3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 02:45:51 +00:00

Simplified asserted_formulas. From now on, we should use tactics for qe, der, solve, etc.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2012-11-22 16:20:02 -08:00
parent 4237ac0dbf
commit 026c81ba29
15 changed files with 20 additions and 975 deletions

View file

@ -19,13 +19,10 @@ Revision History:
#include"asserted_formulas.h"
#include"ast_ll_pp.h"
#include"ast_pp.h"
#include"ast_smt2_pp.h"
#include"arith_simplifier_plugin.h"
#include"array_simplifier_plugin.h"
#include"datatype_simplifier_plugin.h"
#include"bv_simplifier_plugin.h"
#include"arith_solver_plugin.h"
#include"occurs.h"
#include"for_each_expr.h"
#include"well_sorted.h"
#include"pull_ite_tree.h"
@ -34,7 +31,6 @@ Revision History:
#include"pattern_inference.h"
#include"nnf.h"
#include"cnf.h"
#include"expr_context_simplifier.h"
#include"bv_elim.h"
#include"inj_axiom.h"
#include"der.h"
@ -54,8 +50,6 @@ asserted_formulas::asserted_formulas(ast_manager & m, front_end_params & p):
m_asserted_formulas(m),
m_asserted_formula_prs(m),
m_asserted_qhead(0),
m_subst(m),
m_vars_qhead(0),
m_macro_manager(m, m_simplifier),
m_bit2int(m),
m_bv_sharing(m),
@ -68,7 +62,6 @@ asserted_formulas::asserted_formulas(ast_manager & m, front_end_params & p):
setup_simplifier_plugins(m_simplifier, m_bsimp, arith_simp, m_bvsimp);
SASSERT(m_bsimp != 0);
SASSERT(arith_simp != 0);
m_simplifier.set_subst_map(&m_subst);
m_macro_finder = alloc(macro_finder, m_manager, m_macro_manager);
basic_simplifier_plugin * basic_simp = 0;
@ -171,7 +164,7 @@ void asserted_formulas::assert_expr(expr * e, proof * _in_pr) {
expr_ref r2(m_manager);
proof_ref pr2(m_manager);
TRACE("assert_expr_before_simp", tout << mk_ll_pp(e, m_manager) << "\n";);
TRACE("assert_expr_bug", tout << mk_ismt2_pp(e, m_manager) << "\n";);
TRACE("assert_expr_bug", tout << mk_pp(e, m_manager) << "\n";);
if (m_params.m_pre_simplifier) {
m_pre_simplifier(e, r1, pr1);
}
@ -181,7 +174,7 @@ void asserted_formulas::assert_expr(expr * e, proof * _in_pr) {
}
set_eliminate_and(false); // do not eliminate and before nnf.
m_simplifier(r1, r2, pr2);
TRACE("assert_expr_bug", tout << "after...\n" << mk_ismt2_pp(r1, m_manager) << "\n";);
TRACE("assert_expr_bug", tout << "after...\n" << mk_pp(r1, m_manager) << "\n";);
if (m_manager.proofs_enabled()) {
if (e == r2)
pr2 = in_pr;
@ -211,8 +204,6 @@ void asserted_formulas::push_scope() {
scope & s = m_scopes.back();
s.m_asserted_formulas_lim = m_asserted_formulas.size();
SASSERT(inconsistent() || s.m_asserted_formulas_lim == m_asserted_qhead);
s.m_vars_lim = m_vars.size();
s.m_forbidden_vars_lim = m_forbidden_vars.size();
s.m_inconsistent_old = m_inconsistent;
m_defined_names.push_scope();
m_bv_sharing.push_scope();
@ -226,54 +217,21 @@ void asserted_formulas::pop_scope(unsigned num_scopes) {
unsigned new_lvl = m_scopes.size() - num_scopes;
scope & s = m_scopes[new_lvl];
m_inconsistent = s.m_inconsistent_old;
restore_subst(s.m_vars_lim);
restore_forbidden_vars(s.m_forbidden_vars_lim);
m_defined_names.pop_scope(num_scopes);
m_asserted_formulas.shrink(s.m_asserted_formulas_lim);
if (m_manager.proofs_enabled())
m_asserted_formula_prs.shrink(s.m_asserted_formulas_lim);
m_asserted_qhead = s.m_asserted_formulas_lim;
m_vars_qhead = m_vars.size();
m_scopes.shrink(new_lvl);
flush_cache();
TRACE("asserted_formulas_scopes", tout << "after pop " << num_scopes << "\n"; display(tout););
}
void asserted_formulas::restore_subst(unsigned old_size) {
unsigned sz = m_vars.size();
SASSERT(sz >= old_size);
TRACE("asserted_formulas_bug", tout << "restore_subst, old_size: " << old_size << ", curr_size: " << sz << "\n";);
for (unsigned i = old_size; i < sz; i++) {
SASSERT(is_app(m_vars[i]));
TRACE("asserted_formulas_bug", tout << "removing subst: " << mk_pp(m_vars[i], m_manager) << "\n";);
m_subst.erase(m_vars[i]);
SASSERT(!m_subst.contains(m_vars[i]));
}
if (old_size != sz)
flush_cache();
m_vars.shrink(old_size);
}
void asserted_formulas::restore_forbidden_vars(unsigned old_size) {
unsigned sz = m_forbidden_vars.size();
SASSERT(sz >= old_size);
for (unsigned i = old_size; i < sz; i++) {
TRACE("solver_bug", tout << "unmarking: " << m_forbidden_vars[i]->get_decl()->get_name() << "\n";);
m_forbidden.mark(m_forbidden_vars[i], false);
}
m_forbidden_vars.shrink(old_size);
}
void asserted_formulas::reset() {
m_defined_names.reset();
m_asserted_qhead = 0;
m_asserted_formulas.reset();
m_asserted_formula_prs.reset();
m_subst.reset();
m_vars.reset();
m_vars_qhead = 0;
m_forbidden.reset();
m_forbidden_vars.reset();
m_macro_manager.reset();
m_bv_sharing.reset();
m_inconsistent = false;
@ -315,33 +273,22 @@ void asserted_formulas::reduce() {
INVOKE(m_params.m_propagate_booleans, propagate_booleans());
INVOKE(m_params.m_propagate_values, propagate_values());
INVOKE(m_params.m_macro_finder && has_quantifiers(), find_macros());
INVOKE((m_params.m_quant_elim && has_quantifiers()), quant_elim());
INVOKE(m_params.m_nnf_cnf, nnf_cnf());
INVOKE(m_params.m_context_simplifier, context_simplifier());
INVOKE(m_params.m_strong_context_simplifier, strong_context_simplifier());
INVOKE(m_params.m_eliminate_and, eliminate_and());
INVOKE(m_params.m_pull_cheap_ite_trees, pull_cheap_ite_trees());
INVOKE(m_params.m_pull_nested_quantifiers && has_quantifiers(), pull_nested_quantifiers());
INVOKE(m_params.m_ng_lift_ite != LI_NONE, ng_lift_ite());
INVOKE(m_params.m_lift_ite != LI_NONE, lift_ite());
INVOKE(m_params.m_solver, solve());
INVOKE(m_params.m_eliminate_term_ite && m_params.m_lift_ite != LI_FULL, eliminate_term_ite());
INVOKE(m_params.m_refine_inj_axiom && has_quantifiers(), refine_inj_axiom());
TRACE("der_bug", tout << "before DER:\n"; display(tout););
INVOKE(m_params.m_der && has_quantifiers(), apply_der());
TRACE("der_bug", tout << "after DER:\n"; display(tout););
INVOKE(m_params.m_distribute_forall && has_quantifiers(), apply_distribute_forall());
TRACE("qbv_bug", tout << "after distribute_forall:\n"; display(tout););
INVOKE(m_params.m_macro_finder && has_quantifiers(), find_macros());
TRACE("qbv_bug", tout << "before demod:\n"; display(tout););
INVOKE(m_params.m_pre_demod && has_quantifiers(), apply_demodulators());
TRACE("qbv_bug", tout << "after demod:\n"; display(tout););
INVOKE(m_params.m_quasi_macros && has_quantifiers(), apply_quasi_macros());
INVOKE(m_params.m_simplify_bit2int, apply_bit2int());
INVOKE(m_params.m_eliminate_bounds && has_quantifiers(), cheap_quant_fourier_motzkin());
INVOKE(m_params.m_max_bv_sharing && has_bv(), max_bv_sharing());
INVOKE(m_params.m_bb_quantifiers, elim_bvs_from_quantifiers());
INVOKE(m_params.m_bb_quantifiers && m_params.m_der && has_quantifiers(), apply_der()); // bit-vector elimination + bit-blasting creates new opportunities for der.
// temporary HACK: make sure that arith & bv are list-assoc
// this may destroy some simplification steps such as max_bv_sharing
reduce_asserted_formulas();
@ -362,46 +309,6 @@ void asserted_formulas::eliminate_and() {
TRACE("after_elim_and", display(tout););
}
bool asserted_formulas::trivial_solve(expr * lhs, expr * rhs, app_ref & var, expr_ref & subst, proof_ref& pr) {
if (is_uninterp_const(lhs) && !m_forbidden.is_marked(lhs)) {
var = to_app(lhs);
subst = rhs;
if (m_manager.proofs_enabled()) {
app* n = m_manager.mk_eq(lhs,rhs);
pr = m_manager.mk_reflexivity(m_manager.mk_iff(n,n));
}
TRACE("solve_bug",
tout << "trivial solve " <<
mk_pp(var, m_manager) << " |-> " <<
mk_pp(subst, m_manager) << "\n";);
return true;
}
else if (is_uninterp_const(rhs) && !m_forbidden.is_marked(rhs)) {
var = to_app(rhs);
subst = lhs;
if (m_manager.proofs_enabled()) {
app* m = m_manager.mk_eq(lhs,rhs);
pr = m_manager.mk_commutativity(m);
}
TRACE("solve_bug",
tout << "trivial solve " <<
mk_pp(var, m_manager) << " |-> " <<
mk_pp(subst, m_manager) << "\n";);
return true;
}
return false;
}
bool asserted_formulas::is_pos_literal(expr * n) {
return is_app(n) && to_app(n)->get_num_args() == 0 && to_app(n)->get_family_id() == null_family_id;
}
bool asserted_formulas::is_neg_literal(expr * n) {
if (m_manager.is_not(n))
return is_pos_literal(to_app(n)->get_arg(0));
return false;
}
unsigned asserted_formulas::get_formulas_last_level() const {
if (m_scopes.empty()) {
return 0;
@ -411,121 +318,6 @@ unsigned asserted_formulas::get_formulas_last_level() const {
}
}
/**
\brief (ite x (= c1 y) (= c2 y)) where y is a constant. -> (= y (ite x c1 c2))
*/
bool asserted_formulas::solve_ite_definition_core(expr * lhs1, expr * rhs1, expr * lhs2, expr * rhs2, expr * cond, app_ref & var, expr_ref & subst) {
if (rhs1 == rhs2 && is_uninterp_const(rhs1) && !occurs(rhs1, cond) && !occurs(rhs1, lhs1) && !occurs(rhs1, lhs2)) {
var = to_app(rhs1);
m_bsimp->mk_ite(cond, lhs1, lhs2, subst);
return true;
}
return false;
}
bool asserted_formulas::solve_ite_definition(expr * arg1, expr * arg2, expr * arg3, app_ref & var, expr_ref & subst) {
if (!m_manager.is_eq(arg2) || !m_manager.is_eq(arg3))
return false;
app * app2 = to_app(arg2);
app * app3 = to_app(arg3);
expr * lhs1 = app2->get_arg(0);
expr * rhs1 = app2->get_arg(1);
expr * lhs2 = app3->get_arg(0);
expr * rhs2 = app3->get_arg(1);
if (solve_ite_definition_core(lhs1, rhs1, lhs2, rhs2, arg1, var, subst))
return true;
if (solve_ite_definition_core(rhs1, lhs1, lhs2, rhs2, arg1, var, subst))
return true;
if (solve_ite_definition_core(lhs1, rhs1, rhs2, lhs2, arg1, var, subst))
return true;
if (solve_ite_definition_core(rhs1, lhs1, rhs2, lhs2, arg1, var, subst))
return true;
return false;
}
bool asserted_formulas::solve_core(expr * n, app_ref & var, expr_ref & subst, proof_ref& pr) {
if (m_manager.is_eq(n)) {
// equality case
app * eq = to_app(n);
expr * lhs = eq->get_arg(0);
expr * rhs = eq->get_arg(1);
TRACE("solve_bug", tout << mk_bounded_pp(n, m_manager) << "\n" << mk_bounded_pp(lhs, m_manager) << "\n" << mk_bounded_pp(rhs, m_manager) << "\n";);
if (trivial_solve(lhs, rhs, var, subst, pr)) {
return true;
}
else {
sort * s = m_manager.get_sort(lhs);
family_id fid = s->get_family_id();
solver_plugin * p = m_solver_plugins.get_plugin(fid);
if (p != 0 && p->solve(lhs, rhs, m_forbidden, var, subst)) {
if (m_manager.proofs_enabled()) {
app* new_eq = m_manager.mk_eq(var,subst);
pr = m_manager.mk_th_lemma(p->get_family_id(), m_manager.mk_iff(n,new_eq),0,0);
}
TRACE("solve_bug", tout << "theory solve\n";);
return true;
}
}
return false;
}
else if (m_manager.is_iff(n)) {
// <=> case
app * iff = to_app(n);
expr * lhs = iff->get_arg(0);
expr * rhs = iff->get_arg(1);
if (trivial_solve(lhs, rhs, var, subst, pr)) {
return true;
}
return false;
}
else {
if (m_manager.is_ite(n)) {
//
// (ite x (= c1 y) (= c2 y)) where y is a constant. -> (= y (ite x c1 c2))
//
app * ite = to_app(n);
if (solve_ite_definition(ite->get_arg(0), ite->get_arg(1), ite->get_arg(2), var, subst)) {
if (m_manager.proofs_enabled()) {
pr = m_manager.mk_rewrite(n, m_manager.mk_eq(var, subst));
}
return true;
}
}
// check if literal
expr * lit = n;
if (is_pos_literal(lit)) {
var = to_app(lit);
subst = m_manager.mk_true();
if (m_manager.proofs_enabled()) {
// [rewrite]: (iff (iff l true) l)
// [symmetry T1]: (iff l (iff l true))
pr = m_manager.mk_rewrite(m_manager.mk_eq(var, subst), n);
pr = m_manager.mk_symmetry(pr);
}
return true;
}
else if (is_neg_literal(lit)) {
var = to_app(to_app(lit)->get_arg(0));
subst = m_manager.mk_false();
if (m_manager.proofs_enabled()) {
// [rewrite]: (iff (iff l false) ~l)
// [symmetry T1]: (iff ~l (iff l false))
pr = m_manager.mk_rewrite(m_manager.mk_eq(var, subst), n);
pr = m_manager.mk_symmetry(pr);
}
return true;
}
}
return false;
}
void asserted_formulas::collect_static_features() {
if (m_params.m_display_features) {
unsigned sz = m_asserted_formulas.size();
@ -545,7 +337,7 @@ void asserted_formulas::display(std::ostream & out) const {
for (unsigned i = 0; i < m_asserted_formulas.size(); i++) {
if (i == m_asserted_qhead)
out << "[HEAD] ==>\n";
out << mk_ismt2_pp(m_asserted_formulas.get(i), m_manager) << "\n";
out << mk_pp(m_asserted_formulas.get(i), m_manager) << "\n";
}
out << "inconsistent: " << inconsistent() << "\n";
}
@ -563,316 +355,6 @@ void asserted_formulas::display_ll(std::ostream & out, ast_mark & pp_visited) co
}
void asserted_formulas::collect_statistics(statistics & st) const {
// m_quant_elim.collect_statistics(st);
}
/**
\brief Functor used to order solved equations x = t, in a way they can be solved
efficiently.
*/
class top_sort {
enum color { White, Grey, Black };
ast_manager & m_manager;
family_id m_bfid;
expr_map * m_candidate_map; // Set of candidate substitutions var -> ast
obj_map<app, unsigned> m_var2idx; // var -> index in vars;
ptr_vector<app> * m_ordered_vars; // Result1: set of variables ordered for applying substitution efficiently.
unsigned_vector * m_failed_idxs; // Result2: indices of substitutions that cannot be applied.
svector<color> m_colors;
ptr_vector<expr> m_todo;
expr * get_candidate_def(expr * n) const {
if (is_app(n) && to_app(n)->get_num_args() == 0 && m_candidate_map->contains(n)) {
expr * d = 0;
proof * p = 0;
m_candidate_map->get(n, d, p);
SASSERT(d);
return d;
}
return 0;
}
bool is_candidate(expr * n) const {
return get_candidate_def(n) != 0;
}
void remove_candidate(app * n) {
TRACE("solve", tout << "removing candidate #" << n->get_id() << " " << mk_bounded_pp(n, m_manager) << "\n";);
unsigned idx = UINT_MAX;
m_var2idx.find(n, idx);
SASSERT(idx != UINT_MAX);
m_candidate_map->erase(n);
m_failed_idxs->push_back(idx);
}
color get_color(expr * n) const {
return m_colors.get(n->get_id(), White);
}
void set_color(expr * n, color c) {
unsigned id = n->get_id();
m_colors.reserve(id+1, White);
m_colors[id] = c;
if (c == Black && is_candidate(n))
m_ordered_vars->push_back(to_app(n));
}
void main_loop(app * n) {
m_todo.push_back(n);
expr * def;
while (!m_todo.empty()) {
expr * n = m_todo.back();
switch (get_color(n)) {
case Black:
m_todo.pop_back();
break;
case White:
set_color(n, Grey);
if (visit_children(n)) {
set_color(n, Black);
}
break;
case Grey:
if (all_black_children(n)) {
set_color(n, Black);
}
else {
def = get_candidate_def(n);
if (def) {
// Break loop
remove_candidate(to_app(n));
set_color(n, Black);
}
// there is another occurrence of n on the stack
SASSERT(std::find(m_todo.begin(), m_todo.end() - 1, n) != m_todo.end());
}
m_todo.pop_back();
}
}
}
void visit(expr * n, bool & visited) {
if (get_color(n) != Black) {
m_todo.push_back(n);
visited = false;
}
}
bool visit_children(expr * n) {
bool visited = true;
unsigned j;
expr * def;
switch (n->get_kind()) {
case AST_VAR:
break;
case AST_APP:
j = to_app(n)->get_num_args();
if (j == 0) {
def = get_candidate_def(n);
if (def)
visit(def, visited);
}
else {
while (j > 0) {
--j;
visit(to_app(n)->get_arg(j), visited);
}
}
break;
case AST_QUANTIFIER:
visit(to_quantifier(n)->get_expr(), visited);
break;
default:
UNREACHABLE();
}
return visited;
}
bool is_black(expr * n) const {
return get_color(n) == Black;
}
bool all_black_children(expr * n) const {
expr * def;
unsigned j;
switch (n->get_kind()) {
case AST_VAR:
return true;
case AST_APP:
j = to_app(n)->get_num_args();
if (j == 0) {
def = get_candidate_def(n);
if (def)
return is_black(def);
return true;
}
else {
while (j > 0) {
--j;
if (!is_black(to_app(n)->get_arg(j))) {
return false;
}
}
}
return true;
case AST_QUANTIFIER:
return is_black(to_quantifier(n)->get_expr());
default:
UNREACHABLE();
return true;
}
}
public:
top_sort(ast_manager & m):m_manager(m), m_bfid(m.get_basic_family_id()) {}
void operator()(ptr_vector<app> const & vars,
expr_map & candidates,
ptr_vector<app> & ordered_vars,
unsigned_vector & failed_idxs) {
m_var2idx.reset();
ptr_vector<app>::const_iterator it = vars.begin();
ptr_vector<app>::const_iterator end = vars.end();
for (unsigned idx = 0; it != end; ++it, ++idx)
m_var2idx.insert(*it, idx);
m_candidate_map = &candidates;
m_ordered_vars = &ordered_vars;
m_failed_idxs = &failed_idxs;
m_colors.reset();
it = vars.begin();
end = vars.end();
for (; it != end; ++it) {
TRACE("top_sort", tout << "processing: " << (*it)->get_decl()->get_name() << "\n";);
main_loop(*it);
}
}
};
void asserted_formulas::get_ordered_subst_vars(ptr_vector<app> & ordered_vars) {
top_sort sort(m_manager);
unsigned_vector failed_idxs;
sort(m_vars, m_subst, ordered_vars, failed_idxs);
SASSERT(failed_idxs.empty());
}
bool asserted_formulas::solve_core() {
flush_cache();
expr_map tmp_subst(m_manager);
ptr_vector<app> tmp_vars; // domain of m_tmp_subst
expr_ref_vector candidates(m_manager);
proof_ref_vector candidate_prs(m_manager);
IF_IVERBOSE(10, verbose_stream() << "solving...\n";);
bool has_subst = false;
app_ref var(m_manager);
expr_ref subst(m_manager);
proof_ref pr1(m_manager);
unsigned i = m_asserted_qhead;
unsigned j = i;
unsigned sz = m_asserted_formulas.size();
for (; i < sz; i++) {
expr * n = m_asserted_formulas.get(i);
proof * pr = m_asserted_formula_prs.get(i, 0);
TRACE("solve", tout << "processing... #" << n->get_id() << "\n";);
TRACE("solve", tout << mk_bounded_pp(n, m_manager, 3) << "\n";
if (pr) tout << mk_bounded_pp(pr, m_manager, 3) << "\n";);
if (solve_core(n, var, subst, pr1) && !m_forbidden.is_marked(var)) {
if (m_manager.proofs_enabled()) {
// TODO: refine potentially useless rewrite step
if (m_manager.is_eq(n) && to_app(n)->get_arg(0) == var &&
to_app(n)->get_arg(1) == subst) {
// skip useless rewrite step.
}
else {
TRACE("solve", tout << mk_bounded_pp(n, m_manager, 3) << "\n";
tout << mk_bounded_pp(pr1.get(), m_manager, 5) << "\n";);
pr = m_manager.mk_modus_ponens(pr, pr1.get());
}
candidate_prs.push_back(pr);
}
tmp_subst.insert(var, subst, pr);
SASSERT(!m_forbidden.is_marked(var));
TRACE("solve_subst", tout << mk_pp(var, m_manager) << "\n" << mk_pp(subst, m_manager) << "\n";);
TRACE("solver_bug", tout << mk_pp(var, m_manager) << "\n" << mk_pp(subst, m_manager) << "\n";);
tmp_vars.push_back(var);
m_forbidden.mark(var, true);
candidates.push_back(n);
has_subst = true;
continue;
}
if (j < i) {
m_asserted_formulas.set(j, n);
if (m_manager.proofs_enabled())
m_asserted_formula_prs.set(j, pr);
}
j++;
}
m_asserted_formulas.shrink(j);
if (m_manager.proofs_enabled())
m_asserted_formula_prs.shrink(j);
if (!has_subst)
return false;
ptr_vector<app> ordered_vars;
unsigned_vector failed_idxs;
top_sort sort(m_manager);
sort(tmp_vars, tmp_subst, ordered_vars, failed_idxs);
// restore substitutions that cannot be applied due to loops.
unsigned_vector::iterator it = failed_idxs.begin();
unsigned_vector::iterator end = failed_idxs.end();
for (; it != end; ++it) {
unsigned idx = *it;
m_asserted_formulas.push_back(candidates.get(idx));
if (m_manager.proofs_enabled())
m_asserted_formula_prs.push_back(candidate_prs.get(idx));
app * var = tmp_vars[idx];
m_forbidden.mark(var, false);
}
IF_IVERBOSE(10, verbose_stream() << "num. eliminated vars: " << ordered_vars.size() << "\n";);
ptr_vector<app>::iterator it2 = ordered_vars.begin();
ptr_vector<app>::iterator end2 = ordered_vars.end();
for (; it2 != end2; ++it2) {
app * var = *it2;
TRACE("solve_res", tout << "var: " << mk_pp(var, m_manager) << "\n";);
expr * def = 0;
proof * pr = 0;
tmp_subst.get(var, def, pr);
SASSERT(def != 0);
SASSERT(m_forbidden.is_marked(var));
m_forbidden.mark(var, false);
expr_ref new_def(m_manager);
proof_ref def_eq_new_def_pr(m_manager);
proof_ref new_pr(m_manager);
TRACE("solve_res", tout << "reducing:\n" << mk_ll_pp(def, m_manager););
m_simplifier(def, new_def, def_eq_new_def_pr);
TRACE("solve_res", tout << "reducing:\n" << mk_ll_pp(new_def, m_manager););
new_pr = m_manager.mk_transitivity(pr, def_eq_new_def_pr);
m_subst.insert(var, new_def, new_pr);
m_vars.push_back(var);
TRACE("solve_res", tout << "new substitution:\n" << mk_ll_pp(var, m_manager) << "======>\n" << mk_ll_pp(new_def, m_manager););
}
return !ordered_vars.empty();
}
void asserted_formulas::solve() {
// This method is buggy when unsatisfiable cores are enabled.
// It may eliminate answer literals.
// Since I will remove asserted_formulas.cpp in the future, I just disabled it.
// Note: asserted_formulas.cpp is based on the obsolete preprocessing stack.
// Users should the solve-eqs tactic if they want to eliminate variables.
#if 0
while (solve_core()) {
IF_IVERBOSE(10, verbose_stream() << "reducing...\n";);
flush_cache(); // collect garbage
reduce_asserted_formulas();
}
#endif
}
void asserted_formulas::reduce_asserted_formulas() {
@ -937,24 +419,6 @@ void asserted_formulas::expand_macros() {
find_macros_core();
}
void asserted_formulas::apply_demodulators() {
#if 0
IF_IVERBOSE(10, verbose_stream() << "applying demodulators...\n";);
TRACE("before_apply_demodulators", display(tout););
expr_ref_vector new_exprs(m_manager);
proof_ref_vector new_prs(m_manager);
unsigned sz = m_asserted_formulas.size();
ufbv_rewriter proc(m_manager, *m_bsimp);
proc(sz - m_asserted_qhead,
m_asserted_formulas.c_ptr() + m_asserted_qhead,
m_asserted_formula_prs.c_ptr() + m_asserted_qhead,
new_exprs, new_prs);
swap_asserted_formulas(new_exprs, new_prs);
TRACE("after_apply_demodulators", display(tout););
reduce_and_solve();
#endif
}
void asserted_formulas::apply_quasi_macros() {
IF_IVERBOSE(10, verbose_stream() << "finding quasi macros...\n";);
TRACE("before_quasi_macros", display(tout););
@ -1090,8 +554,6 @@ void asserted_formulas::reduce_and_solve() {
IF_IVERBOSE(10, verbose_stream() << "reducing...\n";);
flush_cache(); // collect garbage
reduce_asserted_formulas();
if (m_params.m_solver)
solve();
}
void asserted_formulas::infer_patterns() {
@ -1123,41 +585,8 @@ void asserted_formulas::infer_patterns() {
TRACE("after_pattern_inference", display(tout););
}
struct mark_forbidden_proc {
expr_mark & m_forbidden;
ptr_vector<app> & m_forbidden_vars;
mark_forbidden_proc(expr_mark & f, ptr_vector<app> & v):m_forbidden(f), m_forbidden_vars(v) {}
void operator()(var * n) {}
void operator()(quantifier * n) {}
void operator()(app * n) {
if (is_uninterp(n) && !m_forbidden.is_marked(n)) {
TRACE("solver_bug", tout << "marking: " << n->get_decl()->get_name() << "\n";);
m_forbidden.mark(n, true);
m_forbidden_vars.push_back(n);
SASSERT(m_forbidden.is_marked(n));
}
}
};
void asserted_formulas::commit() {
expr_fast_mark1 uf_visited; // marks used for update_forbidden
mark_forbidden_proc p(m_forbidden, m_forbidden_vars);
unsigned sz = m_asserted_formulas.size();
for (unsigned i = m_asserted_qhead; i < sz; i++)
quick_for_each_expr(p, uf_visited, m_asserted_formulas.get(i));
m_macro_manager.mark_forbidden(sz - m_asserted_qhead, m_asserted_formulas.c_ptr() + m_asserted_qhead);
ptr_vector<app>::const_iterator it2 = m_vars.begin() + m_vars_qhead;
ptr_vector<app>::const_iterator end2 = m_vars.end();
for (; it2 != end2; ++it2) {
app * var = *it2;
expr * def = get_subst(var);
m_forbidden.mark(var, true);
m_forbidden_vars.push_back(var);
quick_for_each_expr(p, uf_visited, def);
}
m_vars_qhead = m_vars.size();
m_macro_manager.mark_forbidden(m_asserted_formulas.size() - m_asserted_qhead, m_asserted_formulas.c_ptr() + m_asserted_qhead);
m_asserted_qhead = m_asserted_formulas.size();
}
@ -1376,11 +805,6 @@ proof * asserted_formulas::get_inconsistency_proof() const {
return 0;
}
MK_SIMPLE_SIMPLIFIER(context_simplifier, expr_context_simplifier functor(m_manager), "context_simplifier", "context simplifier");
MK_SIMPLE_SIMPLIFIER(strong_context_simplifier, expr_strong_context_simplifier functor(m_params, m_manager), "strong_context_simplifier", "strong context simplifier");
void asserted_formulas::refine_inj_axiom() {
IF_IVERBOSE(10, verbose_stream() << "refining injectivity...\n";);
TRACE("inj_axiom", display(tout););
@ -1406,19 +830,6 @@ void asserted_formulas::refine_inj_axiom() {
MK_SIMPLIFIER(apply_bit2int, bit2int& functor = m_bit2int, "bit2int", "propagate bit-vector over integers", true);
MK_SIMPLIFIER(apply_der_core, der_star functor(m_manager), "der", "destructive equality resolution", true);
void asserted_formulas::apply_der() {
// Keep applying DER until it cannot be applied anymore.
// The simplifications applied by REDUCE may create new opportunities for applying DER.
while(!inconsistent() && apply_der_core()) {
}
TRACE("a_der", for (unsigned i = 0; i<m_asserted_formulas.size(); i++)
tout << mk_pp(m_asserted_formulas.get(i), m_manager) << std::endl; );
}
MK_SIMPLIFIER(cheap_quant_fourier_motzkin, elim_bounds_star functor(m_manager), "elim_bounds", "cheap fourier-motzkin", true);
// MK_SIMPLIFIER(quant_elim, qe::expr_quant_elim_star1 &functor = m_quant_elim,