mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 11:25:51 +00:00
review nits (#97)
* code nits nits from review pass * Update cross_nested.h
This commit is contained in:
parent
21d9875239
commit
04f0a310a2
5 changed files with 189 additions and 249 deletions
|
@ -17,9 +17,9 @@
|
|||
|
||||
|
||||
--*/
|
||||
#include "util/lbool.h"
|
||||
#include "math/lp/nex_creator.h"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace nla {
|
||||
|
||||
|
@ -30,8 +30,8 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
|||
return mk_scalar(rational(1));
|
||||
vector<nex_pow> bv;
|
||||
bool seenj = false;
|
||||
auto ma = to_mul(a);
|
||||
for (auto& p : *ma) {
|
||||
auto ma = *to_mul(a);
|
||||
for (auto& p : ma) {
|
||||
const nex * c = p.e();
|
||||
int pow = p.pow();
|
||||
if (!seenj && c->contains(j)) {
|
||||
|
@ -51,24 +51,24 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
|||
bv.push_back(nex_pow(clone(c), pow));
|
||||
}
|
||||
}
|
||||
if (bv.size() == 1 && bv.begin()->pow() == 1 && ma->coeff().is_one()) {
|
||||
if (bv.size() == 1 && bv.begin()->pow() == 1 && ma.coeff().is_one()) {
|
||||
return bv.begin()->e();
|
||||
}
|
||||
if (bv.size() == 0) {
|
||||
return mk_scalar(rational(ma->coeff()));
|
||||
if (bv.empty()) {
|
||||
return mk_scalar(rational(ma.coeff()));
|
||||
}
|
||||
|
||||
auto m = mk_mul(bv);
|
||||
m->coeff() = ma->coeff();
|
||||
m->coeff() = ma.coeff();
|
||||
return m;
|
||||
|
||||
}
|
||||
|
||||
bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
|
||||
if (p.e()->is_mul()) {
|
||||
const nex_mul *m = to_mul(p.e());
|
||||
if (m->size() == 0) {
|
||||
const rational& coeff = m->coeff();
|
||||
const nex_mul & m = *to_mul(p.e());
|
||||
if (m.size() == 0) {
|
||||
const rational& coeff = m.coeff();
|
||||
if (coeff.is_one())
|
||||
return true;
|
||||
r *= coeff.expt(p.pow() * pow);
|
||||
|
@ -90,7 +90,7 @@ void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational&
|
|||
TRACE("grobner_d", print_vector(children, tout););
|
||||
vector<nex_pow> to_promote;
|
||||
int skipped = 0;
|
||||
for(unsigned j = 0; j < children.size(); j++) {
|
||||
for (unsigned j = 0; j < children.size(); j++) {
|
||||
nex_pow& p = children[j];
|
||||
if (eat_scalar_pow(coeff, p, 1)) {
|
||||
skipped++;
|
||||
|
@ -112,49 +112,48 @@ void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational&
|
|||
|
||||
for (nex_pow & p : to_promote) {
|
||||
TRACE("grobner_d", tout << p << "\n";);
|
||||
nex_mul *pm = to_mul(p.e());
|
||||
for (nex_pow& pp : *pm) {
|
||||
nex_mul & pm = *to_mul(p.e());
|
||||
for (nex_pow & pp : pm) {
|
||||
TRACE("grobner_d", tout << pp << "\n";);
|
||||
if (!eat_scalar_pow(coeff, pp, p.pow()))
|
||||
children.push_back(nex_pow(pp.e(), pp.pow() * p.pow()));
|
||||
}
|
||||
coeff *= pm->coeff().expt(p.pow());
|
||||
coeff *= pm.coeff().expt(p.pow());
|
||||
}
|
||||
|
||||
mul_to_powers(children);
|
||||
|
||||
TRACE("grobner_d", print_vector(children, tout););
|
||||
}
|
||||
bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a, const nex_mul* b) const {
|
||||
bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a, const nex_mul& b) const {
|
||||
bool inside_a_p = false; // inside_a_p is true means we still compare the old position of it_a
|
||||
bool inside_b_p = false; // inside_b_p is true means we still compare the old position of it_b
|
||||
auto it_a = a.begin();
|
||||
auto it_b = b->begin();
|
||||
auto it_b = b.begin();
|
||||
auto a_end = a.end();
|
||||
auto b_end = b->end();
|
||||
auto b_end = b.end();
|
||||
unsigned a_pow, b_pow;
|
||||
int ret = - 1;
|
||||
do {
|
||||
lbool ret = l_undef;
|
||||
while (true) {
|
||||
if (!inside_a_p) { a_pow = it_a->pow(); }
|
||||
if (!inside_b_p) { b_pow = it_b->pow(); }
|
||||
if (lt(it_a->e(), it_b->e())){
|
||||
ret = true;
|
||||
ret = l_true;
|
||||
break;
|
||||
}
|
||||
if (lt(it_b->e(), it_a->e())) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (a_pow == b_pow) {
|
||||
inside_a_p = inside_b_p = false;
|
||||
it_a++; it_b++;
|
||||
if (it_a == a_end) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
if (it_b == b_end) { // it_a is not at the end
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
// no iterator reached the end
|
||||
|
@ -163,7 +162,7 @@ bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a,
|
|||
if (a_pow > b_pow) {
|
||||
it_a++;
|
||||
if (it_a == a_end) {
|
||||
ret = true;
|
||||
ret = l_true;
|
||||
break;
|
||||
}
|
||||
inside_a_p = false;
|
||||
|
@ -174,54 +173,51 @@ bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a,
|
|||
a_pow -= b_pow;
|
||||
it_b++;
|
||||
if (it_b == b_end) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
inside_a_p = true;
|
||||
inside_b_p = false;
|
||||
}
|
||||
} while (true);
|
||||
if (ret == -1)
|
||||
ret = true;
|
||||
TRACE("nex_less", tout << "a = "; print_vector(a, tout) << (ret == 1?" < ":" >= ") << *b << "\n";);
|
||||
return ret;
|
||||
}
|
||||
TRACE("nex_less", tout << "a = "; print_vector(a, tout) << (ret != l_false?" < ":" >= ") << b << "\n";);
|
||||
return ret != l_false;
|
||||
}
|
||||
|
||||
bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul* a, const nex_mul* b) const {
|
||||
bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul& a, const nex_mul& b) const {
|
||||
bool inside_a_p = false; // inside_a_p is true means we still compare the old position of it_a
|
||||
bool inside_b_p = false; // inside_b_p is true means we still compare the old position of it_b
|
||||
auto it_a = a->begin();
|
||||
auto it_b = b->begin();
|
||||
auto a_end = a->end();
|
||||
auto b_end = b->end();
|
||||
auto it_a = a.begin();
|
||||
auto it_b = b.begin();
|
||||
auto a_end = a.end();
|
||||
auto b_end = b.end();
|
||||
unsigned a_pow, b_pow;
|
||||
int ret = - 1;
|
||||
do {
|
||||
lbool ret = l_undef;
|
||||
while (true) {
|
||||
if (!inside_a_p) { a_pow = it_a->pow(); }
|
||||
if (!inside_b_p) { b_pow = it_b->pow(); }
|
||||
if (lt(it_a->e(), it_b->e())){
|
||||
ret = true;
|
||||
ret = l_true;
|
||||
break;
|
||||
}
|
||||
if (lt(it_b->e(), it_a->e())) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (a_pow == b_pow) {
|
||||
inside_a_p = inside_b_p = false;
|
||||
it_a++; it_b++;
|
||||
if (it_a == a_end) {
|
||||
if (it_b != b_end) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
SASSERT(it_a == a_end && it_b == b_end);
|
||||
ret = a->coeff() > b->coeff();
|
||||
ret = to_lbool(a.coeff() > b.coeff());
|
||||
break;
|
||||
}
|
||||
if (it_b == b_end) { // it_a is not at the end
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
// no iterator reached the end
|
||||
|
@ -230,7 +226,7 @@ bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul* a, const nex_m
|
|||
if (a_pow > b_pow) {
|
||||
it_a++;
|
||||
if (it_a == a_end) {
|
||||
ret = true;
|
||||
ret = l_true;
|
||||
break;
|
||||
}
|
||||
inside_a_p = false;
|
||||
|
@ -241,17 +237,15 @@ bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul* a, const nex_m
|
|||
a_pow -= b_pow;
|
||||
it_b++;
|
||||
if (it_b == b_end) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
inside_a_p = true;
|
||||
inside_b_p = false;
|
||||
}
|
||||
} while (true);
|
||||
if (ret == -1)
|
||||
ret = true;
|
||||
TRACE("grobner_d", tout << "a = " << *a << (ret == 1?" < ":" >= ") << *b << "\n";);
|
||||
return ret;
|
||||
}
|
||||
TRACE("grobner_d", tout << "a = " << a << (ret != l_false?" < ":" >= ") << b << "\n";);
|
||||
return ret != l_false;
|
||||
}
|
||||
|
||||
bool nex_creator::children_are_simplified(const vector<nex_pow>& children) const {
|
||||
|
@ -260,60 +254,34 @@ bool nex_creator::children_are_simplified(const vector<nex_pow>& children) const
|
|||
return false;
|
||||
return true;
|
||||
}
|
||||
bool nex_creator::less_than_on_powers_mul(const vector<nex_pow>& children, const nex_mul* b) const {
|
||||
TRACE("nex_less", tout << "children = "; print_vector(children, tout) << " , b = " << *b << "\n";);
|
||||
SASSERT(children_are_simplified(children) && is_simplified(b));
|
||||
|
||||
bool nex_creator::less_than_on_powers_mul(const vector<nex_pow>& children, const nex_mul& b) const {
|
||||
TRACE("nex_less", tout << "children = "; print_vector(children, tout) << " , b = " << b << "\n";);
|
||||
SASSERT(children_are_simplified(children) && is_simplified(&b));
|
||||
unsigned a_deg = get_degree_children(children);
|
||||
unsigned b_deg = b->get_degree();
|
||||
bool ret;
|
||||
if (a_deg > b_deg) {
|
||||
ret = true;
|
||||
} else if (a_deg < b_deg) {
|
||||
ret = false;
|
||||
} else {
|
||||
ret = less_than_on_powers_mul_same_degree(children, b);
|
||||
}
|
||||
return ret;
|
||||
unsigned b_deg = b.get_degree();
|
||||
|
||||
return a_deg == b_deg ? less_than_on_powers_mul_same_degree(children, b) : a_deg > b_deg;
|
||||
}
|
||||
|
||||
|
||||
bool nex_creator::less_than_on_mul_mul(const nex_mul* a, const nex_mul* b) const {
|
||||
TRACE("grobner_d", tout << "a = " << *a << " , b = " << *b << "\n";);
|
||||
SASSERT(is_simplified(a) && is_simplified(b));
|
||||
unsigned a_deg = a->get_degree();
|
||||
unsigned b_deg = b->get_degree();
|
||||
bool ret;
|
||||
if (a_deg > b_deg) {
|
||||
ret = true;
|
||||
} else if (a_deg < b_deg) {
|
||||
ret = false;
|
||||
} else {
|
||||
ret = less_than_on_mul_mul_same_degree(a, b);
|
||||
}
|
||||
return ret;
|
||||
|
||||
bool nex_creator::less_than_on_mul_mul(const nex_mul& a, const nex_mul& b) const {
|
||||
TRACE("grobner_d", tout << "a = " << a << " , b = " << b << "\n";);
|
||||
SASSERT(is_simplified(&a) && is_simplified(&b));
|
||||
unsigned a_deg = a.get_degree();
|
||||
unsigned b_deg = b.get_degree();
|
||||
return a_deg == b_deg ? less_than_on_mul_mul_same_degree(a, b) : a_deg > b_deg;
|
||||
}
|
||||
|
||||
|
||||
bool nex_creator::less_than_on_var_nex(const nex_var* a, const nex* b) const {
|
||||
switch(b->type()) {
|
||||
case expr_type::SCALAR: return true;
|
||||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return true;
|
||||
case expr_type::VAR:
|
||||
return less_than(a->var() , to_var(b)->var());
|
||||
case expr_type::MUL:
|
||||
{
|
||||
if (b->get_degree() > 1)
|
||||
return false;
|
||||
auto it = to_mul(b)->begin();
|
||||
const nex_pow & c = *it;
|
||||
const nex * f = c.e();
|
||||
return less_than_on_var_nex(a, f);
|
||||
}
|
||||
case expr_type::MUL:
|
||||
return b->get_degree() <= 1 && less_than_on_var_nex(a, (*to_mul(b))[0].e());
|
||||
case expr_type::SUM:
|
||||
{
|
||||
return !lt((*to_sum(b))[0], a);
|
||||
}
|
||||
return !lt((*to_sum(b))[0], a);
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
|
@ -321,21 +289,20 @@ bool nex_creator::less_than_on_var_nex(const nex_var* a, const nex* b) const {
|
|||
}
|
||||
|
||||
bool nex_creator::lt_nex_powers(const vector<nex_pow>& children, const nex* b) const {
|
||||
switch(b->type()) {
|
||||
case expr_type::SCALAR: return false;
|
||||
case expr_type::VAR:
|
||||
{
|
||||
if (get_degree_children(children) > 1)
|
||||
return true;
|
||||
auto it = children.begin();
|
||||
const nex_pow & c = *it;
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return lt(f, b);
|
||||
}
|
||||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return false;
|
||||
case expr_type::VAR: {
|
||||
if (get_degree_children(children) > 1)
|
||||
return true;
|
||||
const nex_pow & c = children[0];
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return lt(f, b);
|
||||
}
|
||||
case expr_type::MUL:
|
||||
return less_than_on_powers_mul(children, to_mul(b));
|
||||
return less_than_on_powers_mul(children, *to_mul(b));
|
||||
case expr_type::SUM:
|
||||
return lt_nex_powers(children, (*to_sum(b))[0]);
|
||||
default:
|
||||
|
@ -344,23 +311,21 @@ bool nex_creator::lt_nex_powers(const vector<nex_pow>& children, const nex* b) c
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
bool nex_creator::less_than_on_mul_nex(const nex_mul* a, const nex* b) const {
|
||||
switch(b->type()) {
|
||||
case expr_type::SCALAR: return false;
|
||||
case expr_type::VAR:
|
||||
{
|
||||
if (a->get_degree() > 1)
|
||||
return true;
|
||||
auto it = a->begin();
|
||||
const nex_pow & c = *it;
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return lt(f, b);
|
||||
}
|
||||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return false;
|
||||
case expr_type::VAR: {
|
||||
if (a->get_degree() > 1)
|
||||
return true;
|
||||
const nex_pow & c = *a->begin();
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return lt(f, b);
|
||||
}
|
||||
case expr_type::MUL:
|
||||
return less_than_on_mul_mul(a, to_mul(b));
|
||||
return less_than_on_mul_mul(*a, *to_mul(b));
|
||||
case expr_type::SUM:
|
||||
return lt(a, (*to_sum(b))[0]);
|
||||
default:
|
||||
|
@ -391,22 +356,19 @@ bool nex_creator::lt_for_sort_join_sum(const nex* a, const nex* b) const {
|
|||
case expr_type::VAR:
|
||||
ret = less_than_on_var_nex(to_var(a), b);
|
||||
break;
|
||||
case expr_type::SCALAR: {
|
||||
case expr_type::SCALAR:
|
||||
if (b->is_scalar())
|
||||
ret = to_scalar(a)->value() > to_scalar(b)->value();
|
||||
else
|
||||
ret = false; // the scalars are the largest
|
||||
break;
|
||||
}
|
||||
case expr_type::MUL: {
|
||||
case expr_type::MUL:
|
||||
ret = lt_nex_powers(to_mul(a)->children(), b);
|
||||
break;
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
case expr_type::SUM:
|
||||
if (b->is_sum())
|
||||
return less_than_on_sum_sum(to_sum(a), to_sum(b));
|
||||
return lt((*to_sum(a))[0], b);
|
||||
}
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
|
@ -424,22 +386,17 @@ bool nex_creator::lt(const nex* a, const nex* b) const {
|
|||
case expr_type::VAR:
|
||||
ret = less_than_on_var_nex(to_var(a), b);
|
||||
break;
|
||||
case expr_type::SCALAR: {
|
||||
if (b->is_scalar())
|
||||
ret = to_scalar(a)->value() > to_scalar(b)->value();
|
||||
else
|
||||
ret = false; // the scalars are the largest
|
||||
case expr_type::SCALAR:
|
||||
ret = b->is_scalar() && to_scalar(a)->value() > to_scalar(b)->value();
|
||||
// the scalars are the largest
|
||||
break;
|
||||
}
|
||||
case expr_type::MUL: {
|
||||
case expr_type::MUL:
|
||||
ret = less_than_on_mul_nex(to_mul(a), b);
|
||||
break;
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
case expr_type::SUM:
|
||||
if (b->is_sum())
|
||||
return less_than_on_sum_sum(to_sum(a), to_sum(b));
|
||||
return lt((*to_sum(a))[0], b);
|
||||
}
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
|
@ -460,9 +417,6 @@ bool nex_creator::is_sorted(const nex_mul* e) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool nex_creator::mul_is_simplified(const nex_mul* e) const {
|
||||
TRACE("nla_cn_", tout << "e = " << *e << "\n";);
|
||||
if (e->size() == 0) {
|
||||
|
@ -562,14 +516,14 @@ bool nex_creator::sum_is_simplified(const nex_sum* e) const {
|
|||
}
|
||||
|
||||
void nex_creator::mul_to_powers(vector<nex_pow>& children) {
|
||||
std::map<nex*, int, nex_lt> m([this](const nex* a, const nex* b) {return lt(a, b); });
|
||||
std::map<nex*, int, nex_lt> m([this](const nex* a, const nex* b) { return lt(a, b); });
|
||||
|
||||
for (auto & p : children) {
|
||||
auto it = m.find(p.e());
|
||||
if (it == m.end()) {
|
||||
m[p.e()] = p.pow();
|
||||
} else {
|
||||
it->second+= p.pow();
|
||||
it->second += p.pow();
|
||||
}
|
||||
}
|
||||
children.clear();
|
||||
|
@ -607,12 +561,11 @@ nex* nex_creator::create_child_from_nex_and_coeff(nex *e,
|
|||
}
|
||||
em->add_child(mk_scalar(coeff));
|
||||
std::sort(em->begin(), em->end(), [this](const nex_pow& a,
|
||||
const nex_pow& b) {return less_than_on_nex_pow(a, b);});
|
||||
const nex_pow& b) {return less_than_on_nex_pow(a, b); });
|
||||
return em;
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
case expr_type::SUM:
|
||||
return mk_mul(mk_scalar(coeff), e);
|
||||
}
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return nullptr;
|
||||
|
@ -634,10 +587,11 @@ bool nex_creator::register_in_join_map(std::map<nex*, rational, nex_lt>& map, ne
|
|||
}
|
||||
}
|
||||
|
||||
bool nex_creator::fill_join_map_for_sum(ptr_vector<nex> & children,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
nex_scalar*& common_scalar) {
|
||||
bool nex_creator::fill_join_map_for_sum(
|
||||
ptr_vector<nex> & children,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
nex_scalar*& common_scalar) {
|
||||
common_scalar = nullptr;
|
||||
bool simplified = false;
|
||||
for (auto e : children) {
|
||||
|
@ -690,7 +644,7 @@ void nex_creator::simplify_children_of_sum(ptr_vector<nex> & children) {
|
|||
TRACE("grobner_d", print_vector_of_ptrs(children, tout););
|
||||
ptr_vector<nex> to_promote;
|
||||
int skipped = 0;
|
||||
for(unsigned j = 0; j < children.size(); j++) {
|
||||
for (unsigned j = 0; j < children.size(); j++) {
|
||||
nex* e = children[j] = simplify(children[j]);
|
||||
if (e->is_sum()) {
|
||||
to_promote.push_back(e);
|
||||
|
@ -828,6 +782,7 @@ nex* nex_creator::simplify(nex* e) {
|
|||
SASSERT(is_simplified(es));
|
||||
return es;
|
||||
}
|
||||
|
||||
// adds to children the corrected expression and also adds to allocated the new expressions
|
||||
void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex> & children, std::unordered_set<nex*>& allocated_nexs) {
|
||||
TRACE("grobner_d", tout << "e=" << *e << " , coeff= " << coeff << "\n";);
|
||||
|
@ -870,6 +825,7 @@ unsigned nex_creator::find_sum_in_mul(const nex_mul* a) const {
|
|||
|
||||
return -1;
|
||||
}
|
||||
|
||||
nex* nex_creator::canonize_mul(nex_mul *a) {
|
||||
TRACE("grobner_d", tout << "a = " << *a << "\n";);
|
||||
unsigned j = find_sum_in_mul(a);
|
||||
|
@ -897,7 +853,6 @@ nex* nex_creator::canonize_mul(nex_mul *a) {
|
|||
return canonize(r);
|
||||
}
|
||||
|
||||
|
||||
nex* nex_creator::canonize(const nex *a) {
|
||||
if (a->is_elementary())
|
||||
return clone(a);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue