mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
new files
This commit is contained in:
parent
5dfe86fc2d
commit
03730b2aad
4 changed files with 2628 additions and 0 deletions
145
src/sat/smt/arith_value.cpp
Normal file
145
src/sat/smt/arith_value.cpp
Normal file
|
@ -0,0 +1,145 @@
|
|||
/*++
|
||||
Copyright (c) 2018 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
smt_arith_value.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Utility to extract arithmetic values from context.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2018-12-08.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#include "ast/ast_pp.h"
|
||||
#include "sat/smt/arith_value.h"
|
||||
#include "sat/smt/euf_solver.h"
|
||||
#include "sat/smt/arith_solver.h"
|
||||
|
||||
namespace arith {
|
||||
|
||||
arith_value::arith_value(euf::solver& s) :
|
||||
s(s), m(s.get_manager()), a(m) {}
|
||||
|
||||
void arith_value::init() {
|
||||
if (!as)
|
||||
as = dynamic_cast<arith::solver*>(s.fid2solver(a.get_family_id()));
|
||||
}
|
||||
|
||||
bool arith_value::get_value(expr* e, rational& val) {
|
||||
auto n = s.get_enode(e);
|
||||
expr_ref _val(m);
|
||||
init();
|
||||
return n && as->get_value(n, _val) && a.is_numeral(_val, val);
|
||||
}
|
||||
|
||||
#if 0
|
||||
bool arith_value::get_lo_equiv(expr* e, rational& lo, bool& is_strict) {
|
||||
if (!s.get_enode(e))
|
||||
return false;
|
||||
init();
|
||||
is_strict = false;
|
||||
bool found = false;
|
||||
bool is_strict1;
|
||||
rational lo1;
|
||||
for (auto sib : euf::enode_class(s.get_enode(e))) {
|
||||
if (!as->get_lower(sib, lo1, is_strict1))
|
||||
continue;
|
||||
if (!found || lo1 > lo || lo == lo1 && is_strict1)
|
||||
lo = lo1, is_strict = is_strict1;
|
||||
found = true;
|
||||
}
|
||||
CTRACE("arith_value", !found, tout << "value not found for " << mk_pp(e, m) << "\n";);
|
||||
return found;
|
||||
}
|
||||
|
||||
bool arith_value::get_up_equiv(expr* e, rational& hi, bool& is_strict) {
|
||||
if (!s.get_enode(e))
|
||||
return false;
|
||||
init();
|
||||
is_strict = false;
|
||||
bool found = false;
|
||||
bool is_strict1;
|
||||
rational hi1;
|
||||
for (auto sib : euf::enode_class(s.get_enode(e))) {
|
||||
if (!as->get_upper(sib, hi1, is_strict1))
|
||||
continue;
|
||||
if (!found || hi1 < hi || hi == hi1 && is_strict1)
|
||||
hi = hi1, is_strict = is_strict1;
|
||||
found = true;
|
||||
}
|
||||
CTRACE("arith_value", !found, tout << "value not found for " << mk_pp(e, m) << "\n";);
|
||||
return found;
|
||||
}
|
||||
|
||||
bool arith_value::get_up(expr* e, rational& up, bool& is_strict) const {
|
||||
init();
|
||||
enode* n = s.get_enode(e);
|
||||
is_strict = false;
|
||||
return n && as->get_upper(n, up, is_strict);
|
||||
}
|
||||
|
||||
bool arith_value::get_lo(expr* e, rational& lo, bool& is_strict) const {
|
||||
init();
|
||||
enode* n = s.get_enode(e);
|
||||
is_strict = false;
|
||||
return n && as->get_lower(n, lo, is_strict);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#if 0
|
||||
|
||||
|
||||
bool arith_value::get_value_equiv(expr* e, rational& val) const {
|
||||
if (!m_ctx->e_internalized(e)) return false;
|
||||
expr_ref _val(m);
|
||||
enode* next = m_ctx->get_enode(e), * n = next;
|
||||
do {
|
||||
e = next->get_expr();
|
||||
if (m_tha && m_tha->get_value(next, _val) && a.is_numeral(_val, val)) return true;
|
||||
if (m_thi && m_thi->get_value(next, _val) && a.is_numeral(_val, val)) return true;
|
||||
if (m_thr && m_thr->get_value(next, val)) return true;
|
||||
next = next->get_next();
|
||||
} while (next != n);
|
||||
TRACE("arith_value", tout << "value not found for " << mk_pp(e, m_ctx->get_manager()) << "\n";);
|
||||
return false;
|
||||
}
|
||||
|
||||
expr_ref arith_value::get_lo(expr* e) const {
|
||||
rational lo;
|
||||
bool s = false;
|
||||
if ((a.is_int_real(e) || b.is_bv(e)) && get_lo(e, lo, s) && !s) {
|
||||
return expr_ref(a.mk_numeral(lo, e->get_sort()), m);
|
||||
}
|
||||
return expr_ref(e, m);
|
||||
}
|
||||
|
||||
expr_ref arith_value::get_up(expr* e) const {
|
||||
rational up;
|
||||
bool s = false;
|
||||
if ((a.is_int_real(e) || b.is_bv(e)) && get_up(e, up, s) && !s) {
|
||||
return expr_ref(a.mk_numeral(up, e->get_sort()), m);
|
||||
}
|
||||
return expr_ref(e, m);
|
||||
}
|
||||
|
||||
expr_ref arith_value::get_fixed(expr* e) const {
|
||||
rational lo, up;
|
||||
bool s = false;
|
||||
if (a.is_int_real(e) && get_lo(e, lo, s) && !s && get_up(e, up, s) && !s && lo == up) {
|
||||
return expr_ref(a.mk_numeral(lo, e->get_sort()), m);
|
||||
}
|
||||
return expr_ref(e, m);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
};
|
52
src/sat/smt/arith_value.h
Normal file
52
src/sat/smt/arith_value.h
Normal file
|
@ -0,0 +1,52 @@
|
|||
|
||||
/*++
|
||||
Copyright (c) 2018 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
arith_value.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Utility to extract arithmetic values from context.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2018-12-08.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
|
||||
namespace euf {
|
||||
class solver;
|
||||
}
|
||||
namespace arith {
|
||||
|
||||
class solver;
|
||||
|
||||
class arith_value {
|
||||
euf::solver& s;
|
||||
ast_manager& m;
|
||||
arith_util a;
|
||||
solver* as = nullptr;
|
||||
void init();
|
||||
public:
|
||||
arith_value(euf::solver& s);
|
||||
bool get_value(expr* e, rational& value);
|
||||
|
||||
#if 0
|
||||
bool get_lo_equiv(expr* e, rational& lo, bool& strict);
|
||||
bool get_up_equiv(expr* e, rational& up, bool& strict);
|
||||
bool get_lo(expr* e, rational& lo, bool& strict);
|
||||
bool get_up(expr* e, rational& up, bool& strict);
|
||||
bool get_value_equiv(expr* e, rational& value);
|
||||
expr_ref get_lo(expr* e);
|
||||
expr_ref get_up(expr* e);
|
||||
expr_ref get_fixed(expr* e);
|
||||
#endif
|
||||
};
|
||||
};
|
2190
src/sat/smt/polysat/saturation.cpp
Normal file
2190
src/sat/smt/polysat/saturation.cpp
Normal file
File diff suppressed because it is too large
Load diff
241
src/sat/smt/polysat/saturation.h
Normal file
241
src/sat/smt/polysat/saturation.h
Normal file
|
@ -0,0 +1,241 @@
|
|||
/*++
|
||||
Copyright (c) 2021 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
Polysat core saturation
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2021-03-19
|
||||
Jakob Rath 2021-04-6
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "math/polysat/constraints.h"
|
||||
|
||||
namespace polysat {
|
||||
|
||||
struct bilinear {
|
||||
rational a, b, c, d;
|
||||
|
||||
rational eval(rational const& x, rational const& y) const {
|
||||
return a*x*y + b*x + c*y + d;
|
||||
}
|
||||
|
||||
bilinear operator-() const {
|
||||
bilinear r(*this);
|
||||
r.a = -r.a;
|
||||
r.b = -r.b;
|
||||
r.c = -r.c;
|
||||
r.d = -r.d;
|
||||
return r;
|
||||
}
|
||||
|
||||
bilinear operator-(bilinear const& other) const {
|
||||
bilinear r(*this);
|
||||
r.a -= other.a;
|
||||
r.b -= other.b;
|
||||
r.c -= other.c;
|
||||
r.d -= other.d;
|
||||
return r;
|
||||
}
|
||||
|
||||
bilinear operator+(rational const& d) const {
|
||||
bilinear r(*this);
|
||||
r.d += d;
|
||||
return r;
|
||||
}
|
||||
|
||||
bilinear operator-(rational const& d) const {
|
||||
bilinear r(*this);
|
||||
r.d -= d;
|
||||
return r;
|
||||
}
|
||||
|
||||
bilinear operator-(int d) const {
|
||||
bilinear r(*this);
|
||||
r.d -= d;
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, bilinear const& b) {
|
||||
return out << b.a << "*x*y + " << b.b << "*x + " << b.c << "*y + " << b.d;
|
||||
}
|
||||
|
||||
/**
|
||||
* Introduce lemmas that derive new (simpler) constraints from the current conflict and partial model.
|
||||
*/
|
||||
class saturation {
|
||||
|
||||
core& c;
|
||||
constraints& C;
|
||||
char const* m_rule = nullptr;
|
||||
|
||||
#if 0
|
||||
parity_tracker m_parity_tracker;
|
||||
unsigned_vector m_occ;
|
||||
unsigned_vector m_occ_cnt;
|
||||
|
||||
void set_rule(char const* r) { m_rule = r; }
|
||||
|
||||
bool is_non_overflow(pdd const& x, pdd const& y, signed_constraint& c);
|
||||
signed_constraint ineq(bool strict, pdd const& lhs, pdd const& rhs);
|
||||
|
||||
void log_lemma(pvar v, conflict& core);
|
||||
bool propagate(pvar v, conflict& core, signed_constraint crit1, signed_constraint c);
|
||||
bool propagate(pvar v, conflict& core, inequality const& crit1, signed_constraint c);
|
||||
bool propagate(pvar v, conflict& core, signed_constraint c);
|
||||
bool add_conflict(pvar v, conflict& core, inequality const& crit1, signed_constraint c);
|
||||
bool add_conflict(pvar v, conflict& core, inequality const& crit1, inequality const& crit2, signed_constraint c);
|
||||
|
||||
bool try_ugt_x(pvar v, conflict& core, inequality const& c);
|
||||
|
||||
bool try_ugt_y(pvar v, conflict& core, inequality const& c);
|
||||
bool try_ugt_y(pvar v, conflict& core, inequality const& l_y, inequality const& yx_l_zx, pdd const& x, pdd const& z);
|
||||
|
||||
bool try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& c);
|
||||
bool try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& x_l_z, inequality const& y_l_ax, pdd const& a, pdd const& y);
|
||||
|
||||
bool try_ugt_z(pvar z, conflict& core, inequality const& c);
|
||||
bool try_ugt_z(pvar z, conflict& core, inequality const& x_l_z0, inequality const& yz_l_xz, pdd const& y, pdd const& x);
|
||||
|
||||
bool try_parity(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_parity_diseq(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_mul_bounds(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_factor_equality(pvar x, conflict& core, inequality const& a_l_b);
|
||||
bool try_infer_equality(pvar x, conflict& core, inequality const& a_l_b);
|
||||
bool try_mul_eq_1(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_mul_odd(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_mul_eq_bound(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_transitivity(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_tangent(pvar v, conflict& core, inequality const& c);
|
||||
bool try_add_overflow_bound(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_add_mul_bound(pvar x, conflict& core, inequality const& axb_l_y);
|
||||
bool try_infer_parity_equality(pvar x, conflict& core, inequality const& a_l_b);
|
||||
bool try_div_monotonicity(conflict& core);
|
||||
|
||||
bool try_nonzero_upper_extract(pvar v, conflict& core, inequality const& i);
|
||||
bool try_congruence(pvar v, conflict& core, inequality const& i);
|
||||
|
||||
|
||||
rational round(rational const& M, rational const& x);
|
||||
bool eval_round(rational const& M, pdd const& p, rational& r);
|
||||
bool extract_linear_form(pdd const& q, pvar& y, rational& a, rational& b);
|
||||
bool extract_bilinear_form(pvar x, pdd const& p, pvar& y, bilinear& b);
|
||||
bool adjust_bound(rational const& x_min, rational const& x_max, rational const& y0, rational const& M,
|
||||
bilinear& b, rational& x_split);
|
||||
bool update_min(rational& y_min, rational const& x_min, rational const& x_max,
|
||||
bilinear const& b);
|
||||
bool update_max(rational& y_max, rational const& x_min, rational const& x_max,
|
||||
bilinear const& b);
|
||||
bool update_bounds_for_xs(rational const& x_min, rational const& x_max, rational& y_min, rational& y_max,
|
||||
rational const& y0, bilinear b1, bilinear b2,
|
||||
rational const& M, inequality const& a_l_b);
|
||||
void fix_values(pvar x, pvar y, pdd const& p);
|
||||
void fix_values(pvar y, pdd const& p);
|
||||
|
||||
// c := lhs ~ v
|
||||
// where ~ is < or <=
|
||||
bool is_l_v(pvar v, inequality const& c);
|
||||
|
||||
// c := v ~ rhs
|
||||
bool is_g_v(pvar v, inequality const& c);
|
||||
|
||||
// c := x ~ Y
|
||||
bool is_x_l_Y(pvar x, inequality const& i, pdd& y);
|
||||
|
||||
// c := Y ~ x
|
||||
bool is_Y_l_x(pvar x, inequality const& i, pdd& y);
|
||||
|
||||
// c := X*y ~ X*Z
|
||||
bool is_Xy_l_XZ(pvar y, inequality const& c, pdd& x, pdd& z);
|
||||
bool verify_Xy_l_XZ(pvar y, inequality const& c, pdd const& x, pdd const& z);
|
||||
|
||||
// c := Y ~ Ax
|
||||
bool is_Y_l_Ax(pvar x, inequality const& c, pdd& a, pdd& y);
|
||||
bool verify_Y_l_Ax(pvar x, inequality const& c, pdd const& a, pdd const& y);
|
||||
|
||||
// c := Ax ~ Y
|
||||
bool is_Ax_l_Y(pvar x, inequality const& c, pdd& a, pdd& y);
|
||||
bool verify_Ax_l_Y(pvar x, inequality const& c, pdd const& a, pdd const& y);
|
||||
|
||||
// c := Ax + B ~ Y
|
||||
bool is_AxB_l_Y(pvar x, inequality const& c, pdd& a, pdd& b, pdd& y);
|
||||
bool verify_AxB_l_Y(pvar x, inequality const& c, pdd const& a, pdd const& b, pdd const& y);
|
||||
|
||||
// c := Y ~ Ax + B
|
||||
bool is_Y_l_AxB(pvar x, inequality const& c, pdd& y, pdd& a, pdd& b);
|
||||
bool verify_Y_l_AxB(pvar x, inequality const& c, pdd const& y, pdd const& a, pdd& b);
|
||||
|
||||
// c := Ax + B ~ Y, val(Y) = 0
|
||||
bool is_AxB_eq_0(pvar x, inequality const& c, pdd& a, pdd& b, pdd& y);
|
||||
bool verify_AxB_eq_0(pvar x, inequality const& c, pdd const& a, pdd const& b, pdd const& y);
|
||||
|
||||
// c := Ax + B != Y, val(Y) = 0
|
||||
bool is_AxB_diseq_0(pvar x, inequality const& c, pdd& a, pdd& b, pdd& y);
|
||||
|
||||
// c := Y*X ~ z*X
|
||||
bool is_YX_l_zX(pvar z, inequality const& c, pdd& x, pdd& y);
|
||||
bool verify_YX_l_zX(pvar z, inequality const& c, pdd const& x, pdd const& y);
|
||||
|
||||
// c := xY <= xZ
|
||||
bool is_xY_l_xZ(pvar x, inequality const& c, pdd& y, pdd& z);
|
||||
|
||||
// xy := x * Y
|
||||
bool is_xY(pvar x, pdd const& xy, pdd& y);
|
||||
|
||||
// a * b does not overflow
|
||||
bool is_non_overflow(pdd const& a, pdd const& b);
|
||||
|
||||
// p := coeff*x*y where coeff_x = coeff*x, x a variable
|
||||
bool is_coeffxY(pdd const& coeff_x, pdd const& p, pdd& y);
|
||||
|
||||
bool is_add_overflow(pvar x, inequality const& i, pdd& y, bool& is_minus);
|
||||
|
||||
bool has_upper_bound(pvar x, conflict& core, rational& bound, vector<signed_constraint>& x_ge_bound);
|
||||
|
||||
bool has_lower_bound(pvar x, conflict& core, rational& bound, vector<signed_constraint>& x_le_bound);
|
||||
|
||||
// inequality i implies x != 0
|
||||
bool is_nonzero_by(pvar x, inequality const& i);
|
||||
|
||||
// determine min/max parity of polynomial
|
||||
unsigned min_parity(pdd const& p, vector<signed_constraint>& explain);
|
||||
unsigned max_parity(pdd const& p, vector<signed_constraint>& explain);
|
||||
unsigned min_parity(pdd const& p) { vector<signed_constraint> ex; return min_parity(p, ex); }
|
||||
unsigned max_parity(pdd const& p) { vector<signed_constraint> ex; return max_parity(p, ex); }
|
||||
|
||||
lbool get_multiple(const pdd& p1, const pdd& p2, pdd& out);
|
||||
|
||||
bool is_forced_eq(pdd const& p, rational const& val);
|
||||
bool is_forced_eq(pdd const& p, int i) { return is_forced_eq(p, rational(i)); }
|
||||
|
||||
bool is_forced_diseq(pdd const& p, rational const& val, signed_constraint& c);
|
||||
bool is_forced_diseq(pdd const& p, int i, signed_constraint& c) { return is_forced_diseq(p, rational(i), c); }
|
||||
|
||||
bool is_forced_odd(pdd const& p, signed_constraint& c);
|
||||
|
||||
bool is_forced_false(signed_constraint const& sc);
|
||||
|
||||
bool is_forced_true(signed_constraint const& sc);
|
||||
|
||||
bool try_inequality(pvar v, inequality const& i);
|
||||
|
||||
bool try_umul_ovfl(pvar v, signed_constraint c);
|
||||
bool try_umul_ovfl_noovfl(pvar v, signed_constraint c);
|
||||
bool try_umul_noovfl_lo(pvar v, signed_constraint c);
|
||||
bool try_umul_noovfl_bounds(pvar v, signed_constraint c);
|
||||
bool try_umul_ovfl_bounds(pvar v, signed_constraint c);
|
||||
|
||||
bool try_op(pvar v, signed_constraint c);
|
||||
#endif
|
||||
|
||||
public:
|
||||
saturation(core& c);
|
||||
void perform(pvar v);
|
||||
bool perform(pvar v, signed_constraint sc);
|
||||
};
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue