mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
review nits (#97)
* code nits nits from review pass * Update cross_nested.h
This commit is contained in:
parent
21d9875239
commit
04f0a310a2
|
@ -83,7 +83,7 @@ public:
|
|||
TRACE("nla_cn", tout << "c=" << *c << "\n"; tout << "occs:"; dump_occurences(tout, m_nex_creator.occurences_map()) << "\n";);
|
||||
unsigned size = c->size();
|
||||
bool have_factor = false;
|
||||
for(const auto & p : m_nex_creator.occurences_map()) {
|
||||
for (const auto & p : m_nex_creator.occurences_map()) {
|
||||
if (p.second.m_occs == size) {
|
||||
have_factor = true;
|
||||
break;
|
||||
|
@ -91,7 +91,7 @@ public:
|
|||
}
|
||||
if (have_factor == false) return nullptr;
|
||||
nex_mul* f = m_nex_creator.mk_mul();
|
||||
for(const auto & p : m_nex_creator.occurences_map()) { // randomize here: todo
|
||||
for (const auto & p : m_nex_creator.occurences_map()) { // randomize here: todo
|
||||
if (p.second.m_occs == size) {
|
||||
f->add_child_in_power(m_nex_creator.mk_var(p.first), p.second.m_power);
|
||||
}
|
||||
|
@ -105,7 +105,7 @@ public:
|
|||
auto common_vars = get_vars_of_expr(ch[0]);
|
||||
for (lpvar j : common_vars) {
|
||||
bool divides_the_rest = true;
|
||||
for(unsigned i = 1; i < ch.size() && divides_the_rest; i++) {
|
||||
for (unsigned i = 1; i < ch.size() && divides_the_rest; i++) {
|
||||
if (!ch[i]->contains(j))
|
||||
divides_the_rest = false;
|
||||
}
|
||||
|
@ -163,7 +163,7 @@ public:
|
|||
nex* copy_of_c = *c;
|
||||
auto copy_of_front = copy_front(front);
|
||||
int alloc_size = m_nex_creator.size();
|
||||
for(lpvar j : vars) {
|
||||
for (lpvar j : vars) {
|
||||
if (m_var_is_fixed(j)) {
|
||||
// it does not make sense to explore fixed multupliers
|
||||
// because the interval products do not become smaller
|
||||
|
@ -184,9 +184,8 @@ public:
|
|||
template <typename T>
|
||||
static std::ostream& dump_occurences(std::ostream& out, const T& occurences) {
|
||||
out << "{";
|
||||
for(const auto& p: occurences) {
|
||||
const occ& o = p.second;
|
||||
out << "(v" << p.first << "->" << o << ")";
|
||||
for (const auto& p: occurences) {
|
||||
out << "(v" << p.first << "->" << p.second << ")";
|
||||
}
|
||||
out << "}" << std::endl;
|
||||
return out;
|
||||
|
@ -252,7 +251,7 @@ public:
|
|||
print_vector(vars, tout) << "; front:"; print_front(front, tout) << "\n";);
|
||||
|
||||
if (vars.empty()) {
|
||||
if(front.empty()) {
|
||||
if (front.empty()) {
|
||||
TRACE("nla_cn", tout << "got the cn form: =" << *m_e << "\n";);
|
||||
m_done = m_call_on_result(m_e) || ++m_reported > 100;
|
||||
#ifdef Z3DEBUG
|
||||
|
|
|
@ -108,8 +108,7 @@ public:
|
|||
lpvar& var() { return m_j; } // the setter
|
||||
std::ostream & print(std::ostream& out) const {
|
||||
// out << (char)('a' + m_j);
|
||||
out << "v" << m_j;
|
||||
return out;
|
||||
return out << "v" << m_j;
|
||||
}
|
||||
|
||||
bool contains(lpvar j) const { return j == m_j; }
|
||||
|
@ -125,10 +124,7 @@ public:
|
|||
expr_type type() const { return expr_type::SCALAR; }
|
||||
const rational& value() const { return m_v; }
|
||||
rational& value() { return m_v; } // the setter
|
||||
std::ostream& print(std::ostream& out) const {
|
||||
out << m_v;
|
||||
return out;
|
||||
}
|
||||
std::ostream& print(std::ostream& out) const { return out << m_v; }
|
||||
|
||||
int get_degree() const { return 0; }
|
||||
bool is_linear() const { return true; }
|
||||
|
@ -136,7 +132,6 @@ public:
|
|||
|
||||
const nex_scalar * to_scalar(const nex* a);
|
||||
class nex_sum;
|
||||
const nex_sum* to_sum(const nex*a);
|
||||
|
||||
class nex_pow {
|
||||
nex* m_e;
|
||||
|
@ -149,25 +144,30 @@ public:
|
|||
|
||||
nex ** ee() { return & m_e; }
|
||||
int pow() const { return m_power; }
|
||||
int& pow() { return m_power; }
|
||||
std::string to_string() const {
|
||||
std::stringstream s;
|
||||
|
||||
std::ostream& print(std::ostream& s) const {
|
||||
if (pow() == 1) {
|
||||
if (e()->is_elementary()) {
|
||||
s << *e();
|
||||
} else {
|
||||
s <<"(" << *e() << ")";
|
||||
}
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
if (e()->is_elementary()){
|
||||
s << "(" << *e() << "^" << pow() << ")";
|
||||
} else {
|
||||
s << "((" << *e() << ")^" << pow() << ")";
|
||||
}
|
||||
}
|
||||
return s;
|
||||
}
|
||||
std::string to_string() const {
|
||||
std::stringstream s;
|
||||
print(s);
|
||||
return s.str();
|
||||
}
|
||||
friend std::ostream& operator<<(std::ostream& out, const nex_pow & p) { out << p.to_string(); return out; }
|
||||
friend std::ostream& operator<<(std::ostream& out, const nex_pow & p) { return p.print(out); }
|
||||
};
|
||||
|
||||
inline unsigned get_degree_children(const vector<nex_pow>& children) {
|
||||
|
@ -206,20 +206,19 @@ public:
|
|||
const vector<nex_pow>& children() const { return m_children;}
|
||||
// A monomial is 'pure' if does not have a numeric coefficient.
|
||||
bool is_pure_monomial() const { return size() == 0 || (!m_children[0].e()->is_scalar()); }
|
||||
std::ostream & print(std::ostream& out) const {
|
||||
|
||||
|
||||
std::ostream & print(std::ostream& out) const {
|
||||
bool first = true;
|
||||
if (!m_coeff.is_one()) {
|
||||
out << m_coeff;
|
||||
first = false;
|
||||
}
|
||||
for (const nex_pow& v : m_children) {
|
||||
std::string s = v.to_string();
|
||||
if (first) {
|
||||
first = false;
|
||||
out << s;
|
||||
out << v;
|
||||
} else {
|
||||
out << "*" << s;
|
||||
out << "*" << v;
|
||||
}
|
||||
}
|
||||
return out;
|
||||
|
@ -252,9 +251,10 @@ public:
|
|||
void add_child_in_power(nex* e, int power) {
|
||||
if (e->is_scalar()) {
|
||||
m_coeff *= (to_scalar(e)->value()).expt(power);
|
||||
return;
|
||||
}
|
||||
m_children.push_back(nex_pow(e, power));
|
||||
else {
|
||||
m_children.push_back(nex_pow(e, power));
|
||||
}
|
||||
}
|
||||
|
||||
bool contains(lpvar j) const {
|
||||
|
@ -335,8 +335,7 @@ public:
|
|||
for (auto e : *this) {
|
||||
int d = e->get_degree();
|
||||
if (d == 0) continue;
|
||||
if (d > 1) return false;
|
||||
|
||||
if (d > 1) return false;
|
||||
number_of_non_scalars++;
|
||||
}
|
||||
TRACE("nex_details", tout << (number_of_non_scalars > 1?"linear":"non-linear") << "\n";);
|
||||
|
@ -398,7 +397,7 @@ public:
|
|||
#endif
|
||||
};
|
||||
|
||||
inline const nex_sum* to_sum(const nex*a) {
|
||||
inline const nex_sum* to_sum(const nex* a) {
|
||||
SASSERT(a->is_sum());
|
||||
return static_cast<const nex_sum*>(a);
|
||||
}
|
||||
|
@ -407,7 +406,6 @@ inline nex_sum* to_sum(nex * a) {
|
|||
SASSERT(a->is_sum());
|
||||
return static_cast<nex_sum*>(a);
|
||||
}
|
||||
|
||||
|
||||
inline const nex_var* to_var(const nex*a) {
|
||||
SASSERT(a->is_var());
|
||||
|
@ -447,22 +445,20 @@ inline rational get_nex_val(const nex* e, std::function<rational (unsigned)> var
|
|||
switch (e->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return to_scalar(e)->value();
|
||||
case expr_type::SUM:
|
||||
{
|
||||
rational r(0);
|
||||
for (auto c: *to_sum(e)) {
|
||||
r += get_nex_val(c, var_val);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
case expr_type::MUL:
|
||||
{
|
||||
const nex_mul * m = to_mul(e);
|
||||
rational t = m->coeff();
|
||||
for (auto& c: *m)
|
||||
t *= get_nex_val(c.e(), var_val).expt(c.pow());
|
||||
return t;
|
||||
case expr_type::SUM: {
|
||||
rational r(0);
|
||||
for (auto c: *to_sum(e)) {
|
||||
r += get_nex_val(c, var_val);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
case expr_type::MUL: {
|
||||
auto & m = *to_mul(e);
|
||||
rational t = m.coeff();
|
||||
for (auto& c: m)
|
||||
t *= get_nex_val(c.e(), var_val).expt(c.pow());
|
||||
return t;
|
||||
}
|
||||
case expr_type::VAR:
|
||||
return var_val(to_var(e)->var());
|
||||
default:
|
||||
|
@ -477,20 +473,18 @@ inline std::unordered_set<lpvar> get_vars_of_expr(const nex *e ) {
|
|||
switch (e->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return r;
|
||||
case expr_type::SUM:
|
||||
{
|
||||
for (auto c: *to_sum(e))
|
||||
for ( lpvar j : get_vars_of_expr(c))
|
||||
r.insert(j);
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
for (auto c: *to_sum(e))
|
||||
for ( lpvar j : get_vars_of_expr(c))
|
||||
r.insert(j);
|
||||
return r;
|
||||
case expr_type::MUL:
|
||||
{
|
||||
for (auto &c: *to_mul(e))
|
||||
for ( lpvar j : get_vars_of_expr(c.e()))
|
||||
r.insert(j);
|
||||
}
|
||||
}
|
||||
case expr_type::MUL: {
|
||||
for (auto &c: *to_mul(e))
|
||||
for ( lpvar j : get_vars_of_expr(c.e()))
|
||||
r.insert(j);
|
||||
return r;
|
||||
}
|
||||
case expr_type::VAR:
|
||||
r.insert(to_var(e)->var());
|
||||
return r;
|
||||
|
|
|
@ -17,9 +17,9 @@
|
|||
|
||||
|
||||
--*/
|
||||
#include "util/lbool.h"
|
||||
