mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 09:35:32 +00:00
Deal with special case that coefficients are multiples directly (Without calculating the symbolic inverse)
This commit is contained in:
parent
7cb87df00c
commit
0341851958
2 changed files with 149 additions and 75 deletions
|
@ -76,11 +76,11 @@ namespace polysat {
|
|||
if (m_rest_constants.size() > v && m_rest_constants[v] != -1)
|
||||
return s.var(m_rest_constants[v]);
|
||||
|
||||
get_dyadic_valuation(p);
|
||||
pdd power = get_dyadic_valuation(p).second;
|
||||
|
||||
pvar rest = s.add_var(p.power_of_2());
|
||||
m_rest_constants.setx(v, rest, -1);
|
||||
s.add_clause(s.eq(s.var(m_pv_power_constants[v]) * s.var(rest), p), false);
|
||||
s.add_clause(s.eq(power * s.var(rest), p), false);
|
||||
return s.var(rest);
|
||||
}
|
||||
|
||||
|
@ -250,9 +250,26 @@ namespace polysat {
|
|||
}
|
||||
|
||||
void free_variable_elimination::find_lemma(pvar v, signed_constraint c, conflict& core) {
|
||||
vector<signed_constraint> to_check;
|
||||
|
||||
LOG_H3("Free Variable Elimination for v" << v << " using equation " << c);
|
||||
pdd const& p = c.eq();
|
||||
SASSERT_EQ(p.degree(v), 1);
|
||||
auto& m = p.manager();
|
||||
pdd fac = m.zero();
|
||||
pdd rest = m.zero();
|
||||
p.factor(v, 1, fac, rest);
|
||||
if (rest.is_val())
|
||||
return;
|
||||
|
||||
SASSERT(!fac.free_vars().contains(v));
|
||||
SASSERT(!rest.free_vars().contains(v));
|
||||
|
||||
LOG("fac: " << fac);
|
||||
LOG("rest: " << rest);
|
||||
|
||||
// Find another constraint where we want to substitute v
|
||||
for (signed_constraint c_target : core) {
|
||||
|
||||
if (c == c_target)
|
||||
continue;
|
||||
if (c_target.vars().size() <= 1)
|
||||
|
@ -264,55 +281,16 @@ namespace polysat {
|
|||
// For now, just restrict to ule_constraint.
|
||||
if (!c_target->is_ule()) // TODO: Remove?
|
||||
continue;
|
||||
if (c_target->to_ule().lhs().degree(v) > 1 || // TODO: Invert non-linear parts?
|
||||
if (c_target->to_ule().lhs().degree(v) > 1 || // TODO: Invert non-linear variable?
|
||||
c_target->to_ule().rhs().degree(v) > 1)
|
||||
continue;
|
||||
|
||||
// TODO: Eliminate without inversion? 2x = y && 2x <= z
|
||||
signed_constraint p1 = s.ule(m.zero(), m.zero());
|
||||
signed_constraint p2 = s.ule(m.zero(), m.zero());
|
||||
|
||||
to_check.push_back(c_target);
|
||||
}
|
||||
if (to_check.empty())
|
||||
return;
|
||||
|
||||
LOG_H3("Free Variable Elimination for v" << v << " using equation " << c);
|
||||
pdd const& p = c.eq();
|
||||
SASSERT_EQ(p.degree(v), 1);
|
||||
auto& m = p.manager();
|
||||
pdd lc = m.zero();
|
||||
pdd rest = m.zero();
|
||||
p.factor(v, 1, lc, rest);
|
||||
if (rest.is_val())
|
||||
return;
|
||||
// lc * v + rest == p == 0
|
||||
// v == -1 * rest * lc^-1
|
||||
|
||||
SASSERT(!lc.free_vars().contains(v));
|
||||
SASSERT(!rest.free_vars().contains(v));
|
||||
|
||||
LOG("lc: " << lc);
|
||||
LOG("rest: " << rest);
|
||||
|
||||
//pdd rs = rest;
|
||||
|
||||
if (!lc.is_val() && !lc.is_var())
|
||||
// TODO: We could introduce a new variable "new_var = lc" and add the valuation for this new variable
|
||||
return;
|
||||
|
||||
pdd coeff_odd = get_odd(lc); // a'
|
||||
|
||||
LOG("coeff_odd: " << coeff_odd);
|
||||
|
||||
optional<pdd> coeff_odd_inv = get_inverse(coeff_odd); // a'^-1
|
||||
if (!coeff_odd_inv)
|
||||
return; // For sure not invertible
|
||||
|
||||
LOG("coeff_odd_inv: " << *coeff_odd_inv);
|
||||
|
||||
// Find another constraint where we want to substitute v
|
||||
for (signed_constraint c_target : to_check) {
|
||||
pdd new_lhs = p.manager().zero();
|
||||
pdd new_rhs = p.manager().zero();
|
||||
|
||||
// Move the variable to eliminate to one side
|
||||
pdd fac_lhs = m.zero();
|
||||
pdd fac_rhs = m.zero();
|
||||
pdd rest_lhs = m.zero();
|
||||
|
@ -320,40 +298,71 @@ namespace polysat {
|
|||
c_target->to_ule().lhs().factor(v, 1, fac_lhs, rest_lhs);
|
||||
c_target->to_ule().rhs().factor(v, 1, fac_rhs, rest_rhs);
|
||||
|
||||
LOG_H3("With constraint " << lit_pp(s, c_target) << ":");
|
||||
LOG("c_target: " << lit_pp(s, c_target));
|
||||
LOG("c_target (lhs): " << c_target->to_ule().lhs());
|
||||
LOG("c_target (rhs): " << c_target->to_ule().rhs());
|
||||
LOG("fac_lhs: " << fac_lhs);
|
||||
LOG("rest_lhs: " << rest_lhs);
|
||||
LOG("fac_rhs: " << fac_rhs);
|
||||
LOG("rest_rhs: " << rest_rhs);
|
||||
|
||||
if (!fac_lhs.is_val() && !fac_lhs.is_var())
|
||||
return; // TODO: Again, we might bind this to a variable
|
||||
if (!fac_rhs.is_val() && !fac_rhs.is_var())
|
||||
return;
|
||||
// TODO: Maybe only replace one side if the other is not invertible...
|
||||
pdd pv_equality = p.manager().zero();
|
||||
pdd lhs_multiple = p.manager().zero();
|
||||
pdd rhs_multiple = p.manager().zero();
|
||||
pdd coeff_odd = p.manager().zero();
|
||||
optional<pdd> fac_odd_inv;
|
||||
|
||||
pdd pv_equality = get_dyadic_valuation(lc).first;
|
||||
pdd pv_lhs = get_dyadic_valuation(fac_lhs).first;
|
||||
pdd pv_rhs = get_dyadic_valuation(fac_rhs).first;
|
||||
bool is_multiple1 = is_multiple(fac_lhs, fac, new_lhs);
|
||||
bool is_multiple2 = is_multiple(fac_rhs, fac, new_rhs);
|
||||
|
||||
pdd odd_fac_lhs = get_odd(fac_lhs);
|
||||
pdd odd_fac_rhs = get_odd(fac_rhs);
|
||||
pdd power_diff_lhs = s.shl(m.one(), pv_lhs - pv_equality);
|
||||
pdd power_diff_rhs = s.shl(m.one(), pv_rhs - pv_equality);
|
||||
if (!is_multiple1 || !is_multiple2) {
|
||||
if (!fac.is_val() && !fac.is_var())
|
||||
// TODO: We could introduce a new variable "new_var = lc" and add the valuation for this new variable
|
||||
continue;
|
||||
if (!fac_lhs.is_val() && !fac_lhs.is_var())
|
||||
continue;
|
||||
if (!fac_rhs.is_val() && !fac_rhs.is_var())
|
||||
continue;
|
||||
|
||||
pv_equality = get_dyadic_valuation(fac).first;
|
||||
LOG("pv_equality " << pv_equality);
|
||||
coeff_odd = get_odd(fac); // a'
|
||||
LOG("coeff_odd: " << coeff_odd);
|
||||
fac_odd_inv = get_inverse(coeff_odd); // a'^-1
|
||||
if (!fac_odd_inv)
|
||||
continue; // factor is for sure not invertible
|
||||
LOG("coeff_odd_inv: " << *fac_odd_inv);
|
||||
}
|
||||
|
||||
LOG("pv_equality " << pv_equality);
|
||||
LOG("pv_lhs: " << pv_lhs);
|
||||
LOG("odd_fac_lhs: " << odd_fac_lhs);
|
||||
LOG("power_diff_lhs: " << power_diff_lhs);
|
||||
LOG("pv_rhs: " << pv_rhs);
|
||||
LOG("odd_fac_rhs: " << odd_fac_rhs);
|
||||
LOG("power_diff_rhs: " << power_diff_rhs);
|
||||
if (!is_multiple1) { // Sometimes we can simply unify the two equations
|
||||
pdd pv_lhs = get_dyadic_valuation(fac_lhs).first;
|
||||
pdd odd_fac_lhs = get_odd(fac_lhs);
|
||||
pdd power_diff_lhs = s.shl(m.one(), pv_lhs - pv_equality);
|
||||
|
||||
LOG("pv_lhs: " << pv_lhs);
|
||||
LOG("odd_fac_lhs: " << odd_fac_lhs);
|
||||
LOG("power_diff_lhs: " << power_diff_lhs);
|
||||
new_lhs = -rest * *fac_odd_inv * power_diff_lhs * odd_fac_lhs + rest_rhs;
|
||||
p1 = s.ule(get_dyadic_valuation(fac).first, get_dyadic_valuation(fac_lhs).first);
|
||||
}
|
||||
else
|
||||
new_lhs = -rest * new_lhs + rest_lhs;
|
||||
|
||||
if (!is_multiple2) {
|
||||
pdd pv_rhs = get_dyadic_valuation(fac_rhs).first;
|
||||
pdd odd_fac_rhs = get_odd(fac_rhs);
|
||||
pdd power_diff_rhs = s.shl(m.one(), pv_rhs - pv_equality);
|
||||
|
||||
LOG("pv_rhs: " << pv_rhs);
|
||||
LOG("odd_fac_rhs: " << odd_fac_rhs);
|
||||
LOG("power_diff_rhs: " << power_diff_rhs);
|
||||
new_rhs = -rest * *fac_odd_inv * power_diff_rhs * odd_fac_rhs + rest_rhs;
|
||||
p2 = s.ule(get_dyadic_valuation(fac).first, get_dyadic_valuation(fac_rhs).first);
|
||||
}
|
||||
else
|
||||
new_rhs = -rest * new_rhs + rest_rhs;
|
||||
|
||||
signed_constraint c_new = s.ule(new_lhs , new_rhs );
|
||||
|
||||
signed_constraint c_new = s.ule(
|
||||
-rest * *coeff_odd_inv * power_diff_lhs * odd_fac_lhs + rest_lhs,
|
||||
-rest * *coeff_odd_inv * power_diff_rhs * odd_fac_rhs + rest_rhs);
|
||||
if (c_target.is_negative())
|
||||
c_new.negate();
|
||||
LOG("c_new: " << lit_pp(s, c_new));
|
||||
|
@ -363,14 +372,17 @@ namespace polysat {
|
|||
// E.g., if the new clause could derive c_new at a lower decision level.
|
||||
if (c_new.bvalue(s) == l_true)
|
||||
continue;
|
||||
|
||||
|
||||
LOG("p1: " << p1);
|
||||
LOG("p2: " << p2);
|
||||
|
||||
clause_builder cb(s);
|
||||
/*for (auto [w, wv] : a)
|
||||
cb.push(~s.eq(s.var(w), wv));*/
|
||||
cb.insert(~c);
|
||||
cb.insert(~c_target);
|
||||
cb.insert(~s.ule(get_dyadic_valuation(lc).first, get_dyadic_valuation(fac_lhs).first));
|
||||
cb.insert(~s.ule(get_dyadic_valuation(lc).first, get_dyadic_valuation(fac_rhs).first));
|
||||
cb.insert(~p1);
|
||||
cb.insert(~p2);
|
||||
cb.insert(c_new);
|
||||
ref<clause> c = cb.build();
|
||||
if (c) // Can we get tautologies this way?
|
||||
|
@ -410,5 +422,63 @@ namespace polysat {
|
|||
out_p_inv = p.manager().mk_val(iv);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool free_variable_elimination::is_multiple(const pdd& p1, const pdd& p2, pdd& out){
|
||||
LOG("Check if there is an easy way to unify " << p1 << " and " << p2);
|
||||
if (p1.is_zero()) {
|
||||
out = p1.manager().zero();
|
||||
return true;
|
||||
}
|
||||
if (p2.is_one()) {
|
||||
out = p1;
|
||||
return true;
|
||||
}
|
||||
if (!p1.is_monomial() || !p2.is_monomial())
|
||||
// TODO: Actually, this could work as well. (4a*d + 6b*c*d) is a multiple of (2a + 3b*c) although none of them is a monomial
|
||||
return false;
|
||||
|
||||
dd::pdd_monomial p1m = *p1.begin();
|
||||
dd::pdd_monomial p2m = *p2.begin();
|
||||
|
||||
unsigned tz1 = p1m.coeff.trailing_zeros();
|
||||
unsigned tz2 = p2m.coeff.trailing_zeros();
|
||||
|
||||
if (tz2 > tz1)
|
||||
return false; // The constant coefficient is not invertible
|
||||
|
||||
rational odd = div(p2m.coeff, rational::power_of_two(tz2));
|
||||
rational inv;
|
||||
bool succ = odd.mult_inverse(p1.power_of_2() - tz2, inv);
|
||||
SASSERT(succ); // we divided by the even part so it has to be odd/invertible
|
||||
inv *= div(p1m.coeff, rational::power_of_two(tz2));
|
||||
|
||||
m_occ_cnt.reserve(s.m_vars.size(), (unsigned)0); // TODO: Are there duplicates in the list (e.g., v1 * v1)?)
|
||||
|
||||
for (const auto& v1 : p1m.vars) {
|
||||
if (m_occ_cnt[v1] == 0)
|
||||
m_occ.push_back(v1);
|
||||
m_occ_cnt[v1]++;
|
||||
}
|
||||
for (const auto& v2 : p2m.vars) {
|
||||
if (m_occ_cnt[v2] == 0) {
|
||||
for (const auto& occ : m_occ)
|
||||
m_occ_cnt[occ] = 0;
|
||||
m_occ.clear();
|
||||
return false; // p2 contains more v2 than p1
|
||||
}
|
||||
m_occ_cnt[v2]--;
|
||||
}
|
||||
|
||||
out = p1.manager().mk_val(inv);
|
||||
for (const auto& occ : m_occ) {
|
||||
for (unsigned i = 0; i < m_occ_cnt[occ]; i++)
|
||||
out *= s.var(occ);
|
||||
m_occ_cnt[occ] = 0;
|
||||
}
|
||||
m_occ.clear();
|
||||
LOG("Found multiple: " << out);
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -29,6 +29,9 @@ namespace polysat {
|
|||
unsigned_vector m_inverse_constants;
|
||||
unsigned_vector m_rest_constants;
|
||||
|
||||
unsigned_vector m_occ;
|
||||
unsigned_vector m_occ_cnt;
|
||||
|
||||
pdd get_hamming_distance(pdd p);
|
||||
pdd get_odd(pdd p); // add lemma "2^pv(v) * v' = v"
|
||||
optional<pdd> get_inverse(pdd v); // add lemma "v' * v'^-1 = 1 (where v' is the odd part of v)"
|
||||
|
@ -39,9 +42,10 @@ namespace polysat {
|
|||
void find_lemma(pvar v, signed_constraint c, conflict& core);
|
||||
pdd eval(pdd const& p, conflict& core, assignment_t& out_assignment);
|
||||
bool inv(pdd const& p, pdd& out_p_inv);
|
||||
bool is_multiple(const pdd& p1, const pdd& p2, pdd &out);
|
||||
public:
|
||||
free_variable_elimination(solver& s): s(s) {}
|
||||
void find_lemma(conflict& core);
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue