3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 09:35:32 +00:00

Deal with special case that coefficients are multiples directly (Without calculating the symbolic inverse)

This commit is contained in:
Clemens Eisenhofer 2022-11-21 14:36:01 +01:00
parent 7cb87df00c
commit 0341851958
2 changed files with 149 additions and 75 deletions

View file

@ -76,11 +76,11 @@ namespace polysat {
if (m_rest_constants.size() > v && m_rest_constants[v] != -1)
return s.var(m_rest_constants[v]);
get_dyadic_valuation(p);
pdd power = get_dyadic_valuation(p).second;
pvar rest = s.add_var(p.power_of_2());
m_rest_constants.setx(v, rest, -1);
s.add_clause(s.eq(s.var(m_pv_power_constants[v]) * s.var(rest), p), false);
s.add_clause(s.eq(power * s.var(rest), p), false);
return s.var(rest);
}
@ -250,9 +250,26 @@ namespace polysat {
}
void free_variable_elimination::find_lemma(pvar v, signed_constraint c, conflict& core) {
vector<signed_constraint> to_check;
LOG_H3("Free Variable Elimination for v" << v << " using equation " << c);
pdd const& p = c.eq();
SASSERT_EQ(p.degree(v), 1);
auto& m = p.manager();
pdd fac = m.zero();
pdd rest = m.zero();
p.factor(v, 1, fac, rest);
if (rest.is_val())
return;
SASSERT(!fac.free_vars().contains(v));
SASSERT(!rest.free_vars().contains(v));
LOG("fac: " << fac);
LOG("rest: " << rest);
// Find another constraint where we want to substitute v
for (signed_constraint c_target : core) {
if (c == c_target)
continue;
if (c_target.vars().size() <= 1)
@ -264,55 +281,16 @@ namespace polysat {
// For now, just restrict to ule_constraint.
if (!c_target->is_ule()) // TODO: Remove?
continue;
if (c_target->to_ule().lhs().degree(v) > 1 || // TODO: Invert non-linear parts?
if (c_target->to_ule().lhs().degree(v) > 1 || // TODO: Invert non-linear variable?
c_target->to_ule().rhs().degree(v) > 1)
continue;
// TODO: Eliminate without inversion? 2x = y && 2x <= z
signed_constraint p1 = s.ule(m.zero(), m.zero());
signed_constraint p2 = s.ule(m.zero(), m.zero());
to_check.push_back(c_target);
}
if (to_check.empty())
return;
LOG_H3("Free Variable Elimination for v" << v << " using equation " << c);
pdd const& p = c.eq();
SASSERT_EQ(p.degree(v), 1);
auto& m = p.manager();
pdd lc = m.zero();
pdd rest = m.zero();
p.factor(v, 1, lc, rest);
if (rest.is_val())
return;
// lc * v + rest == p == 0
// v == -1 * rest * lc^-1
SASSERT(!lc.free_vars().contains(v));
SASSERT(!rest.free_vars().contains(v));
LOG("lc: " << lc);
LOG("rest: " << rest);
//pdd rs = rest;
if (!lc.is_val() && !lc.is_var())
// TODO: We could introduce a new variable "new_var = lc" and add the valuation for this new variable
return;
pdd coeff_odd = get_odd(lc); // a'
LOG("coeff_odd: " << coeff_odd);
optional<pdd> coeff_odd_inv = get_inverse(coeff_odd); // a'^-1
if (!coeff_odd_inv)
return; // For sure not invertible
LOG("coeff_odd_inv: " << *coeff_odd_inv);
// Find another constraint where we want to substitute v
for (signed_constraint c_target : to_check) {
pdd new_lhs = p.manager().zero();
pdd new_rhs = p.manager().zero();
// Move the variable to eliminate to one side
pdd fac_lhs = m.zero();
pdd fac_rhs = m.zero();
pdd rest_lhs = m.zero();
@ -320,40 +298,71 @@ namespace polysat {
c_target->to_ule().lhs().factor(v, 1, fac_lhs, rest_lhs);
c_target->to_ule().rhs().factor(v, 1, fac_rhs, rest_rhs);
LOG_H3("With constraint " << lit_pp(s, c_target) << ":");
LOG("c_target: " << lit_pp(s, c_target));
LOG("c_target (lhs): " << c_target->to_ule().lhs());
LOG("c_target (rhs): " << c_target->to_ule().rhs());
LOG("fac_lhs: " << fac_lhs);
LOG("rest_lhs: " << rest_lhs);
LOG("fac_rhs: " << fac_rhs);
LOG("rest_rhs: " << rest_rhs);
if (!fac_lhs.is_val() && !fac_lhs.is_var())
return; // TODO: Again, we might bind this to a variable
if (!fac_rhs.is_val() && !fac_rhs.is_var())
return;
// TODO: Maybe only replace one side if the other is not invertible...
pdd pv_equality = p.manager().zero();
pdd lhs_multiple = p.manager().zero();
pdd rhs_multiple = p.manager().zero();
pdd coeff_odd = p.manager().zero();
optional<pdd> fac_odd_inv;
pdd pv_equality = get_dyadic_valuation(lc).first;
pdd pv_lhs = get_dyadic_valuation(fac_lhs).first;
pdd pv_rhs = get_dyadic_valuation(fac_rhs).first;
bool is_multiple1 = is_multiple(fac_lhs, fac, new_lhs);
bool is_multiple2 = is_multiple(fac_rhs, fac, new_rhs);
pdd odd_fac_lhs = get_odd(fac_lhs);
pdd odd_fac_rhs = get_odd(fac_rhs);
pdd power_diff_lhs = s.shl(m.one(), pv_lhs - pv_equality);
pdd power_diff_rhs = s.shl(m.one(), pv_rhs - pv_equality);
if (!is_multiple1 || !is_multiple2) {
if (!fac.is_val() && !fac.is_var())
// TODO: We could introduce a new variable "new_var = lc" and add the valuation for this new variable
continue;
if (!fac_lhs.is_val() && !fac_lhs.is_var())
continue;
if (!fac_rhs.is_val() && !fac_rhs.is_var())
continue;
pv_equality = get_dyadic_valuation(fac).first;
LOG("pv_equality " << pv_equality);
coeff_odd = get_odd(fac); // a'
LOG("coeff_odd: " << coeff_odd);
fac_odd_inv = get_inverse(coeff_odd); // a'^-1
if (!fac_odd_inv)
continue; // factor is for sure not invertible
LOG("coeff_odd_inv: " << *fac_odd_inv);
}
LOG("pv_equality " << pv_equality);
LOG("pv_lhs: " << pv_lhs);
LOG("odd_fac_lhs: " << odd_fac_lhs);
LOG("power_diff_lhs: " << power_diff_lhs);
LOG("pv_rhs: " << pv_rhs);
LOG("odd_fac_rhs: " << odd_fac_rhs);
LOG("power_diff_rhs: " << power_diff_rhs);
if (!is_multiple1) { // Sometimes we can simply unify the two equations
pdd pv_lhs = get_dyadic_valuation(fac_lhs).first;
pdd odd_fac_lhs = get_odd(fac_lhs);
pdd power_diff_lhs = s.shl(m.one(), pv_lhs - pv_equality);
LOG("pv_lhs: " << pv_lhs);
LOG("odd_fac_lhs: " << odd_fac_lhs);
LOG("power_diff_lhs: " << power_diff_lhs);
new_lhs = -rest * *fac_odd_inv * power_diff_lhs * odd_fac_lhs + rest_rhs;
p1 = s.ule(get_dyadic_valuation(fac).first, get_dyadic_valuation(fac_lhs).first);
}
else
new_lhs = -rest * new_lhs + rest_lhs;
if (!is_multiple2) {
pdd pv_rhs = get_dyadic_valuation(fac_rhs).first;
pdd odd_fac_rhs = get_odd(fac_rhs);
pdd power_diff_rhs = s.shl(m.one(), pv_rhs - pv_equality);
LOG("pv_rhs: " << pv_rhs);
LOG("odd_fac_rhs: " << odd_fac_rhs);
LOG("power_diff_rhs: " << power_diff_rhs);
new_rhs = -rest * *fac_odd_inv * power_diff_rhs * odd_fac_rhs + rest_rhs;
p2 = s.ule(get_dyadic_valuation(fac).first, get_dyadic_valuation(fac_rhs).first);
}
else
new_rhs = -rest * new_rhs + rest_rhs;
signed_constraint c_new = s.ule(new_lhs , new_rhs );
signed_constraint c_new = s.ule(
-rest * *coeff_odd_inv * power_diff_lhs * odd_fac_lhs + rest_lhs,
-rest * *coeff_odd_inv * power_diff_rhs * odd_fac_rhs + rest_rhs);
if (c_target.is_negative())
c_new.negate();
LOG("c_new: " << lit_pp(s, c_new));
@ -363,14 +372,17 @@ namespace polysat {
// E.g., if the new clause could derive c_new at a lower decision level.
if (c_new.bvalue(s) == l_true)
continue;
LOG("p1: " << p1);
LOG("p2: " << p2);
clause_builder cb(s);
/*for (auto [w, wv] : a)
cb.push(~s.eq(s.var(w), wv));*/
cb.insert(~c);
cb.insert(~c_target);
cb.insert(~s.ule(get_dyadic_valuation(lc).first, get_dyadic_valuation(fac_lhs).first));
cb.insert(~s.ule(get_dyadic_valuation(lc).first, get_dyadic_valuation(fac_rhs).first));
cb.insert(~p1);
cb.insert(~p2);
cb.insert(c_new);
ref<clause> c = cb.build();
if (c) // Can we get tautologies this way?
@ -410,5 +422,63 @@ namespace polysat {
out_p_inv = p.manager().mk_val(iv);
return true;
}
bool free_variable_elimination::is_multiple(const pdd& p1, const pdd& p2, pdd& out){
LOG("Check if there is an easy way to unify " << p1 << " and " << p2);
if (p1.is_zero()) {
out = p1.manager().zero();
return true;
}
if (p2.is_one()) {
out = p1;
return true;
}
if (!p1.is_monomial() || !p2.is_monomial())
// TODO: Actually, this could work as well. (4a*d + 6b*c*d) is a multiple of (2a + 3b*c) although none of them is a monomial
return false;
dd::pdd_monomial p1m = *p1.begin();
dd::pdd_monomial p2m = *p2.begin();
unsigned tz1 = p1m.coeff.trailing_zeros();
unsigned tz2 = p2m.coeff.trailing_zeros();
if (tz2 > tz1)
return false; // The constant coefficient is not invertible
rational odd = div(p2m.coeff, rational::power_of_two(tz2));
rational inv;
bool succ = odd.mult_inverse(p1.power_of_2() - tz2, inv);
SASSERT(succ); // we divided by the even part so it has to be odd/invertible
inv *= div(p1m.coeff, rational::power_of_two(tz2));
m_occ_cnt.reserve(s.m_vars.size(), (unsigned)0); // TODO: Are there duplicates in the list (e.g., v1 * v1)?)
for (const auto& v1 : p1m.vars) {
if (m_occ_cnt[v1] == 0)
m_occ.push_back(v1);
m_occ_cnt[v1]++;
}
for (const auto& v2 : p2m.vars) {
if (m_occ_cnt[v2] == 0) {
for (const auto& occ : m_occ)
m_occ_cnt[occ] = 0;
m_occ.clear();
return false; // p2 contains more v2 than p1
}
m_occ_cnt[v2]--;
}
out = p1.manager().mk_val(inv);
for (const auto& occ : m_occ) {
for (unsigned i = 0; i < m_occ_cnt[occ]; i++)
out *= s.var(occ);
m_occ_cnt[occ] = 0;
}
m_occ.clear();
LOG("Found multiple: " << out);
return true;
}
}

View file

@ -29,6 +29,9 @@ namespace polysat {
unsigned_vector m_inverse_constants;
unsigned_vector m_rest_constants;
unsigned_vector m_occ;
unsigned_vector m_occ_cnt;
pdd get_hamming_distance(pdd p);
pdd get_odd(pdd p); // add lemma "2^pv(v) * v' = v"
optional<pdd> get_inverse(pdd v); // add lemma "v' * v'^-1 = 1 (where v' is the odd part of v)"
@ -39,9 +42,10 @@ namespace polysat {
void find_lemma(pvar v, signed_constraint c, conflict& core);
pdd eval(pdd const& p, conflict& core, assignment_t& out_assignment);
bool inv(pdd const& p, pdd& out_p_inv);
bool is_multiple(const pdd& p1, const pdd& p2, pdd &out);
public:
free_variable_elimination(solver& s): s(s) {}
void find_lemma(conflict& core);
};
};
}