#include "math/lp/nex_creator.h"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace nla {
|
||||
|
||||
|
@ -30,8 +30,8 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
|||
return mk_scalar(rational(1));
|
||||
vector<nex_pow> bv;
|
||||
bool seenj = false;
|
||||
auto ma = to_mul(a);
|
||||
for (auto& p : *ma) {
|
||||
auto ma = *to_mul(a);
|
||||
for (auto& p : ma) {
|
||||
const nex * c = p.e();
|
||||
int pow = p.pow();
|
||||
if (!seenj && c->contains(j)) {
|
||||
|
@ -51,24 +51,24 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
|||
bv.push_back(nex_pow(clone(c), pow));
|
||||
}
|
||||
}
|
||||
if (bv.size() == 1 && bv.begin()->pow() == 1 && ma->coeff().is_one()) {
|
||||
if (bv.size() == 1 && bv.begin()->pow() == 1 && ma.coeff().is_one()) {
|
||||
return bv.begin()->e();
|
||||
}
|
||||
if (bv.size() == 0) {
|
||||
return mk_scalar(rational(ma->coeff()));
|
||||
if (bv.empty()) {
|
||||
return mk_scalar(rational(ma.coeff()));
|
||||
}
|
||||
|
||||
auto m = mk_mul(bv);
|
||||
m->coeff() = ma->coeff();
|
||||
m->coeff() = ma.coeff();
|
||||
return m;
|
||||
|
||||
}
|
||||
|
||||
bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
|
||||
if (p.e()->is_mul()) {
|
||||
const nex_mul *m = to_mul(p.e());
|
||||
if (m->size() == 0) {
|
||||
const rational& coeff = m->coeff();
|
||||
const nex_mul & m = *to_mul(p.e());
|
||||
if (m.size() == 0) {
|
||||
const rational& coeff = m.coeff();
|
||||
if (coeff.is_one())
|
||||
return true;
|
||||
r *= coeff.expt(p.pow() * pow);
|
||||
|
@ -90,7 +90,7 @@ void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational&
|
|||
TRACE("grobner_d", print_vector(children, tout););
|
||||
vector<nex_pow> to_promote;
|
||||
int skipped = 0;
|
||||
for(unsigned j = 0; j < children.size(); j++) {
|
||||
for (unsigned j = 0; j < children.size(); j++) {
|
||||
nex_pow& p = children[j];
|
||||
if (eat_scalar_pow(coeff, p, 1)) {
|
||||
skipped++;
|
||||
|
@ -112,49 +112,48 @@ void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational&
|
|||
|
||||
for (nex_pow & p : to_promote) {
|
||||
TRACE("grobner_d", tout << p << "\n";);
|
||||
nex_mul *pm = to_mul(p.e());
|
||||
for (nex_pow& pp : *pm) {
|
||||
nex_mul & pm = *to_mul(p.e());
|
||||
for (nex_pow & pp : pm) {
|
||||
TRACE("grobner_d", tout << pp << "\n";);
|
||||
if (!eat_scalar_pow(coeff, pp, p.pow()))
|
||||
children.push_back(nex_pow(pp.e(), pp.pow() * p.pow()));
|
||||
}
|
||||
coeff *= pm->coeff().expt(p.pow());
|
||||
coeff *= pm.coeff().expt(p.pow());
|
||||
}
|
||||
|
||||
mul_to_powers(children);
|
||||
|
||||
TRACE("grobner_d", print_vector(children, tout););
|
||||
}
|
||||
bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a, const nex_mul* b) const {
|
||||
bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a, const nex_mul& b) const {
|
||||
bool inside_a_p = false; // inside_a_p is true means we still compare the old position of it_a
|
||||
bool inside_b_p = false; // inside_b_p is true means we still compare the old position of it_b
|
||||
auto it_a = a.begin();
|
||||
auto it_b = b->begin();
|
||||
auto it_b = b.begin();
|
||||
auto a_end = a.end();
|
||||
auto b_end = b->end();
|
||||
auto b_end = b.end();
|
||||
unsigned a_pow, b_pow;
|
||||
int ret = - 1;
|
||||
do {
|
||||
lbool ret = l_undef;
|
||||
while (true) {
|
||||
if (!inside_a_p) { a_pow = it_a->pow(); }
|
||||
if (!inside_b_p) { b_pow = it_b->pow(); }
|
||||
if (lt(it_a->e(), it_b->e())){
|
||||
ret = true;
|
||||
ret = l_true;
|
||||
break;
|
||||
}
|
||||
if (lt(it_b->e(), it_a->e())) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (a_pow == b_pow) {
|
||||
inside_a_p = inside_b_p = false;
|
||||
it_a++; it_b++;
|
||||
if (it_a == a_end) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
if (it_b == b_end) { // it_a is not at the end
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
