3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 19:35:50 +00:00

renam vvr to val

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-04-24 09:53:14 -07:00
parent 11e3e1b463
commit 02379417a6
11 changed files with 155 additions and 236 deletions

View file

@ -36,9 +36,9 @@ void monotone::monotonicity_lemma() {
void monotone::negate_abs_a_le_abs_b(lpvar a, lpvar b, bool strict) {
rational av = vvr(a);
rational av = val(a);
rational as = rational(nla::rat_sign(av));
rational bv = vvr(b);
rational bv = val(b);
rational bs = rational(nla::rat_sign(bv));
TRACE("nla_solver", tout << "av = " << av << ", bv = " << bv << "\n";);
SASSERT(as*av <= bs*bv);
@ -56,9 +56,9 @@ void monotone::assert_abs_val_a_le_abs_var_b(
bool strict) {
lpvar aj = var(a);
lpvar bj = var(b);
rational av = vvr(aj);
rational av = val(aj);
rational as = rational(nla::rat_sign(av));
rational bv = vvr(bj);
rational bv = val(bj);
rational bs = rational(nla::rat_sign(bv));
// TRACE("nla_solver", tout << "rmv = " << rmv << ", jv = " << jv << "\n";);
mk_ineq(as, aj, llc::LT); // |aj| < 0
@ -67,9 +67,9 @@ void monotone::assert_abs_val_a_le_abs_var_b(
}
void monotone::negate_abs_a_lt_abs_b(lpvar a, lpvar b) {
rational av = vvr(a);
rational av = val(a);
rational as = rational(nla::rat_sign(av));
rational bv = vvr(b);
rational bv = val(b);
rational bs = rational(nla::rat_sign(bv));
TRACE("nla_solver", tout << "av = " << av << ", bv = " << bv << "\n";);
SASSERT(as*av < bs*bv);
@ -83,7 +83,7 @@ void monotone::monotonicity_lemma(monomial const& m) {
if (c().mon_has_zero(m.vars()))
return;
const rational prod_val = abs(c().product_value(m.vars()));
const rational m_val = abs(vvr(m));
const rational m_val = abs(val(m));
if (m_val < prod_val)
monotonicity_lemma_lt(m, prod_val);
else if (m_val > prod_val)
@ -102,9 +102,9 @@ void monotone::monotonicity_lemma_gt(const monomial& m, const rational& prod_val
/** \brief enforce the inequality |m| >= product |m[i]| .
/\_i |m[i]| >= |vvr(m[i])| => |m| >= |product_i vvr(m[i])|
/\_i |m[i]| >= |val(m[i])| => |m| >= |product_i val(m[i])|
<=>
\/_i |m[i]| < |vvr(m[i])} or |m| >= |product_i vvr(m[i])|
\/_i |m[i]| < |val(m[i])} or |m| >= |product_i val(m[i])|
*/
void monotone::monotonicity_lemma_lt(const monomial& m, const rational& prod_val) {
add_empty_lemma();