3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

initial working version

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-06-09 20:58:41 -07:00 committed by Arie Gurfinkel
parent da18f0e0b7
commit 008f003aa0
3 changed files with 438 additions and 404 deletions

View file

@ -503,4 +503,5 @@ void install_dbg_cmds(cmd_context & ctx) {
ctx.insert(alloc(set_next_id));
ctx.insert(alloc(mbp_cmd));
ctx.insert(alloc(mbi_cmd));
ctx.insert(alloc(euf_project_cmd));
}

View file

@ -26,83 +26,80 @@ Notes:
namespace qe {
class term {
// -- an app represented by this term
expr* m_app; // NSB: to make usable with exprs
// -- root of the equivalence class
term* m_root;
// -- next element in the equivalence class (cyclic linked list)
term* m_next;
// -- eq class size
unsigned m_class_size;
// -- general purpose mark
unsigned m_mark:1;
// -- general purpose second mark
unsigned m_mark2:1;
// -- is an interpreted constant
unsigned m_interpreted:1;
// -- terms that contain this term as a child
ptr_vector<term> m_parents;
// arguments of term.
ptr_vector<term> m_children;
public:
term(expr* a, u_map<term*>& app2term) :
m_app(a),
m_root(this),
m_next(this),
m_class_size(1),
m_mark(false),
m_mark2(false),
m_interpreted(false) {
if (!is_app(a)) return;
for (expr* e : *to_app(a)) {
term* t = app2term[e->get_id()];
t->m_parents.push_back(this);
m_children.push_back(t);
class term {
// -- an app represented by this term
expr* m_app; // NSB: to make usable with exprs
// -- root of the equivalence class
term* m_root;
// -- next element in the equivalence class (cyclic linked list)
term* m_next;
// -- eq class size
unsigned m_class_size;
// -- general purpose mark
unsigned m_mark:1;
// -- general purpose second mark
unsigned m_mark2:1;
// -- is an interpreted constant
unsigned m_interpreted:1;
// -- terms that contain this term as a child
ptr_vector<term> m_parents;
// arguments of term.
ptr_vector<term> m_children;
public:
term(expr* a, u_map<term*>& app2term) :
m_app(a),
m_root(this),
m_next(this),
m_class_size(1),
m_mark(false),
m_mark2(false),
m_interpreted(false) {
if (!is_app(a)) return;
for (expr* e : *to_app(a)) {
term* t = app2term[e->get_id()];
t->m_parents.push_back(this);
m_children.push_back(t);
}
}
}
~term() {}
class parents {
~term() {}
class parents {
term const& t;
public:
parents(term const& _t):t(_t) {}
parents(term const* _t):t(*_t) {}
ptr_vector<term>::const_iterator begin() const { return t.m_parents.begin(); }
ptr_vector<term>::const_iterator end() const { return t.m_parents.end(); }
};
class children {
term const& t;
public:
parents(term const& _t):t(_t) {}
parents(term const* _t):t(*_t) {}
ptr_vector<term>::const_iterator begin() const { return t.m_parents.begin(); }
ptr_vector<term>::const_iterator end() const { return t.m_parents.end(); }
};
class children {
term const& t;
public:
children(term const& _t):t(_t) {}
children(term const* _t):t(*_t) {}
ptr_vector<term>::const_iterator begin() const { return t.m_children.begin(); }
ptr_vector<term>::const_iterator end() const { return t.m_children.end(); }
};
// Congruence table hash function is based on
// roots of children and function declaration.
struct cg_hash {
unsigned operator()(term const* t) const {
public:
children(term const& _t):t(_t) {}
children(term const* _t):t(*_t) {}
ptr_vector<term>::const_iterator begin() const { return t.m_children.begin(); }
ptr_vector<term>::const_iterator end() const { return t.m_children.end(); }
};
// Congruence table hash function is based on
// roots of children and function declaration.
