3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-18 02:16:40 +00:00

renam vvr to val

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-04-24 09:53:14 -07:00
parent 11e3e1b463
commit 02379417a6
11 changed files with 155 additions and 236 deletions

View file

@ -28,7 +28,7 @@ basics::basics(core * c) : common(c) {}
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n) {
const rational& sign = m.rsign() * n.rsign();
if (vvr(m) == vvr(n) * sign)
if (val(m) == val(n) * sign)
return false;
TRACE("nla_solver", tout << "sign contradiction:\nm = " << m << "n= " << n << "sign: " << sign << "\n";);
generate_sign_lemma(m, n, sign);
@ -36,8 +36,8 @@ bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial
}
void basics::generate_zero_lemmas(const monomial& m) {
SASSERT(!vvr(m).is_zero() && c().product_value(m.vars()).is_zero());
int sign = nla::rat_sign(vvr(m));
SASSERT(!val(m).is_zero() && c().product_value(m.vars()).is_zero());
int sign = nla::rat_sign(val(m));
unsigned_vector fixed_zeros;
lpvar zero_j = find_best_zero(m, fixed_zeros);
SASSERT(is_set(zero_j));
@ -77,7 +77,7 @@ bool basics::try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const {
}
void basics::get_non_strict_sign(lpvar j, int& sign) const {
const rational v = vvr(j);
const rational v = val(j);
if (v.is_zero()) {
try_get_non_strict_sign_from_bounds(j, sign);
} else {
@ -105,7 +105,7 @@ bool basics::basic_sign_lemma_model_based() {
unsigned sz = c().m_to_refine.size();
for (unsigned i = sz; i-- > 0; ) {
monomial const& m = c().m_emons[c().m_to_refine[(start + i) % sz]];
int mon_sign = nla::rat_sign(vvr(m));
int mon_sign = nla::rat_sign(val(m));
int product_sign = c().rat_sign(m);
if (mon_sign != product_sign) {
basic_sign_lemma_model_based_one_mon(m, product_sign);
@ -162,12 +162,12 @@ void basics::generate_sign_lemma(const monomial& m, const monomial& n, const rat
explain(n);
TRACE("nla_solver", c().print_lemma(tout););
}
// try to find a variable j such that vvr(j) = 0
// try to find a variable j such that val(j) = 0
// and the bounds on j contain 0 as an inner point
lpvar basics::find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const {
lpvar zero_j = -1;
for (unsigned j : m.vars()){
if (vvr(j).is_zero()){
if (val(j).is_zero()){
if (c().var_is_fixed_to_zero(j))
fixed_zeros.push_back(j);
@ -204,10 +204,10 @@ void basics::add_fixed_zero_lemma(const monomial& m, lpvar j) {
}
void basics::negate_strict_sign(lpvar j) {
TRACE("nla_solver_details", tout << pp_var(c(), j) << "\n";);
if (!vvr(j).is_zero()) {
int sign = nla::rat_sign(vvr(j));
if (!val(j).is_zero()) {
int sign = nla::rat_sign(val(j));
c().mk_ineq(j, (sign == 1? llc::LE : llc::GE));
} else { // vvr(j).is_zero()
} else { // val(j).is_zero()
if (c().has_lower_bound(j) && c().get_lower_bound(j) >= rational(0)) {
c().explain_existing_lower_bound(j);
c().mk_ineq(j, llc::GT);
@ -322,7 +322,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomi
lpvar mon_var = c().m_emons[rm.var()].var();
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
const auto mv = vvr(mon_var);
const auto mv = val(mon_var);
const auto abs_mv = abs(mv);
if (abs_mv == rational::zero()) {
@ -332,7 +332,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomi
lpvar jl = -1;
for (auto fc : f ) {
lpvar j = var(fc);
if (abs(vvr(j)) == abs_mv && c().vars_are_equiv(j, mon_var) &&
if (abs(val(j)) == abs_mv && c().vars_are_equiv(j, mon_var) &&
(mon_var_is_sep_from_zero || c().var_is_separated_from_zero(j))) {
jl = j;
break;
@ -346,7 +346,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomi
if (var(j) == jl) {
continue;
}
if (abs(vvr(j)) != rational(1)) {
if (abs(val(j)) != rational(1)) {
not_one_j = var(j);
break;
}
@ -382,14 +382,14 @@ bool basics::basic_lemma_for_mon_neutral_derived(const monomial& rm, const facto
// x != 0 or y = 0 => |xy| >= |y|
void basics::proportion_lemma_model_based(const monomial& rm, const factorization& factorization) {
rational rmv = abs(vvr(rm));
rational rmv = abs(val(rm));
if (rmv.is_zero()) {
SASSERT(c().has_zero_factor(factorization));
return;
}
int factor_index = 0;
for (factor f : factorization) {
if (abs(vvr(f)) > rmv) {
if (abs(val(f)) > rmv) {
generate_pl(rm, factorization, factor_index);
return;
}
@ -399,14 +399,14 @@ void basics::proportion_lemma_model_based(const monomial& rm, const factorizatio
// x != 0 or y = 0 => |xy| >= |y|
bool basics::proportion_lemma_derived(const monomial& rm, const factorization& factorization) {
return false;
rational rmv = abs(vvr(rm));
rational rmv = abs(val(rm));
if (rmv.is_zero()) {
SASSERT(c().has_zero_factor(factorization));
return false;
}
int factor_index = 0;
for (factor f : factorization) {
if (abs(vvr(f)) > rmv) {
if (abs(val(f)) > rmv) {
generate_pl(rm, factorization, factor_index);
return true;
}
@ -418,7 +418,7 @@ bool basics::proportion_lemma_derived(const monomial& rm, const factorization& f
void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
add_empty_lemma();
unsigned mon_var = m.var();
rational mv = vvr(mon_var);
rational mv = val(mon_var);
rational sm = rational(nla::rat_sign(mv));
c().mk_ineq(sm, mon_var, llc::LT);
for (unsigned fi = 0; fi < m.size(); fi ++) {
@ -426,7 +426,7 @@ void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
if (fi != factor_index) {
c().mk_ineq(j, llc::EQ);
} else {
rational jv = vvr(j);
rational jv = val(j);
rational sj = rational(nla::rat_sign(jv));
SASSERT(sm*mv < sj*jv);
c().mk_ineq(sj, j, llc::LT);
@ -449,7 +449,7 @@ void basics::generate_pl(const monomial& rm, const factorization& fc, int factor
}
add_empty_lemma();
int fi = 0;
rational rmv = vvr(rm);
rational rmv = val(rm);
rational sm = rational(nla::rat_sign(rmv));
unsigned mon_var = var(rm);
c().mk_ineq(sm, mon_var, llc::LT);
@ -458,7 +458,7 @@ void basics::generate_pl(const monomial& rm, const factorization& fc, int factor
c().mk_ineq(var(f), llc::EQ);
} else {
lpvar j = var(f);
rational jv = vvr(j);
rational jv = val(j);
rational sj = rational(nla::rat_sign(jv));
SASSERT(sm*rmv < sj*jv);
c().mk_ineq(sj, j, llc::LT);
@ -474,7 +474,7 @@ void basics::generate_pl(const monomial& rm, const factorization& fc, int factor
// here we use the fact xy = 0 -> x = 0 or y = 0
void basics::basic_lemma_for_mon_zero_model_based(const monomial& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
SASSERT(vvr(rm).is_zero()&& ! c().rm_check(rm));
SASSERT(val(rm).is_zero()&& ! c().rm_check(rm));
add_empty_lemma();
int sign = c().get_derived_sign(rm, f);
if (sign == 0) {
@ -495,7 +495,7 @@ void basics::basic_lemma_for_mon_zero_model_based(const monomial& rm, const fact
void basics::basic_lemma_for_mon_model_based(const monomial& rm) {
TRACE("nla_solver_bl", tout << "rm = " << pp_mon(_(), rm) << "\n";);
if (vvr(rm).is_zero()) {
if (val(rm).is_zero()) {
for (auto factorization : factorization_factory_imp(rm, c())) {
if (factorization.is_empty())
continue;
@ -519,14 +519,14 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const
TRACE("nla_solver_bl", c().print_monomial(m, tout););
lpvar mon_var = m.var();
const auto mv = vvr(mon_var);
const auto mv = val(mon_var);
const auto abs_mv = abs(mv);
if (abs_mv == rational::zero()) {
return false;
}
lpvar jl = -1;
for (auto j : m.vars() ) {
if (abs(vvr(j)) == abs_mv) {
if (abs(val(j)) == abs_mv) {
jl = j;
break;
}
@ -538,7 +538,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const
if (j == jl) {
continue;
}
if (abs(vvr(j)) != rational(1)) {
if (abs(val(j)) != rational(1)) {
not_one_j = j;
break;
}
@ -553,7 +553,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const
c().mk_ineq(mon_var, llc::EQ);
// negate abs(jl) == abs()
if (vvr(jl) == - vvr(mon_var))
if (val(jl) == - val(mon_var))
c().mk_ineq(jl, mon_var, llc::NE, c().current_lemma());
else // jl == mon_var
c().mk_ineq(jl, -rational(1), mon_var, llc::NE);
@ -573,7 +573,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
rational sign(1);
TRACE("nla_solver_bl", tout << "m = "; c().print_monomial(m, tout););
for (auto j : m.vars()){
auto v = vvr(j);
auto v = val(j);
if (v == rational(1)) {
continue;
}
@ -590,7 +590,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
}
if (not_one + 1) { // we found the only not_one
if (vvr(m) == vvr(not_one) * sign) {
if (val(m) == val(not_one) * sign) {
TRACE("nla_solver", tout << "the whole equal to the factor" << std::endl;);
return false;
}
@ -599,7 +599,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
add_empty_lemma();
for (auto j : m.vars()){
if (not_one == j) continue;
c().mk_ineq(j, llc::NE, vvr(j));
c().mk_ineq(j, llc::NE, val(j));
}
if (not_one == static_cast<lpvar>(-1)) {
@ -619,7 +619,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const mo
lpvar mon_var = c().m_emons[rm.var()].var();
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
const auto mv = vvr(mon_var);
const auto mv = val(mon_var);
const auto abs_mv = abs(mv);
if (abs_mv == rational::zero()) {
@ -627,7 +627,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const mo
}
lpvar jl = -1;
for (auto j : f ) {
if (abs(vvr(j)) == abs_mv) {
if (abs(val(j)) == abs_mv) {
jl = var(j);
break;
}
@ -639,7 +639,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const mo
if (var(j) == jl) {
continue;
}
if (abs(vvr(j)) != rational(1)) {
if (abs(val(j)) != rational(1)) {
not_one_j = var(j);
break;
}
@ -654,7 +654,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const mo
c().mk_ineq(mon_var, llc::EQ);
// negate abs(jl) == abs()
if (vvr(jl) == - vvr(mon_var))
if (val(jl) == - val(mon_var))
c().mk_ineq(jl, mon_var, llc::NE, c().current_lemma());
else // jl == mon_var
c().mk_ineq(jl, -rational(1), mon_var, llc::NE);
@ -689,7 +689,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(co
lpvar not_one = -1;
for (auto j : f){
TRACE("nla_solver_bl", tout << "j = "; c().print_factor_with_vars(j, tout););
auto v = vvr(j);
auto v = val(j);
if (v == rational(1)) {
continue;
}
@ -710,13 +710,13 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(co
if (not_one + 1) {
// we found the only not_one
if (vvr(rm) == vvr(not_one) * sign) {
if (val(rm) == val(not_one) * sign) {
TRACE("nla_solver", tout << "the whole equal to the factor" << std::endl;);
return false;
}
} else {
// we have +-ones only in the factorization
if (vvr(rm) == sign) {
if (val(rm) == sign) {
return false;
}
}
@ -728,7 +728,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(co
for (auto j : f){
lpvar var_j = var(j);
if (not_one == var_j) continue;
c().mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : c().canonize_sign(j) * vvr(j));
c().mk_ineq(var_j, llc::NE, j.is_var()? val(j) : c().canonize_sign(j) * val(j));
}
if (not_one == static_cast<lpvar>(-1)) {
@ -750,7 +750,7 @@ void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f)
TRACE("nla_solver_bl", c().print_factorization(f, tout););
int zero_j = -1;
for (auto j : f) {
if (vvr(j).is_zero()) {
if (val(j).is_zero()) {
zero_j = var(j);
break;
}