3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-08 00:05:46 +00:00

u256, separate viable_set

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-07-04 23:47:12 -07:00
parent aeec3bb6df
commit 04ce8ca5ef
18 changed files with 374 additions and 167 deletions

View file

@ -7,7 +7,6 @@ Module Name:
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
@ -25,10 +24,15 @@ namespace polysat {
m_reason.push_back(nullptr);
m_lemma.push_back(nullptr);
return var;
} else {
}
else {
sat::bool_var var = m_unused.back();
m_unused.pop_back();
SASSERT_EQ(m_level[var], UINT_MAX);
SASSERT_EQ(m_value[2*var], l_undef);
SASSERT_EQ(m_value[2*var+1], l_undef);
SASSERT_EQ(m_reason[var], nullptr);
SASSERT_EQ(m_lemma[var], nullptr);
return var;
}
}

View file

@ -7,7 +7,6 @@ Module Name:
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/

View file

@ -7,7 +7,6 @@ Module Name:
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/

View file

@ -7,9 +7,15 @@ Module Name:
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
Notes:
Builds a clause from literals and constraints.
Takes care to
- resolve with unit clauses and accumulate their dependencies,
- skip trivial new constraints such as "4 <= 1".
--*/
#pragma once
#include "math/polysat/constraint.h"
@ -17,16 +23,12 @@ Author:
namespace polysat {
/// Builds a clause from literals and constraints.
/// Takes care to
/// - resolve with unit clauses and accumulate their dependencies,
/// - skip trivial new constraints such as "4 <= 1".
class clause_builder {
solver& m_solver;
sat::literal_vector m_literals;
solver& m_solver;
sat::literal_vector m_literals;
constraint_ref_vector m_new_constraints;
p_dependency_ref m_dep;
unsigned m_level = 0;
p_dependency_ref m_dep;
unsigned m_level = 0;
public:
clause_builder(solver& s);
@ -42,6 +44,7 @@ namespace polysat {
/// Add a literal to the clause.
/// Intended to be used for literals representing a constraint that already exists.
void push_literal(sat::literal lit);
/// Add a constraint to the clause that does not yet exist in the solver so far.
void push_new_constraint(constraint_literal c);
};

View file

@ -42,7 +42,6 @@ namespace polysat {
friend class constraint;
bool_var_manager& m_bvars;
// poly_dep_manager& m_dm;
// Association to boolean variables
ptr_vector<constraint> m_bv2constraint;
@ -135,6 +134,9 @@ namespace polysat {
m_manager->m_bvars.del_var(m_bvar);
}
virtual unsigned hash() const = 0;
virtual bool operator==(constraint const& other) const = 0;
bool is_eq() const { return m_kind == ckind_t::eq_t; }
bool is_ule() const { return m_kind == ckind_t::ule_t; }
ckind_t kind() const { return m_kind; }
@ -360,6 +362,7 @@ namespace polysat {
else
SASSERT_EQ(c->blit(), lit);
}
// NSB review: assumes life-time of c extends use in tmp_assign.
tmp_assign(constraint_ref const& c, sat::literal lit): tmp_assign(c.get(), lit) {}
void revert() {
if (m_should_unassign) {

View file

@ -202,4 +202,12 @@ namespace polysat {
return inequality(zero, p(), true, this);
}
unsigned eq_constraint::hash() const {
return p().hash();
}
bool eq_constraint::operator==(constraint const& other) const {
return other.is_eq() && p() == other.to_eq().p();
}
}

View file

@ -33,6 +33,8 @@ namespace polysat {
void narrow(solver& s) override;
bool forbidden_interval(solver& s, pvar v, eval_interval& out_interval, constraint_literal& out_neg_cond) override;
inequality as_inequality() const override;
unsigned hash() const override;
bool operator==(constraint const& other) const override;
};
}

View file

@ -293,4 +293,13 @@ namespace polysat {
else
return inequality(rhs(), lhs(), true, this);
}
unsigned ule_constraint::hash() const {
return mk_mix(lhs().hash(), rhs().hash(), 23);
}
bool ule_constraint::operator==(constraint const& other) const {
return other.is_ule() && lhs() == other.to_ule().lhs() && rhs() == other.to_ule().rhs();
}
}

View file

@ -39,6 +39,8 @@ namespace polysat {
void narrow(solver& s) override;
bool forbidden_interval(solver& s, pvar v, eval_interval& out_interval, constraint_literal& out_neg_cond) override;
inequality as_inequality() const override;
unsigned hash() const override;
bool operator==(constraint const& other) const override;
};
}

View file

@ -19,104 +19,16 @@ and narrow the range using the BDDs that are cached.
--*/
#include "math/polysat/viable.h"
#include "math/polysat/solver.h"
#include "math/interval/mod_interval_def.h"
#if NEW_VIABLE
#include "math/polysat/viable_set_def.h"
#endif
namespace polysat {
#if NEW_VIABLE
dd::find_t viable_set::find_hint(rational const& d, rational& val) const {
if (is_empty())
return dd::find_t::empty;
if (contains(d))
val = d;
else
val = lo;
if (lo + 1 == hi || hi == 0 && is_max(lo))
return dd::find_t::singleton;
return dd::find_t::multiple;
}
bool viable_set::is_max(rational const& a) const {
return a + 1 == rational::power_of_two(m_num_bits);
}
void viable_set::intersect_eq(rational const& a, bool is_positive) {
if (is_positive)
intersect_fixed(a);
else
intersect_diff(a);
}
bool viable_set::intersect_eq(rational const& a, rational const& b, bool is_positive) {
if (!a.is_odd()) {
std::function<bool(rational const&)> eval = [&](rational const& x) {
return is_positive == (mod(a * x + b, p2()) == 0);
};
return narrow(eval);
}
if (b == 0)
intersect_eq(b, is_positive);
else {
rational a_inv;
VERIFY(a.mult_inverse(m_num_bits, a_inv));
intersect_eq(mod(a_inv * -b, p2()), is_positive);
}
return true;
}
bool viable_set::intersect_le(rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) {
// x <= 0
if (a.is_odd() && b == 0 && c == 0 && d == 0)
intersect_eq(b, is_positive);
else if (a == 1 && b == 0 && c == 0) {
// x <= d or x > d
if (is_positive)
intersect_ule(d);
else
intersect_ugt(d);
}
else if (a == 0 && c == 1 && d == 0) {
// x >= b or x < b
if (is_positive)
intersect_uge(b);
else
intersect_ult(b);
}
// TBD: can also handle wrap-around semantics (for signed comparison)
else {
std::function<bool(rational const&)> eval = [&](rational const& x) {
return is_positive == mod(a * x + b, p2()) <= mod(c * x + d, p2());
};
return narrow(eval);
}
return true;
}
rational viable_set::prev(rational const& p) const {
if (p > 0)
return p - 1;
else
return rational::power_of_two(m_num_bits) - 1;
}
bool viable_set::narrow(std::function<bool(rational const&)>& eval) {
unsigned budget = 10;
while (budget > 0 && !is_empty() && !eval(lo)) {
--budget;
intersect_diff(lo);
}
while (budget > 0 && !is_empty() && !eval(prev(hi))) {
--budget;
intersect_diff(prev(hi));
}
return 0 < budget;
}
#endif
viable::viable(solver& s):
s(s),
@ -134,15 +46,19 @@ namespace polysat {
#endif
}
void viable::push_viable(pvar v) {
s.m_trail.push_back(trail_instr_t::viable_i);
#if NEW_VIALBLE
m_viable_trail.push_back(std::make_pair(v, alloc(viable_set, *m_viable[v])));
#else
m_viable_trail.push_back(std::make_pair(v, m_viable[v]));
#endif
}
void viable::pop_viable() {
auto p = m_viable_trail.back();
m_viable[p.first] = p.second;
m_viable.set(p.first, p.second);
m_viable_trail.pop_back();
}
@ -151,9 +67,9 @@ namespace polysat {
void viable::intersect_eq(rational const& a, pvar v, rational const& b, bool is_positive) {
#if NEW_VIABLE
push_viable(v);
if (!m_viable[v].intersect_eq(a, b, is_positive))
if (!m_viable[v]->intersect_eq(a, b, is_positive))
intersect_eq_bdd(v, a, b, is_positive);
if (m_viable[v].is_empty())
if (m_viable[v]->is_empty())
s.set_conflict(v);
#else
@ -184,9 +100,9 @@ namespace polysat {
void viable::intersect_ule(pvar v, rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) {
#if NEW_VIABLE
push_viable(v);
if (!m_viable[v].intersect_le(a, b, c, d, is_positive))
if (!m_viable[v]->intersect_le(a, b, c, d, is_positive))
intersect_ule_bdd(v, a, b, c, d, is_positive);
if (m_viable[v].is_empty())
if (m_viable[v]->is_empty())
s.set_conflict(v);
#else
bddv const& x = var2bits(v).var();
@ -230,6 +146,8 @@ namespace polysat {
for (auto* e : m_constraint_cache)
entries.push_back(e);
std::stable_sort(entries.begin(), entries.end(), [&](cached_constraint* a, cached_constraint* b) { return a->m_activity < b->m_activity; });
for (auto* e : entries)
e->m_activity /= 2;
for (unsigned i = 0; i < max_entries/2; ++i) {
m_constraint_cache.remove(entries[i]);
dealloc(entries[i]);
@ -238,12 +156,12 @@ namespace polysat {
}
void viable::narrow(pvar v, bdd const& is_false) {
rational bound = m_viable[v].lo;
rational bound = m_viable[v]->lo;
if (var2bits(v).sup(is_false, bound))
m_viable[v].intersect_ugt(bound);
bound = m_viable[v].prev(m_viable[v].hi);
m_viable[v]->update_lo(m_viable[v]->next(bound));
bound = m_viable[v]->prev(m_viable[v]->hi);
if (var2bits(v).inf(is_false, bound))
m_viable[v].intersect_ult(bound);
m_viable[v]->update_hi(m_viable[v]->prev(bound));
}
void viable::intersect_ule_bdd(pvar v, rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) {
@ -277,7 +195,7 @@ namespace polysat {
bool viable::has_viable(pvar v) {
#if NEW_VIABLE
return !m_viable[v].is_empty();
return !m_viable[v]->is_empty();
#else
return !m_viable[v].is_false();
#endif
@ -285,7 +203,7 @@ namespace polysat {
bool viable::is_viable(pvar v, rational const& val) {
#if NEW_VIABLE
return m_viable[v].contains(val);
return m_viable[v]->contains(val);
#else
return var2bits(v).contains(m_viable[v], val);
#endif
@ -295,8 +213,8 @@ namespace polysat {
#if NEW_VIABLE
push_viable(v);
IF_VERBOSE(10, verbose_stream() << " v" << v << " != " << val << "\n");
m_viable[v].intersect_diff(val);
if (m_viable[v].is_empty())
m_viable[v]->intersect_diff(val);
if (m_viable[v]->is_empty())
s.set_conflict(v);
#else
LOG("pvar " << v << " /= " << val);
@ -317,7 +235,7 @@ namespace polysat {
dd::find_t viable::find_viable(pvar v, rational & val) {
#if NEW_VIABLE
return m_viable[v].find_hint(s.m_value[v], val);
return m_viable[v]->find_hint(s.m_value[v], val);
#else
return var2bits(v).find_hint(m_viable[v], s.m_value[v], val);
#endif

View file

@ -14,7 +14,51 @@ Author:
Notes:
NEW_VIABLE uses cheaper book-keeping, but is partial.
Alternative to using rational, instead use fixed-width numerals.
map from num_bits to template set
class viable_trail_base {
public:
virtual pop(pvar v) = 0;
virtual push(pvar v) = 0;
static viable_trail_base* mk_trail(unsigned num_bits);
};
class viable_trail<Numeral> : public viable_trail_base {
vector<viable_set<Numeral>> m_viable;
vector<viable_set<Numeral>> m_trail;
public:
void pop(pvar v) override {
m_viable[v] = m_trail.back();
m_trail.pop_back();
}
void push(pvar v) override {
m_trail.push_back(m_viable[v]);
}
};
// from num-bits to viable_trail_base*
scoped_ptr_vector<viable_trail_base> m_viable_trails;
viable_set_base& to_viable(pvar v) {
return (*m_viable_trails[num_bits(v)])[v];
}
viable_set_base is required to expose functions:
lo, hi,
prev, next alternative as bit-vectors
update_lo (a)
update_hi (a)
intersect_le (a, b, c, d)
intersect_diff (a, b)
intersect_eq (a, b)
is_empty
contains
--*/
#pragma once
@ -24,37 +68,14 @@ Notes:
#include "math/dd/dd_bdd.h"
#include "math/polysat/types.h"
#include "math/interval/mod_interval.h"
#if NEW_VIABLE
#include "math/polysat/viable_set.h"
#endif
namespace polysat {
class solver;
#if NEW_VIABLE
//
// replace BDDs by viable sets that emulate affine relations.
// viable_set has an interval of feasible values.
// it also can use ternary bit-vectors.
// or we could also just use a vector of lbool instead of ternary bit-vectors
// updating them at individual positions is relatively cheap instead of copying the
// vectors every time a range is narrowed.
//
class viable_set : public mod_interval<rational> {
unsigned m_num_bits;
rational p2() const { return rational::power_of_two(m_num_bits); }
bool is_max(rational const& a) const override;
void intersect_eq(rational const& a, bool is_positive);
bool narrow(std::function<bool(rational const&)>& eval);
public:
viable_set(unsigned num_bits): m_num_bits(num_bits) {}
~viable_set() override {}
dd::find_t find_hint(rational const& c, rational& val) const;
bool intersect_eq(rational const& a, rational const& b, bool is_positive);
bool intersect_le(rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive);
rational prev(rational const& p) const;
};
#endif
class viable {
typedef dd::bdd bdd;
@ -86,8 +107,8 @@ namespace polysat {
}
};
};
vector<viable_set> m_viable;
vector<std::pair<pvar, viable_set>> m_viable_trail;
scoped_ptr_vector<viable_set> m_viable;
vector<std::pair<pvar, viable_set*>> m_viable_trail;
hashtable<cached_constraint*, cached_constraint::hash, cached_constraint::eq> m_constraint_cache;
void intersect_ule_bdd(pvar v, rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive);
@ -119,7 +140,7 @@ namespace polysat {
void push(unsigned num_bits) {
#if NEW_VIABLE
m_viable.push_back(viable_set(num_bits));
m_viable.push_back(alloc(viable_set, num_bits));
#else
m_viable.push_back(m_bdd.mk_true());
#endif

View file

@ -0,0 +1,56 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
set of viable values as wrap-around interval
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
Notes:
replace BDDs by viable sets that emulate affine relations.
viable_set has an interval of feasible values.
it also can use ternary bit-vectors.
or we could also just use a vector of lbool instead of ternary bit-vectors
updating them at individual positions is relatively cheap instead of copying the
vectors every time a range is narrowed.
--*/
#pragma once
#include <limits>
#include "math/dd/dd_bdd.h"
#include "math/polysat/types.h"
#include "math/interval/mod_interval.h"
namespace polysat {
class viable_set : public mod_interval<rational> {
unsigned m_num_bits;
rational p2() const { return rational::power_of_two(m_num_bits); }
bool is_max(rational const& a) const override;
void intersect_eq(rational const& a, bool is_positive);
bool narrow(std::function<bool(rational const&)>& eval);
public:
viable_set(unsigned num_bits): m_num_bits(num_bits) {}
~viable_set() override {}
dd::find_t find_hint(rational const& c, rational& val) const;
bool intersect_eq(rational const& a, rational const& b, bool is_positive);
bool intersect_le(rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive);
rational prev(rational const& p) const;
rational next(rational const& p) const;
};
}

View file

@ -0,0 +1,121 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
set of viable values as wrap-around interval
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
#include "math/polysat/viable_set.h"
#include "math/interval/mod_interval_def.h"
namespace polysat {
dd::find_t viable_set::find_hint(rational const& d, rational& val) const {
if (is_empty())
return dd::find_t::empty;
if (contains(d))
val = d;
else
val = lo;
if (lo + 1 == hi || hi == 0 && is_max(lo))
return dd::find_t::singleton;
return dd::find_t::multiple;
}
bool viable_set::is_max(rational const& a) const {
return a + 1 == rational::power_of_two(m_num_bits);
}
void viable_set::intersect_eq(rational const& a, bool is_positive) {
if (is_positive)
intersect_fixed(a);
else
intersect_diff(a);
}
bool viable_set::intersect_eq(rational const& a, rational const& b, bool is_positive) {
if (!a.is_odd()) {
std::function<bool(rational const&)> eval = [&](rational const& x) {
return is_positive == (mod(a * x + b, p2()) == 0);
};
return narrow(eval);
}
if (b == 0)
intersect_eq(b, is_positive);
else {
rational a_inv;
VERIFY(a.mult_inverse(m_num_bits, a_inv));
intersect_eq(mod(a_inv * -b, p2()), is_positive);
}
return true;
}
bool viable_set::intersect_le(rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) {
// x <= 0
if (a.is_odd() && b == 0 && c == 0 && d == 0)
intersect_eq(b, is_positive);
else if (a == 1 && b == 0 && c == 0) {
// x <= d or x > d
if (is_positive)
intersect_ule(d);
else
intersect_ugt(d);
}
else if (a == 0 && c == 1 && d == 0) {
// x >= b or x < b
if (is_positive)
intersect_uge(b);
else
intersect_ult(b);
}
// TBD: can also handle wrap-around semantics (for signed comparison)
else {
std::function<bool(rational const&)> eval = [&](rational const& x) {
return is_positive == mod(a * x + b, p2()) <= mod(c * x + d, p2());
};
return narrow(eval);
}
return true;
}
rational viable_set::prev(rational const& p) const {
if (p > 0)
return p - 1;
else
return rational::power_of_two(m_num_bits) - 1;
}
rational viable_set::next(rational const& p) const {
if (is_max(p))
return rational(0);
else
return p + 1;
}
bool viable_set::narrow(std::function<bool(rational const&)>& eval) {
unsigned budget = 10;
while (budget > 0 && !is_empty() && !eval(lo)) {
--budget;
intersect_diff(lo);
}
while (budget > 0 && !is_empty() && !eval(prev(hi))) {
--budget;
intersect_diff(prev(hi));
}
return 0 < budget;
}
}