proof* pr);
private:
ast_manager &m;
private:
ast_manager &m;
// tracking all created expressions
expr_ref_vector m_pinned;
// tracking all created expressions
expr_ref_vector m_pinned;
// maps each proof of a clause to the transformed subproof of
// that clause
obj_map<proof, proof*> m_cache;
// maps each proof of a clause to the transformed subproof of that clause
obj_map<proof, proof*> m_cache;
void reset();
};
void reset();
};
class hypothesis_reducer
{
public:
hypothesis_reducer(ast_manager &m) : m(m), m_pinned(m) {}
class hypothesis_reducer
{
public:
hypothesis_reducer(ast_manager &m) : m(m), m_pinned(m) {}
// reduce hypothesis and return transformed proof
proof_ref reduce(proof* pf);
// reduce hypothesis and return transformed proof
proof_ref reduce(proof* pf);
private:
typedef obj_hashtable<expr> expr_set;
typedef obj_hashtable<proof> proof_set;
private:
typedef obj_hashtable<expr> expr_set;
typedef obj_hashtable<proof> proof_set;
ast_manager &m;
ast_manager &m;
// created expressions
expr_ref_vector m_pinned;
expr_ref_vector m_pinned; // tracking all created expressions
ptr_vector<proof_set> m_pinned_active_hyps; // tracking all created sets of active hypothesis
ptr_vector<expr_set> m_pinned_parent_hyps; // tracking all created sets of parent hypothesis
// created sets of active hypothesis
ptr_vector<proof_set> m_pinned_active_hyps;
// created sets of parent hypothesis
ptr_vector<expr_set> m_pinned_parent_hyps;
obj_map<proof, proof*> m_cache; // maps each proof of a clause to the transformed subproof of that clause
obj_map<expr, proof*> m_units; // maps each unit literal to the subproof of that unit
obj_map<proof, proof_set*> m_active_hyps; // maps each proof of a clause to the set of proofs of active hypothesis' of the clause
obj_map<proof, expr_set*> m_parent_hyps; // maps each proof of a clause to the hypothesis-fact, which are transitive parents of that clause, needed to avoid creating cycles in the proof.
// maps a proof to the transformed proof
obj_map<proof, proof*> m_cache;
void reset();
void compute_hypsets(proof* pr); // compute active_hyps and parent_hyps for pr
void collect_units(proof* pr); // compute m_units
proof* compute_transformed_proof(proof* pf);
// maps a unit literal to its derivation
obj_map<expr, proof*> m_units;
proof* mk_lemma_core(proof *pf, expr *fact);
proof* mk_unit_resolution_core(ptr_buffer<proof>& args);
proof* mk_step_core(proof* old_step, ptr_buffer<proof>& args);
};
// maps a proof to the set of proofs of active hypotheses
obj_map<proof, proof_set*> m_active_hyps;
// maps a proof to the hypothesis-fact that are transitive
// parents of that proof. Used for cycle detection and avoidance.
obj_map<proof, expr_set*> m_parent_hyps;
void reset();
// compute active_hyps and parent_hyps for pr
void compute_hypsets(proof* pr);
// compute m_units
void collect_units(proof* pr);
proof* compute_transformed_proof(proof* pf);
proof* mk_lemma_core(proof *pf, expr *fact);
proof* mk_unit_resolution_core(ptr_buffer<proof>& args);
proof* mk_step_core(proof* old_step, ptr_buffer<proof>& args);
};
}
#endif