3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-07 14:43:23 +00:00

z3str3: use improved substr axioms from seq_axioms (#5097)

This commit is contained in:
Murphy Berzish 2021-03-12 14:51:16 -06:00 committed by GitHub
parent e8917a1a9f
commit 04ac5f03f7
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -1559,106 +1559,122 @@ namespace smt {
assert_axiom_rw(finalAxiom); assert_axiom_rw(finalAxiom);
} }
void theory_str::instantiate_axiom_Substr(enode * e) { void theory_str::instantiate_axiom_Substr(enode * _e) {
ast_manager & m = get_manager(); ast_manager & m = get_manager();
expr* substrBase = nullptr; expr* s = nullptr;
expr* substrPos = nullptr; expr* i = nullptr;
expr* substrLen = nullptr; expr* l = nullptr;
app * expr = e->get_expr(); app * e = _e->get_expr();
if (axiomatized_terms.contains(expr)) { if (axiomatized_terms.contains(e)) {
TRACE("str", tout << "already set up Substr axiom for " << mk_pp(expr, m) << std::endl;); TRACE("str", tout << "already set up Substr axiom for " << mk_pp(e, m) << std::endl;);
return; return;
} }
axiomatized_terms.insert(expr); axiomatized_terms.insert(e);
TRACE("str", tout << "instantiate Substr axiom for " << mk_pp(expr, m) << std::endl;); TRACE("str", tout << "instantiate Substr axiom for " << mk_pp(e, m) << std::endl;);
VERIFY(u.str.is_extract(expr, substrBase, substrPos, substrLen)); VERIFY(u.str.is_extract(e, s, i, l));
expr_ref zero(m_autil.mk_numeral(rational::zero(), true), m); // e = substr(s, i, l)
expr_ref minusOne(m_autil.mk_numeral(rational::minus_one(), true), m); expr_ref x(mk_str_var("substrPre"), m);
SASSERT(zero); expr_ref ls(mk_strlen(s), m);
SASSERT(minusOne); expr_ref lx(mk_strlen(x), m);
expr_ref le(mk_strlen(e), m);
expr_ref ls_minus_i_l(m_autil.mk_sub(m_autil.mk_sub(ls, i), l), m);
expr_ref y(mk_str_var("substrPost"), m);
expr_ref xe(mk_concat(x, e), m);
expr_ref xey(mk_concat(xe, y), m);
expr_ref zero(mk_int(0), m);
expr_ref_vector argumentsValid_terms(m); expr_ref i_ge_0(m_autil.mk_ge(i, zero), m);
// pos >= 0 expr_ref i_le_ls(m_autil.mk_le(m_autil.mk_sub(i, ls), zero), m);
argumentsValid_terms.push_back(m_autil.mk_ge(substrPos, zero)); expr_ref ls_le_i(m_autil.mk_le(m_autil.mk_sub(ls, i), zero), m);
// pos < strlen(base) expr_ref ls_ge_li(m_autil.mk_ge(ls_minus_i_l, zero), m);
// --> pos + -1*strlen(base) < 0 expr_ref l_ge_0(m_autil.mk_ge(l, zero), m);
argumentsValid_terms.push_back(mk_not(m, m_autil.mk_ge( expr_ref l_le_0(m_autil.mk_le(l, zero), m);
m_autil.mk_add(substrPos, m_autil.mk_mul(minusOne, mk_strlen(substrBase))), expr_ref ls_le_0(m_autil.mk_le(ls, zero), m);
zero))); expr_ref le_is_0(ctx.mk_eq_atom(le, zero), m);
// len >= 0 // 0 <= i & i <= |s| & 0 <= l => xey = s
argumentsValid_terms.push_back(m_autil.mk_ge(substrLen, zero)); {
expr_ref clause(m.mk_or(~i_ge_0, ~i_le_ls, ~l_ge_0, ctx.mk_eq_atom(xey, s)), m);
assert_axiom_rw(clause);
// (pos+len) >= strlen(base) }
// --> pos + len + -1*strlen(base) >= 0 // 0 <= i & i <= |s| => |x| = i
expr_ref lenOutOfBounds(m_autil.mk_ge( {
m_autil.mk_add(substrPos, substrLen, m_autil.mk_mul(minusOne, mk_strlen(substrBase))), expr_ref clause(m.mk_or(~i_ge_0, ~i_le_ls, ctx.mk_eq_atom(lx, i)), m);
zero), m); assert_axiom_rw(clause);
expr_ref argumentsValid = mk_and(argumentsValid_terms); }
// 0 <= i & i <= |s| & l >= 0 & |s| >= l + i => |e| = l
// Case 1: pos < 0 or pos >= strlen(base) or len < 0 {
// ==> (Substr ...) = "" expr_ref_vector terms(m);
expr_ref case1_premise(m.mk_not(argumentsValid), m); terms.push_back(~i_ge_0);
expr_ref case1_conclusion(ctx.mk_eq_atom(expr, mk_string("")), m); terms.push_back(~i_le_ls);
expr_ref case1(m.mk_implies(case1_premise, case1_conclusion), m); terms.push_back(~l_ge_0);
terms.push_back(~ls_ge_li);
// Case 2: (pos >= 0 and pos < strlen(base) and len >= 0) and (pos+len) >= strlen(base) terms.push_back(ctx.mk_eq_atom(le, l));
// ==> base = t0.t1 AND len(t0) = pos AND (Substr ...) = t1 expr_ref clause(mk_or(terms), m);
expr_ref t0(mk_str_var("t0"), m); assert_axiom_rw(clause);
expr_ref t1(mk_str_var("t1"), m); }
expr_ref case2_conclusion(m.mk_and( // 0 <= i & i <= |s| & |s| < l + i => |e| = |s| - i
ctx.mk_eq_atom(substrBase, mk_concat(t0,t1)), {
ctx.mk_eq_atom(mk_strlen(t0), substrPos), expr_ref_vector terms(m);
ctx.mk_eq_atom(expr, t1)), m); terms.push_back(~i_ge_0);
expr_ref case2(m.mk_implies(m.mk_and(argumentsValid, lenOutOfBounds), case2_conclusion), m); terms.push_back(~i_le_ls);
terms.push_back(~l_ge_0);
// Case 3: (pos >= 0 and pos < strlen(base) and len >= 0) and (pos+len) < strlen(base) terms.push_back(ls_ge_li);
// ==> base = t2.t3.t4 AND len(t2) = pos AND len(t3) = len AND (Substr ...) = t3 terms.push_back(ctx.mk_eq_atom(le, m_autil.mk_sub(ls, i)));
expr_ref clause(mk_or(terms), m);
expr_ref t2(mk_str_var("t2"), m); assert_axiom_rw(clause);
expr_ref t3(mk_str_var("t3"), m); }
expr_ref t4(mk_str_var("t4"), m); // i < 0 => |e| = 0
expr_ref_vector case3_conclusion_terms(m); {
case3_conclusion_terms.push_back(ctx.mk_eq_atom(substrBase, mk_concat(t2, mk_concat(t3, t4)))); expr_ref clause(m.mk_or(i_ge_0, le_is_0), m);
case3_conclusion_terms.push_back(ctx.mk_eq_atom(mk_strlen(t2), substrPos)); assert_axiom_rw(clause);
case3_conclusion_terms.push_back(ctx.mk_eq_atom(mk_strlen(t3), substrLen)); }
case3_conclusion_terms.push_back(ctx.mk_eq_atom(expr, t3)); // |s| <= i => |e| = 0
expr_ref case3_conclusion(mk_and(case3_conclusion_terms), m); {
expr_ref case3(m.mk_implies(m.mk_and(argumentsValid, m.mk_not(lenOutOfBounds)), case3_conclusion), m); expr_ref clause(m.mk_or(~ls_le_i, le_is_0), m);
assert_axiom_rw(clause);
assert_axiom_rw(case1); }
assert_axiom_rw(case2); // |s| <= 0 => |e| = 0
assert_axiom_rw(case3); {
expr_ref clause(m.mk_or(~ls_le_0, le_is_0), m);
assert_axiom_rw(clause);
}
// l <= 0 => |e| = 0
{
expr_ref clause(m.mk_or(~l_le_0, le_is_0), m);
assert_axiom_rw(clause);
}
// |e| = 0 & i >= 0 & |s| > i & |s| > 0 => l <= 0
{
expr_ref_vector terms(m);
terms.push_back(~le_is_0);
terms.push_back(~i_ge_0);
terms.push_back(ls_le_i);
terms.push_back(ls_le_0);
terms.push_back(l_le_0);
expr_ref clause(mk_or(terms), m);
assert_axiom_rw(clause);
}
// Auxiliary axioms // Auxiliary axioms
// |e| <= |s|
{ {
// base = "" --> (str.substr base pos len) = "" expr_ref axiom(m_autil.mk_le(le, ls), m);
{
expr_ref premise(ctx.mk_eq_atom(substrBase, mk_string("")), m);
expr_ref conclusion(ctx.mk_eq_atom(expr, mk_string("")), m);
expr_ref axiom(m.mk_implies(premise, conclusion), m);
assert_axiom_rw(axiom); assert_axiom_rw(axiom);
} }
// len( (str.substr base pos len) ) <= len(base) // l >= 0 => |e| <= len
{ {
expr_ref axiom(m_autil.mk_le(mk_strlen(expr), mk_strlen(substrBase)), m); expr_ref premise(m_autil.mk_ge(l, zero), m);
expr_ref conclusion(m_autil.mk_le(le, l), m);
expr_ref axiom(rewrite_implication(premise, conclusion), m);
assert_axiom_rw(axiom); assert_axiom_rw(axiom);
} }
// len >= 0 --> len( (str.substr base pos len) ) <= len
{
expr_ref premise(m_autil.mk_ge(substrLen, mk_int(0)), m);
expr_ref conclusion(m_autil.mk_le(mk_strlen(expr), substrLen), m);
expr_ref axiom(m.mk_implies(premise, conclusion), m);
assert_axiom_rw(axiom);
}
}
} }
// (str.replace s t t') is the string obtained by replacing the first occurrence // (str.replace s t t') is the string obtained by replacing the first occurrence