// no iterator reached the end
|
||||
|
@ -163,7 +162,7 @@ bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a,
|
|||
if (a_pow > b_pow) {
|
||||
it_a++;
|
||||
if (it_a == a_end) {
|
||||
ret = true;
|
||||
ret = l_true;
|
||||
break;
|
||||
}
|
||||
inside_a_p = false;
|
||||
|
@ -174,54 +173,51 @@ bool nex_creator:: less_than_on_powers_mul_same_degree(const vector<nex_pow>& a,
|
|||
a_pow -= b_pow;
|
||||
it_b++;
|
||||
if (it_b == b_end) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
inside_a_p = true;
|
||||
inside_b_p = false;
|
||||
}
|
||||
} while (true);
|
||||
if (ret == -1)
|
||||
ret = true;
|
||||
TRACE("nex_less", tout << "a = "; print_vector(a, tout) << (ret == 1?" < ":" >= ") << *b << "\n";);
|
||||
return ret;
|
||||
}
|
||||
TRACE("nex_less", tout << "a = "; print_vector(a, tout) << (ret != l_false?" < ":" >= ") << b << "\n";);
|
||||
return ret != l_false;
|
||||
}
|
||||
|
||||
bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul* a, const nex_mul* b) const {
|
||||
bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul& a, const nex_mul& b) const {
|
||||
bool inside_a_p = false; // inside_a_p is true means we still compare the old position of it_a
|
||||
bool inside_b_p = false; // inside_b_p is true means we still compare the old position of it_b
|
||||
auto it_a = a->begin();
|
||||
auto it_b = b->begin();
|
||||
auto a_end = a->end();
|
||||
auto b_end = b->end();
|
||||
auto it_a = a.begin();
|
||||
auto it_b = b.begin();
|
||||
auto a_end = a.end();
|
||||
auto b_end = b.end();
|
||||
unsigned a_pow, b_pow;
|
||||
int ret = - 1;
|
||||
do {
|
||||
lbool ret = l_undef;
|
||||
while (true) {
|
||||
if (!inside_a_p) { a_pow = it_a->pow(); }
|
||||
if (!inside_b_p) { b_pow = it_b->pow(); }
|
||||
if (lt(it_a->e(), it_b->e())){
|
||||
ret = true;
|
||||
ret = l_true;
|
||||
break;
|
||||
}
|
||||
if (lt(it_b->e(), it_a->e())) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (a_pow == b_pow) {
|
||||
inside_a_p = inside_b_p = false;
|
||||
it_a++; it_b++;
|
||||
if (it_a == a_end) {
|
||||
if (it_b != b_end) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
SASSERT(it_a == a_end && it_b == b_end);
|
||||
ret = a->coeff() > b->coeff();
|
||||
ret = to_lbool(a.coeff() > b.coeff());
|
||||
break;
|
||||
}
|
||||
if (it_b == b_end) { // it_a is not at the end
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
// no iterator reached the end
|
||||
|
@ -230,7 +226,7 @@ bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul* a, const nex_m
|
|||
if (a_pow > b_pow) {
|
||||
it_a++;
|
||||
if (it_a == a_end) {
|
||||
ret = true;
|
||||
ret = l_true;
|
||||
break;
|
||||
}
|
||||
inside_a_p = false;
|
||||
|
@ -241,17 +237,15 @@ bool nex_creator::less_than_on_mul_mul_same_degree(const nex_mul* a, const nex_m
|
|||
a_pow -= b_pow;
|
||||
it_b++;
|
||||
if (it_b == b_end) {
|
||||
ret = false;
|
||||
ret = l_false;
|
||||
break;
|
||||
}
|
||||
inside_a_p = true;
|
||||
inside_b_p = false;
|
||||
}
|
||||
} while (true);
|
||||
if (ret == -1)
|
||||
ret = true;
|
||||
TRACE("grobner_d", tout << "a = " << *a << (ret == 1?" < ":" >= ") << *b << "\n";);
|
||||
return ret;
|
||||
}
|
||||
TRACE("grobner_d", tout << "a = " << a << (ret != l_false?" < ":" >= ") << b << "\n";);
|
||||
return ret != l_false;
|
||||
}
|
||||
|
||||
bool nex_creator::children_are_simplified(const vector<nex_pow>& children) const {
|
||||
|
@ -260,60 +254,34 @@ bool nex_creator::children_are_simplified(const vector<nex_pow>& children) const
|
|||
return false;
|
||||
return true;
|
||||
}
|
||||
bool nex_creator::less_than_on_powers_mul(const vector<nex_pow>& children, const nex_mul* b) const {
|
||||
TRACE("nex_less", tout << "children = "; print_vector(children, tout) << " , b = " << *b << "\n";);
|
||||
SASSERT(children_are_simplified(children) && is_simplified(b));
|
||||
|
||||
bool nex_creator::less_than_on_powers_mul(const vector<nex_pow>& children, const nex_mul& b) const {
|
||||
TRACE("nex_less", tout << "children = "; print_vector(children, tout) << " , b = " << b << "\n";);
|
||||
SASSERT(children_are_simplified(children) && is_simplified(&b));
|
||||
unsigned a_deg = get_degree_children(children);
|
||||
unsigned b_deg = b->get_degree();
|
||||
bool ret;
|
||||
if (a_deg > b_deg) {
|
||||
ret = true;
|
||||
} else if (a_deg < b_deg) {
|
||||
ret = false;
|
||||
} else {
|
||||
ret = less_than_on_powers_mul_same_degree(children, b);
|
||||
}
|
||||
return ret;
|
||||
unsigned b_deg = b.get_degree();
|
||||
|
||||
return a_deg == b_deg ? less_than_on_powers_mul_same_degree(children, b) : a_deg > b_deg;
|
||||
}
|
||||
|
||||
|
||||
bool nex_creator::less_than_on_mul_mul(const nex_mul* a, const nex_mul* b) const {
|
||||
TRACE("grobner_d", tout << "a = " << *a << " , b = " << *b << "\n";);
|
||||
SASSERT(is_simplified(a) && is_simplified(b));
|
||||
unsigned a_deg = a->get_degree();
|
||||
unsigned b_deg = b->get_degree();
|
||||
bool ret;
|
||||
if (a_deg > b_deg) {
|
||||
ret = true;
|
||||
} else if (a_deg < b_deg) {
|
||||
ret = false;
|
||||
} else {
|
||||
ret = less_than_on_mul_mul_same_degree(a, b);
|
||||
}
|
||||
return ret;
|
||||
|
||||
bool nex_creator::less_than_on_mul_mul(const nex_mul& a, const nex_mul& b) const {
|
||||
TRACE("grobner_d", tout << "a = " << a << " , b = " << b << "\n";);
|
||||
SASSERT(is_simplified(&a) && is_simplified(&b));
|
||||
unsigned a_deg = a.get_degree();
|
||||
unsigned b_deg = b.get_degree();
|
||||
return a_deg == b_deg ? less_than_on_mul_mul_same_degree(a, b) : a_deg > b_deg;
|
||||
}
|
||||
|
||||
|
||||
bool nex_creator::less_than_on_var_nex(const nex_var* a, const nex* b) const {
|
||||
switch(b->type()) {
|
||||
case expr_type::SCALAR: return true;
|
||||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return true;
|
||||
case expr_type::VAR:
|
||||
return less_than(a->var() , to_var(b)->var());
|
||||
case expr_type::MUL:
|
||||
{
|
||||
if (b->get_degree() > 1)
|
||||
return false;
|
||||
auto it = to_mul(b)->begin();
|
||||
const nex_pow & c = *it;
|
||||
const nex * f = c.e();
|
||||
return less_than_on_var_nex(a, f);
|
||||
}
|
||||
case expr_type::MUL:
|
||||
return b->get_degree() <= 1 && less_than_on_var_nex(a, (*to_mul(b))[0].e());
|
||||
case expr_type::SUM:
|
||||
{
|
||||
return !lt((*to_sum(b))[0], a);
|
||||
}
|
||||
return !lt((*to_sum(b))[0], a);
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
|
@ -321,21 +289,20 @@ bool nex_creator::less_than_on_var_nex(const nex_var* a, const nex* b) const {
|
|||
}
|
||||
|
||||
bool nex_creator::lt_nex_powers(const vector<nex_pow>& children, const nex* b) const {
|
||||
switch(b->type()) {
|
||||
case expr_type::SCALAR: return false;
|
||||
case expr_type::VAR:
|
||||
{
|
||||
if (get_degree_children(children) > 1)
|
||||
return true;
|
||||
auto it = children.begin();
|
||||
const nex_pow & c = *it;
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return lt(f, b);
|
||||
}
|
||||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return false;
|
||||
case expr_type::VAR: {
|
||||
if (get_degree_children(children) > 1)
|
||||
return true;
|
||||
const nex_pow & c = children[0];
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return lt(f, b);
|
||||
}
|
||||
case expr_type::MUL:
|
||||
return less_than_on_powers_mul(children, to_mul(b));
|
||||
return less_than_on_powers_mul(children, *to_mul(b));
|
||||
case expr_type::SUM:
|
||||
return lt_nex_powers(children, (*to_sum(b))[0]);
|
||||
default:
|
||||
|
@ -344,23 +311,21 @@ bool nex_creator::lt_nex_powers(const vector<nex_pow>& children, const nex* b) c
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
bool nex_creator::less_than_on_mul_nex(const nex_mul* a, const nex* b) const {
|
||||
switch(b->type()) {
|
||||
case expr_type::SCALAR: return false;
|
||||
case expr_type::VAR:
|
||||
{
|
||||
if (a->get_degree() > 1)
|
||||
return true;
|
||||
auto it = a->begin();
|
||||
const nex_pow & c = *it;
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return lt(f, b);
|
||||
}
|
||||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return false;
|
||||
case expr_type::VAR: {
|
||||
if (a->get_degree() > 1)
|
||||
return true;
|
||||
const nex_pow & c = *a->begin();
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return lt(f, b);
|
||||
}
|
||||
case expr_type::MUL:
|
||||
return less_than_on_mul_mul(a, to_mul(b));
|
||||
return less_than_on_mul_mul(*a, *to_mul(b));
|
||||
case expr_type::SUM:
|
||||
return lt(a, (*to_sum(b))[0]);
|
||||
default:
|
||||
|
@ -391,22 +356,19 @@ bool nex_creator::lt_for_sort_join_sum(const nex* a, const nex* b) const {
|
|||
case expr_type::VAR:
|
||||
ret = less_than_on_var_nex(to_var(a), b);
|
||||
break;
|
||||
case expr_type::SCALAR: {
|
||||
case expr_type::SCALAR:
|
||||
if (b->is_scalar())
|
||||
ret = to_scalar(a)->value() > to_scalar(b)->value();
|
||||
else
|
||||
ret = false; // the scalars are the largest
|
||||
break;
|
||||
}
|
||||
case expr_type::MUL: {
|
||||
case expr_type::MUL:
|
||||
ret = lt_nex_powers(to_mul(a)->children(), b);
|
||||
break;
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
case expr_type::SUM:
|
||||
if (b->is_sum())
|
||||
return less_than_on_sum_sum(to_sum(a), to_sum(b));
|
||||
return lt((*to_sum(a))[0], b);
|
||||
}
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
|
@ -424,22 +386,17 @@ bool nex_creator::lt(const nex* a, const nex* b) const {
|
|||
case expr_type::VAR:
|
||||
ret = less_than_on_var_nex(to_var(a), b);
|
||||
break;
|
||||
case expr_type::SCALAR: {
|
||||
if (b->is_scalar())
|
||||
ret = to_scalar(a)->value() > to_scalar(b)->value();
|
||||
else
|
||||
ret = false; // the scalars are the largest
|
||||
case expr_type::SCALAR:
|
||||
ret = b->is_scalar() && to_scalar(a)->value() > to_scalar(b)->value();
|
||||
// the scalars are the largest
|
||||
break;
|
||||
}
|
||||
case expr_type::MUL: {
|
||||
case expr_type::MUL:
|
||||
ret = less_than_on_mul_nex(to_mul(a), b);
|
||||
break;
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
case expr_type::SUM:
|
||||
if (b->is_sum())
|
||||
return less_than_on_sum_sum(to_sum(a), to_sum(b));
|
||||
return lt((*to_sum(a))[0], b);
|
||||
}
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
|
@ -460,9 +417,6 @@ bool nex_creator::is_sorted(const nex_mul* e) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool nex_creator::mul_is_simplified(const nex_mul* e) const {
|
||||
TRACE("nla_cn_", tout << "e = " << *e << "\n";);
|
||||
if (e->size() == 0) {
|
||||
|
@ -562,14 +516,14 @@ bool nex_creator::sum_is_simplified(const nex_sum* e) const {
|
|||
}
|
||||
|
||||
void nex_creator::mul_to_powers(vector<nex_pow>& children) {
|
||||
std::map<nex*, int, nex_lt> m([this](const nex* a, const nex* b) {return lt(a, b); });
|
||||
std::map<nex*, int, nex_lt> m([this](const nex* a, const nex* b) { return lt(a, b); });
|
||||
|
||||
for (auto & p : children) {
|
||||
auto it = m.find(p.e());
|
||||
if (it == m.end()) {
|
||||
m[p.e()] = p.pow();
|
||||
} else {
|
||||
it->second+= p.pow();
|
||||
it->second += p.pow();
|
||||
}
|
||||
}
|
||||
children.clear();
|
||||
|
@ -607,12 +561,11 @@ nex* nex_creator::create_child_from_nex_and_coeff(nex *e,
|
|||
}
|
||||
em->add_child(mk_scalar(coeff));
|
||||
std::sort(em->begin(), em->end(), [this](const nex_pow& a,
|
||||
const nex_pow& b) {return less_than_on_nex_pow(a, b);});
|
||||
const nex_pow& b) {return less_than_on_nex_pow(a, b); });
|
||||
return em;
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
case expr_type::SUM:
|
||||
return mk_mul(mk_scalar(coeff), e);
|
||||
}
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return nullptr;
|
||||
|
@ -634,10 +587,11 @@ bool nex_creator::register_in_join_map(std::map<nex*, rational, nex_lt>& map, ne
|
|||
}
|
||||
}
|
||||
|
||||
bool nex_creator::fill_join_map_for_sum(ptr_vector<nex> & children,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
nex_scalar*& common_scalar) {
|
||||
bool nex_creator::fill_join_map_for_sum(
|
||||
ptr_vector<nex> & children,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
nex_scalar*& common_scalar) {
|
||||
common_scalar = nullptr;
|
||||
bool simplified = false;
|
||||
for (auto e : children) {
|
||||
|
@ -690,7 +644,7 @@ void nex_creator::simplify_children_of_sum(ptr_vector<nex> & children) {
|
|||
TRACE("grobner_d", print_vector_of_ptrs(children, tout););
|
||||
ptr_vector<nex> to_promote;
|
||||
int skipped = 0;
|
||||
for(unsigned j = 0; j < children.size(); j++) {
|
||||
for (unsigned j = 0; j < children.size(); j++) {
|
||||
nex* e = children[j] = simplify(children[j]);
|
||||
if (e->is_sum()) {
|
||||
to_promote.push_back(e);
|
||||
|
@ -828,6 +782,7 @@ nex* nex_creator::simplify(nex* e) {
|
|||
SASSERT(is_simplified(es));
|
||||
return es;
|
||||
}
|
||||
|
||||
// adds to children the corrected expression and also adds to allocated the new expressions
|
||||
void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex> & children, std::unordered_set<nex*>& allocated_nexs) {
|
||||
TRACE("grobner_d", tout << "e=" << *e << " , coeff= " << coeff << "\n";);
|
||||
|
@ -870,6 +825,7 @@ unsigned nex_creator::find_sum_in_mul(const nex_mul* a) const {
|
|||
|
||||
return -1;
|
||||
}
|
||||
|
||||
nex* nex_creator::canonize_mul(nex_mul *a) {
|
||||
TRACE("grobner_d", tout << "a = " << *a << "\n";);
|
||||
unsigned j = find_sum_in_mul(a);
|
||||
|
@ -897,7 +853,6 @@ nex* nex_creator::canonize_mul(nex_mul *a) {
|
|||
return canonize(r);
|
||||
}
|
||||
|
||||
|
||||
nex* nex_creator::canonize(const nex *a) {
|
||||
if (a->is_elementary())
|
||||
return clone(a);
|
||||
|
|
|
@ -29,22 +29,21 @@ struct occ {
|
|||
occ(unsigned k, unsigned p) : m_occs(k), m_power(p) {}
|
||||
// use the "name injection rule here"
|
||||
friend std::ostream& operator<<(std::ostream& out, const occ& c) {
|
||||
out << "(occs:" << c.m_occs <<", pow:" << c.m_power << ")";
|
||||
return out;
|
||||
return out << "(occs:" << c.m_occs <<", pow:" << c.m_power << ")";
|
||||
}
|
||||
};
|
||||
|
||||
enum class var_weight {
|
||||
FIXED = 0,
|
||||
QUOTED_FIXED = 1,
|
||||
BOUNDED = 2,
|
||||
QUOTED_BOUNDED = 3,
|
||||
NOT_FREE = 4,
|
||||
QUOTED_NOT_FREE = 5,
|
||||
FREE = 6,
|
||||
QUOTED_FREE = 7,
|
||||
MAX_DEFAULT_WEIGHT = 7
|
||||
};
|
||||
enum var_weight {
|
||||
FIXED = 0,
|
||||
QUOTED_FIXED = 1,
|
||||
BOUNDED = 2,
|
||||
QUOTED_BOUNDED = 3,
|
||||
NOT_FREE = 4,
|
||||
QUOTED_NOT_FREE = 5,
|
||||
FREE = 6,
|
||||
QUOTED_FREE = 7,
|
||||
MAX_DEFAULT_WEIGHT = 7
|
||||
};
|
||||
|
||||
|
||||
// the purpose of this class is to create nex objects, keep them,
|
||||
|
@ -54,14 +53,13 @@ class nex_creator {
|
|||
ptr_vector<nex> m_allocated;
|
||||
std::unordered_map<lpvar, occ> m_occurences_map;
|
||||
std::unordered_map<lpvar, unsigned> m_powers;
|
||||
svector<unsigned> m_active_vars_weights;
|
||||
unsigned_vector m_active_vars_weights;
|
||||
|
||||
public:
|
||||
static std::string ch(unsigned j) {
|
||||
std::stringstream s;
|
||||
s << "v" << j;
|
||||
return s.str();
|
||||
// return (char)('a'+j);
|
||||
}
|
||||
|
||||
// assuming that every lpvar is less than this number
|
||||
|
@ -72,11 +70,11 @@ public:
|
|||
unsigned get_number_of_vars() const {
|
||||
return m_active_vars_weights.size();
|
||||
}
|
||||
|
||||
|
||||
void set_var_weight(unsigned j, unsigned weight) {
|
||||
m_active_vars_weights[j] = weight;
|
||||
}
|
||||
|
||||
private:
|
||||
svector<unsigned>& active_vars_weights() { return m_active_vars_weights;}
|
||||
const svector<unsigned>& active_vars_weights() const { return m_active_vars_weights;}
|
||||
|
@ -84,8 +82,8 @@ public:
|
|||
nex* simplify(nex* e);
|
||||
|
||||
bool less_than(lpvar j, lpvar k) const{
|
||||
unsigned wj = (unsigned)m_active_vars_weights[j];
|
||||
unsigned wk = (unsigned)m_active_vars_weights[k];
|
||||
unsigned wj = m_active_vars_weights[j];
|
||||
unsigned wk = m_active_vars_weights[k];
|
||||
return wj != wk ? wj > wk : j > k;
|
||||
}
|
||||
|
||||
|
@ -97,15 +95,10 @@ public:
|
|||
|
||||
nex * clone(const nex* a) {
|
||||
switch (a->type()) {
|
||||
case expr_type::VAR: {
|
||||
auto v = to_var(a);
|
||||
return mk_var(v->var());
|
||||
}
|
||||
|
||||
case expr_type::SCALAR: {
|
||||
auto v = to_scalar(a);
|
||||
return mk_scalar(v->value());
|
||||
}
|
||||
case expr_type::VAR:
|
||||
return mk_var(to_var(a)->var());
|
||||
case expr_type::SCALAR:
|
||||
return mk_scalar(to_scalar(a)->value());
|
||||
case expr_type::MUL: {
|
||||
auto m = to_mul(a);
|
||||
auto r = mk_mul();
|
||||
|
@ -116,9 +109,8 @@ public:
|
|||
return r;
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
auto m = to_sum(a);
|
||||
auto r = mk_sum();
|
||||
for (nex * e : m->children()) {
|
||||
for (nex * e : *to_sum(a)) {
|
||||
r->add_child(clone(e));
|
||||
}
|
||||
return r;
|
||||
|
@ -181,7 +173,6 @@ public:
|
|||
r->children() = v;
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
template <typename K, typename...Args>
|
||||
nex_sum* mk_sum(K e, Args... es) {
|
||||
|
@ -191,6 +182,7 @@ public:
|
|||
add_children(r, es...);
|
||||
return r;
|
||||
}
|
||||
|
||||
nex_var* mk_var(lpvar j) {
|
||||
auto r = new nex_var(j);
|
||||
add_to_allocated(r);
|
||||
|
@ -239,8 +231,8 @@ public:
|
|||
|
||||
void sort_join_sum(ptr_vector<nex> & children);
|
||||
bool fill_join_map_for_sum(ptr_vector<nex> & children,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
nex_scalar*& common_scalar);
|
||||
bool register_in_join_map(std::map<nex*, rational, nex_lt>&, nex*, const rational&) const;
|
||||
|
||||
|
@ -252,11 +244,11 @@ public:
|
|||
bool children_are_simplified(const vector<nex_pow>& children) const;
|
||||
bool lt(const nex* a, const nex* b) const;
|
||||
bool lt_nex_powers(const vector<nex_pow>&, const nex* b) const;
|
||||
bool less_than_on_powers_mul(const vector<nex_pow>&, const nex_mul* b) const;
|
||||
bool less_than_on_powers_mul_same_degree(const vector<nex_pow>&, const nex_mul* b) const;
|
||||
bool less_than_on_powers_mul(const vector<nex_pow>&, const nex_mul& b) const;
|
||||
bool less_than_on_powers_mul_same_degree(const vector<nex_pow>&, const nex_mul& b) const;
|
||||
bool lt_for_sort_join_sum(const nex* a, const nex* b) const;
|
||||
bool less_than_on_mul_mul(const nex_mul* a, const nex_mul* b) const;
|
||||
bool less_than_on_mul_mul_same_degree(const nex_mul* a, const nex_mul* b) const;
|
||||
bool less_than_on_mul_mul(const nex_mul& a, const nex_mul& b) const;
|
||||
bool less_than_on_mul_mul_same_degree(const nex_mul& a, const nex_mul& b) const;
|
||||
bool less_than_on_var_nex(const nex_var* a, const nex* b) const;
|
||||
bool less_than_on_mul_nex(const nex_mul* a, const nex* b) const;
|
||||
bool less_than_on_sum_sum(const nex_sum* a, const nex_sum* b) const;
|
||||
|
|
|
@ -178,7 +178,7 @@ void nla_grobner::del_equation(equation * eq) {
|
|||
m_to_superpose.erase(eq);
|
||||
m_to_simplify.erase(eq);
|
||||
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
|
||||
m_equations_to_delete[eq->m_bidx] = 0;
|
||||
m_equations_to_delete[eq->m_bidx] = nullptr;
|
||||
dealloc(eq);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue