3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 00:26:38 +00:00

add functionality for bit-wise and

This commit is contained in:
Nikolaj Bjorner 2021-12-15 14:07:53 -08:00
parent c9472b01fe
commit 02369647a0
3 changed files with 88 additions and 26 deletions

View file

@ -125,14 +125,15 @@ namespace polysat {
case code::lshr_op:
narrow_lshr(s);
break;
case code::and_op:
narrow_and(s);
break;
default:
NOT_IMPLEMENTED_YET();
break;
}
if (!s.is_conflict() && is_currently_false(s.assignment(), is_positive)) {
s.set_conflict(signed_constraint(this, is_positive));
return;
}
if (!s.is_conflict() && is_currently_false(s.assignment(), is_positive))
s.set_conflict(signed_constraint(this, is_positive));
}
unsigned op_constraint::hash() const {
@ -147,12 +148,12 @@ namespace polysat {
}
/**
* Enforce basic axioms for r == p >> q, such as:
* Enforce basic axioms for r == p >> q:
*
* q >= k -> r[i] = 0 for i > K - k
* q >= K -> r = 0
* q = k -> r[i] = p[i+k] for k + i < K
* q >= k -> r <= 2^{K-k-1}
* q = k -> r[i - k] = p[i] for i <= K - k
* r <= p
* q != 0 => r <= p
* q = 0 => r = p
@ -161,34 +162,47 @@ namespace polysat {
*
* Enforce also inferences and bounds
*
* TODO use also
* s.m_viable.min_viable();
* s.m_viable.max_viable()
* when r, q are variables.
*/
void op_constraint::narrow_lshr(solver& s) {
auto pv = p().subst_val(s.assignment());
auto qv = q().subst_val(s.assignment());
auto rv = r().subst_val(s.assignment());
unsigned K = p().manager().power_of_2();
signed_constraint lshr(this, true);
// r <= p
if (pv.is_val() && rv.is_val() && rv.val() > pv.val()) {
s.add_clause(~lshr, s.ule(r(), p()), true);
return;
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
s.add_clause(~lshr, s.ule(r(), p()), true); // r <= p
else if (qv.is_val() && qv.val() >= K && rv.is_val() && !rv.is_zero())
s.add_clause(~lshr, ~s.ule(K, q()), s.eq(r()), true); // q >= K -> r = 0
else if (qv.is_zero() && pv.is_val() && rv.is_val() && pv != rv) {
s.add_clause(~lshr, ~s.eq(q()), s.eq(p(), r()), true); // q != 0 & p > 0 => r < p
else if (qv.is_val() && !qv.is_zero() && pv.is_val() && rv.is_val() && !pv.is_zero() && pv.val() <= rv.val()) {
s.add_clause(~lshr, s.eq(q()), s.ule(p(), 0), s.ult(r(), p()), true); // q >= k -> r <= 2^{K-k-1}
else if (qv.is_val() && !qv.is_zero() && qv.val() < K && rv.is_val() &&
rv.val() > rational::power_of_two(K - qv.val().get_unsigned() - 1)) {
s.add_clause(~lshr, ~s.ule(qv.val(), q()), s.ule(r(), rational::power_of_two(K - qv.val().get_unsigned() - 1)), true);
// q = k -> r[i - k] = p[i] for K - k <= i < K
else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) {
unsigned k = qv.val().get_unsigned();
for (unsigned i = K - k; i < K; ++i) {
if (rv.val().get_bit(i - k) && !pv.val().get_bit(i)) {
s.add_clause(~lshr, ~s.eq(q(), k), ~s.bit(r(), i - k), s.bit(p(), i), true);
return;
}
if (!rv.val().get_bit(i - k) && pv.val().get_bit(i)) {
s.add_clause(~lshr, ~s.eq(q(), k), s.bit(r(), i - k), ~s.bit(p(), i), true);
return;
}
}
}
// q >= K -> r = 0
if (qv.is_val() && qv.val() >= K && rv.is_val() && !rv.is_zero()) {
s.add_clause(~lshr, ~s.ule(K, q()), s.eq(r()), true);
return;
else {
SASSERT(!(pv.is_val() && qv.is_val() && rv.is_val()));
}
// q = 0 => r = p
if (qv.is_zero() && pv.is_val() && rv.is_val() && pv != rv) {
s.add_clause(~lshr, ~s.eq(q()), s.eq(p(), r()), true);
return;
}
// q != 0 & p > 0 => r < p
if (qv.is_val() && !qv.is_zero() && pv.is_val() && rv.is_val() && !pv.is_zero() && pv.val() <= rv.val()) {
s.add_clause(~lshr, s.eq(q()), s.ule(p(), 0), s.ult(r(), p()), true);
return;
}
NOT_IMPLEMENTED_YET();
}
lbool op_constraint::eval_lshr(pdd const& p, pdd const& q, pdd const& r) const {
@ -199,9 +213,54 @@ namespace polysat {
if (q.is_val() && q.val() >= m.power_of_2() && r.is_val())
return r.is_zero() ? l_true : l_false;
// other cases when we know lower
// bound of q, e.g, q = 2^k*q1 + q2, where q2 is a constant.
return l_undef;
}
/**
* Produce lemmas:
* p & q <= p
* p & q <= q
* p = q => p & q = r
* p = 0 => r = 0
* q = 0 => r = 0
* p[i] && q[i] = r[i]
*/
void op_constraint::narrow_and(solver& s) {
auto pv = p().subst_val(s.assignment());
auto qv = q().subst_val(s.assignment());
auto rv = r().subst_val(s.assignment());
signed_constraint andc(this, true);
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
s.add_clause(~andc, s.ule(r(), p()), true);
else if (qv.is_val() && rv.is_val() && rv.val() > qv.val())
s.add_clause(~andc, s.ule(r(), q()), true);
else if (pv.is_val() && qv.is_val() && rv.is_val() && pv == qv && rv != pv)
s.add_clause(~andc, ~s.eq(p(), q()), s.eq(r(), p()), true);
else if (pv.is_zero() && rv.is_val() && !rv.is_zero())
s.add_clause(~andc, ~s.eq(p()), s.eq(r()), true);
else if (qv.is_zero() && rv.is_val() && !rv.is_zero())
s.add_clause(~andc, ~s.eq(q()), s.eq(r()), true);
else if (pv.is_val() && qv.is_val() && rv.is_val()) {
unsigned K = p().manager().power_of_2();
for (unsigned i = 0; i < K; ++i) {
bool pb = pv.val().get_bit(i);
bool qb = qv.val().get_bit(i);
bool rb = rv.val().get_bit(i);
if (rb == (pb && qb))
continue;
if (pb && qb && !rb)
s.add_clause(~andc, ~s.bit(p(), i), ~s.bit(q(), i), s.bit(r(), i), true);
else if (!pb && rb)
s.add_clause(~andc, s.bit(p(), i), ~s.bit(r(), i), true);
else if (!qb && rb)
s.add_clause(~andc, s.bit(q(), i), ~s.bit(r(), i), true);
else
UNREACHABLE();
return;
}
}
}

View file

@ -43,6 +43,8 @@ namespace polysat {
void narrow_lshr(solver& s);
lbool eval_lshr(pdd const& p, pdd const& q, pdd const& r) const;
void narrow_and(solver& s);
public:
~op_constraint() override {}
pdd const& p() const { return m_p; }

View file

@ -294,6 +294,7 @@ namespace polysat {
signed_constraint eq(pdd const& p, pdd const& q) { return eq(p - q); }
signed_constraint diseq(pdd const& p, pdd const& q) { return diseq(p - q); }
signed_constraint eq(pdd const& p, rational const& q) { return eq(p - q); }
signed_constraint eq(pdd const& p, unsigned q) { return eq(p - q); }
signed_constraint diseq(pdd const& p, rational const& q) { return diseq(p - q); }
signed_constraint ule(pdd const& p, pdd const& q) { return m_constraints.ule(p, q); }
signed_constraint ule(pdd const& p, rational const& q) { return ule(p, p.manager().mk_val(q)); }