unsigned get_hash() const {
unsigned a, b, c;
a = b = c = t->get_decl_id();
for (term * ch : children(t)) {
a = b = c = get_decl_id();
for (term * ch : children(this)) {
a = ch->get_root().get_id();
mix(a, b, c);
}
return c;
}
};
struct cg_eq {
bool operator()(term * t1, term * t2) const {
static bool cg_eq(term const * t1, term const * t2) {
if (t1->get_decl_id() != t2->get_decl_id()) return false;
if (t1->m_children.size() != t2->m_children.size()) return false;
for (unsigned i = 0, sz = t1->m_children.size(); i < sz; ++ i) {
@ -110,348 +107,378 @@ public:
}
return true;
}
unsigned get_id() const { return m_app->get_id();}
unsigned get_decl_id() const { return is_app(m_app) ? to_app(m_app)->get_decl()->get_id() : m_app->get_id(); }
bool is_marked() const {return m_mark;}
void set_mark(bool v){m_mark = v;}
bool is_marked2() const {return m_mark2;} // NSB: where is this used?
void set_mark2(bool v){m_mark2 = v;} // NSB: where is this used?
bool is_interpreted() const {return m_interpreted;}
void mark_as_interpreted() {m_interpreted=true;}
expr* get_app() const {return m_app;}
unsigned get_num_args() const { return is_app(m_app) ? to_app(m_app)->get_num_args() : 0; }
term &get_root() const {return *m_root;}
bool is_root() const {return m_root == this;}
void set_root(term &r) {m_root = &r;}
term &get_next() const {return *m_next;}
void add_parent(term* p) { m_parents.push_back(p); }
unsigned get_class_size() const {return m_class_size;}
void merge_eq_class(term &b) {
std::swap(this->m_next, b.m_next);
m_class_size += b.get_class_size();
// -- reset (useful for debugging)
b.m_class_size = 0;
}
// -- make this term the root of its equivalence class
void mk_root() {
if (is_root()) return;
term *curr = this;
do {
if (curr->is_root()) {
// found previous root
SASSERT(curr != this);
m_class_size = curr->get_class_size();
curr->m_class_size = 0;
}
curr->set_root(*this);
curr = &curr->get_next();
}
while (curr != this);
}
};
class arith_term_graph_plugin : public term_graph_plugin {
term_graph &m_g;
ast_manager &m;
arith_util m_arith;
public:
arith_term_graph_plugin(term_graph &g) :
term_graph_plugin (g.get_ast_manager().mk_family_id("arith")),
m_g(g), m(g.get_ast_manager()), m_arith(m) {(void)m_g;}
virtual ~arith_term_graph_plugin() {}
bool mk_eq_core (expr *_e1, expr *_e2, app_ref &res) {
expr *e1, *e2;
e1 = _e1;
e2 = _e2;
if (m_arith.is_zero(e1)) {
std::swap(e1, e2);
}
// y + -1*x == 0 --> y = x
expr *a0 = 0, *a1 = 0, *x = 0;
if (m_arith.is_zero(e2) && m_arith.is_add(e1, a0, a1)) {
if (m_arith.is_times_minus_one(a1, x)) {
e1 = a0;
e2 = x;
}
else if (m_arith.is_times_minus_one(a0, x)) {
e1 = a1;
e2 = x;
}
}
res = m.mk_eq(e1, e2);
return true;
}
app* mk_le_zero(expr *arg) {
expr *e1, *e2, *e3;
// XXX currently disabled
if (m_arith.is_add(arg, e1, e2)) {
// e1-e2<=0 --> e1<=e2
if (m_arith.is_times_minus_one(e2, e3)) {
return m_arith.mk_le(e1, e3);
}
// -e1+e2<=0 --> e2<=e1
else if (m_arith.is_times_minus_one(e1, e3)) {
return m_arith.mk_le(e2, e3);
}
}
return m_arith.mk_le(arg, mk_zero());
}
app* mk_ge_zero(expr *arg) {
expr *e1, *e2, *e3;
// XXX currently disabled
if (m_arith.is_add(arg, e1, e2)) {
// e1-e2>=0 --> e1>=e2
if (m_arith.is_times_minus_one(e2, e3)) {
return m_arith.mk_ge(e1, e3);
}
// -e1+e2>=0 --> e2>=e1
else if (m_arith.is_times_minus_one(e1, e3)) {
return m_arith.mk_ge(e2, e3);
}
}
return m_arith.mk_ge(arg, mk_zero());
}
bool mk_le_core (expr *arg1, expr * arg2, app_ref &result) {
// t <= -1 ==> t < 0 ==> ! (t >= 0)
rational n;
if (m_arith.is_int (arg1) && m_arith.is_minus_one (arg2)) {
result = m.mk_not (mk_ge_zero (arg1));
return true;
}
else if (m_arith.is_zero(arg2)) {
result = mk_le_zero(arg1);
return true;
}
else if (m_arith.is_int(arg1) && m_arith.is_numeral(arg2, n) && n < 0) {
// t <= n ==> t < n + 1 ==> ! (t >= n + 1)
result = m.mk_not(m_arith.mk_ge(arg1, m_arith.mk_numeral(n+1, true)));
return true;
}
return false;
}
expr * mk_zero () {return m_arith.mk_numeral (rational (0), true);}
bool is_one (expr const * n) const {
rational val;
return m_arith.is_numeral (n, val) && val.is_one ();
}
bool mk_ge_core (expr * arg1, expr * arg2, app_ref &result) {
// t >= 1 ==> t > 0 ==> ! (t <= 0)
rational n;
if (m_arith.is_int (arg1) && is_one (arg2)) {
result = m.mk_not (mk_le_zero (arg1));
return true;
}
else if (m_arith.is_zero(arg2)) {
result = mk_ge_zero(arg1);
return true;
}
else if (m_arith.is_int(arg1) && m_arith.is_numeral(arg2, n) && n > 0) {
// t >= n ==> t > n - 1 ==> ! (t <= n - 1)
result = m.mk_not(m_arith.mk_le(arg1, m_arith.mk_numeral(n-1, true)));
return true;
}
return false;
}
virtual app_ref process_lit (app *_lit) {
app *lit = _lit;
expr *e1, *e2;
// strip negation
bool is_neg = m.is_not(lit);
if (is_neg) {
lit = to_app(to_app(lit)->get_arg(0));
}
app_ref res(m);
res = lit;
if (m.is_eq (lit, e1, e2)) {
mk_eq_core(e1, e2, res);
}
else if (m_arith.is_le(lit, e1, e2)) {
mk_le_core(e1, e2, res);
}
else if (m_arith.is_ge(lit, e1, e2)) {
mk_ge_core(e1, e2, res);
}
// restore negation
if (is_neg) {
res = m.mk_not(res);
}
return res;
}
};
unsigned get_id() const { return m_app->get_id();}
unsigned term_graph::term_hash::operator()(term const* t) const { return t->get_hash(); }
unsigned get_decl_id() const { return is_app(m_app) ? to_app(m_app)->get_decl()->get_id() : m_app->get_id(); }
bool term_graph::term_eq::operator()(term const* a, term const* b) const { return term::cg_eq(a, b); }
bool is_marked() const {return m_mark;}
void set_mark(bool v){m_mark = v;}
bool is_marked2() const {return m_mark2;} // NSB: where is this used?
void set_mark2(bool v){m_mark2 = v;} // NSB: where is this used?
bool is_interpreted() const {return m_interpreted;}
void mark_as_interpreted() {m_interpreted=true;}
expr* get_app() const {return m_app;}
unsigned get_num_args() const { return is_app(m_app) ? to_app(m_app)->get_num_args() : 0; }
term &get_root() const {return *m_root;}
bool is_root() const {return m_root == this;}
void set_root(term &r) {m_root = &r;}
term &get_next() const {return *m_next;}
unsigned get_class_size() const {return m_class_size;}
void merge_eq_class(term &b) {
std::swap(this->m_next, b.m_next);
m_class_size += b.get_class_size();
// -- reset (useful for debugging)
b.m_class_size = 0;
term_graph::term_graph(ast_manager &man) : m(man), m_lits(m), m_pinned(m) {
m_plugins.register_plugin (alloc(arith_term_graph_plugin, *this));
}
// -- make this term the root of its equivalence class
void mk_root() {
if (is_root()) return;
term *curr = this;
do {
if (curr->is_root()) {
// found previous root
SASSERT(curr != this);
m_class_size = curr->get_class_size();
curr->m_class_size = 0;
}
curr->set_root(*this);
curr = &curr->get_next();
}
while (curr != this);
}
};
class arith_term_graph_plugin : public term_graph_plugin {
term_graph &m_g;
ast_manager &m;
arith_util m_arith;
public:
arith_term_graph_plugin(term_graph &g) :
term_graph_plugin (g.get_ast_manager().mk_family_id("arith")),
m_g(g), m(g.get_ast_manager()), m_arith(m) {(void)m_g;}
virtual ~arith_term_graph_plugin() {}
bool mk_eq_core (expr *_e1, expr *_e2, app_ref &res) {
expr *e1, *e2;
e1 = _e1;
e2 = _e2;
if (m_arith.is_zero(e1)) {
std::swap(e1, e2);
}
// y + -1*x == 0 --> y = x
expr *a0 = 0, *a1 = 0, *x = 0;
if (m_arith.is_zero(e2) && m_arith.is_add(e1, a0, a1)) {
if (m_arith.is_times_minus_one(a1, x)) {
e1 = a0;
e2 = x;
}
else if (m_arith.is_times_minus_one(a0, x)) {
e1 = a1;
e2 = x;
}
}
res = m.mk_eq(e1, e2);
return true;
}
app* mk_le_zero(expr *arg) {
expr *e1, *e2, *e3;
// XXX currently disabled
if (m_arith.is_add(arg, e1, e2)) {
// e1-e2<=0 --> e1<=e2
if (m_arith.is_times_minus_one(e2, e3)) {
return m_arith.mk_le(e1, e3);
}
// -e1+e2<=0 --> e2<=e1
else if (m_arith.is_times_minus_one(e1, e3)) {
return m_arith.mk_le(e2, e3);
}
}
return m_arith.mk_le(arg, mk_zero());
}
app* mk_ge_zero(expr *arg) {
expr *e1, *e2, *e3;
// XXX currently disabled
if (m_arith.is_add(arg, e1, e2)) {
// e1-e2>=0 --> e1>=e2
if (m_arith.is_times_minus_one(e2, e3)) {
return m_arith.mk_ge(e1, e3);
}
// -e1+e2>=0 --> e2>=e1
else if (m_arith.is_times_minus_one(e1, e3)) {
return m_arith.mk_ge(e2, e3);
}
}
return m_arith.mk_ge(arg, mk_zero());
}
bool mk_le_core (expr *arg1, expr * arg2, app_ref &result) {
// t <= -1 ==> t < 0 ==> ! (t >= 0)
rational n;
if (m_arith.is_int (arg1) && m_arith.is_minus_one (arg2)) {
result = m.mk_not (mk_ge_zero (arg1));
return true;
}
else if (m_arith.is_zero(arg2)) {
result = mk_le_zero(arg1);
return true;
}
else if (m_arith.is_int(arg1) && m_arith.is_numeral(arg2, n) && n < 0) {
// t <= n ==> t < n + 1 ==> ! (t >= n + 1)
result = m.mk_not(m_arith.mk_ge(arg1, m_arith.mk_numeral(n+1, true)));
return true;
}
return false;
}
expr * mk_zero () {return m_arith.mk_numeral (rational (0), true);}
bool is_one (expr const * n) const {
rational val;
return m_arith.is_numeral (n, val) && val.is_one ();
}
bool mk_ge_core (expr * arg1, expr * arg2, app_ref &result) {
// t >= 1 ==> t > 0 ==> ! (t <= 0)
rational n;
if (m_arith.is_int (arg1) && is_one (arg2)) {
result = m.mk_not (mk_le_zero (arg1));
return true;
}
else if (m_arith.is_zero(arg2)) {
result = mk_ge_zero(arg1);
return true;
}
else if (m_arith.is_int(arg1) && m_arith.is_numeral(arg2, n) && n > 0) {
// t >= n ==> t > n - 1 ==> ! (t <= n - 1)
result = m.mk_not(m_arith.mk_le(arg1, m_arith.mk_numeral(n-1, true)));
return true;
}
return false;
}
virtual app_ref process_lit (app *_lit) {
app *lit = _lit;
expr *e1, *e2;
// strip negation
bool is_neg = m.is_not(lit);
if (is_neg) {
lit = to_app(to_app(lit)->get_arg(0));
}
app_ref res(m);
res = lit;
if (m.is_eq (lit, e1, e2)) {
mk_eq_core(e1, e2, res);
}
else if (m_arith.is_le(lit, e1, e2)) {
mk_le_core(e1, e2, res);
}
else if (m_arith.is_ge(lit, e1, e2)) {
mk_ge_core(e1, e2, res);
}
// restore negation
if (is_neg) {
res = m.mk_not(res);
}
return res;
}
};
term_graph::term_graph(ast_manager &man) : m(man), m_lits(m), m_pinned(m) {
m_plugins.register_plugin (alloc(arith_term_graph_plugin, *this));
}
term_graph::~term_graph() {
reset();
}
static family_id get_family_id(ast_manager &m, app *lit) {
family_id fid = null_family_id;
expr *e1 = nullptr, *e2 = nullptr, *e3 = nullptr;
// strip negation
if (!m.is_not (lit, e1)) { e1 = lit; }
// deal with equality using sort of range
if (m.is_eq (e1, e2, e3)) {
fid = get_sort (e2)->get_family_id();
}
// extract family_id of top level app
else {
fid = to_app(e1)->get_decl()->get_family_id();
}
return fid;
}
void term_graph::add_lit(app *l) {
app_ref lit(m);
family_id fid = get_family_id (m, l);
term_graph_plugin *pin = m_plugins.get_plugin(fid);
if (pin) {
lit = pin->process_lit(l);
} else {
lit = l;
}
m_lits.push_back(lit);
internalize_lit(lit);
}
bool term_graph::is_internalized(expr *a) {
return m_app2term.contains(a->get_id());
}
term* term_graph::get_term(expr *a) {
term *res;
return m_app2term.find (a->get_id(), res) ? res : nullptr;
}
term *term_graph::mk_term(expr *a) {
term * t = alloc(term, a, m_app2term);
if (t->get_num_args() == 0 && m.is_unique_value(a)){
t->mark_as_interpreted();
}
m_terms.push_back(t);
m_app2term.insert(a->get_id(), t);
return t;
}
term* term_graph::internalize_term(expr *t) {
term* res = get_term(t);
if (res) return res;
ptr_buffer<expr> todo;
todo.push_back(t);
while (!todo.empty()) {
term_graph::~term_graph() {
reset();
}
static family_id get_family_id(ast_manager &m, app *lit) {
family_id fid = null_family_id;
expr *e1 = nullptr, *e2 = nullptr, *e3 = nullptr;
// strip negation
if (!m.is_not (lit, e1)) { e1 = lit; }
// deal with equality using sort of range
if (m.is_eq (e1, e2, e3)) {
fid = get_sort (e2)->get_family_id();
}
// extract family_id of top level app
else {
fid = to_app(e1)->get_decl()->get_family_id();
}
return fid;
}
void term_graph::add_lit(app *l) {
app_ref lit(m);
family_id fid = get_family_id (m, l);
term_graph_plugin *pin = m_plugins.get_plugin(fid);
if (pin) {
lit = pin->process_lit(l);
} else {
lit = l;
}
m_lits.push_back(lit);
internalize_lit(lit);
}
bool term_graph::is_internalized(expr *a) {
return m_app2term.contains(a->get_id());
}
term* term_graph::get_term(expr *a) {
term *res;
return m_app2term.find (a->get_id(), res) ? res : nullptr;
}
term *term_graph::mk_term(expr *a) {
term * t = alloc(term, a, m_app2term);
if (t->get_num_args() == 0 && m.is_unique_value(a)){
t->mark_as_interpreted();
}
m_terms.push_back(t);
m_app2term.insert(a->get_id(), t);
return t;
}
term* term_graph::internalize_term(expr *t) {
term* res = get_term(t);
if (res) {
todo.pop_back();
continue;
}
unsigned sz = todo.size();
if (is_app(t)) {
for (expr * arg : *::to_app(t)) {
if (!get_term(arg))
todo.push_back(arg);
if (res) return res;
ptr_buffer<expr> todo;
todo.push_back(t);
while (!todo.empty()) {
res = get_term(t);
if (res) {
todo.pop_back();
continue;
}
unsigned sz = todo.size();
if (is_app(t)) {
for (expr * arg : *::to_app(t)) {
if (!get_term(arg))
todo.push_back(arg);
}
}
if (sz < todo.size()) continue;
todo.pop_back();
res = mk_term(t);
}
if (sz < todo.size()) continue;
todo.pop_back();
res = mk_term(t);
}
return res;
}
void term_graph::internalize_eq(expr *a1, expr* a2) {
merge(internalize_term(a1)->get_root(), internalize_term(a2)->get_root());
}
void term_graph::internalize_lit(expr* lit) {
expr *e1 = nullptr, *e2 = nullptr;
if (m.is_eq (lit, e1, e2)) {
internalize_eq (e1, e2);
}
else {
internalize_term(lit);
}
}
void term_graph::merge (term &t1, term &t2) {
SASSERT(t1.is_root());
SASSERT(t2.is_root());
if (&t1 == &t2) return;
term *a = &t1;
term *b = &t2;
if (a->get_class_size() > b->get_class_size()) {
std::swap(a, b);
}
// make 'a' be the root of the equivalence class of 'b'
b->set_root(*a);
for (term *it = &b->get_next(); it != b; it = &it->get_next()) {
// TBD: remove parents of it from the cg table.
it->set_root(*a);
}
// merge equivalence classes
a->merge_eq_class(*b);
// TBD: insert parents of b's old equilvalence class into the cg table
// and propagate equalities.
// -- merge might have invalidated term2map cache
// NSB: ??? what is ownership model of pinned in m_terms?
m_term2app.reset();
m_pinned.reset();
}
expr* term_graph::mk_app_core (expr *e) {
if (is_app(e)) {
expr_ref_vector kids(m);
app* a = ::to_app(e);
for (expr * arg : *a) {
kids.push_back (mk_app(arg));
}
app* res = m.mk_app(a->get_decl(), a->get_num_args(), kids.c_ptr());
m_pinned.push_back(res);
SASSERT(res);
return res;
}
else {
return e;
void term_graph::internalize_eq(expr *a1, expr* a2) {
SASSERT(m_merge.empty());
merge(internalize_term(a1)->get_root(), internalize_term(a2)->get_root());
merge_flush();
SASSERT(m_merge.empty());
}
void term_graph::internalize_lit(expr* lit) {
expr *e1 = nullptr, *e2 = nullptr;
if (m.is_eq (lit, e1, e2)) {
internalize_eq (e1, e2);
}
else {
internalize_term(lit);
}
}
void term_graph::merge_flush() {
while (!m_merge.empty()) {
term* t1 = m_merge.back().first;
term* t2 = m_merge.back().second;
m_merge.pop_back();
merge(*t1, *t2);
}
}
void term_graph::merge(term &t1, term &t2) {
// -- merge might invalidate term2map cache
m_term2app.reset();
m_pinned.reset();
SASSERT(t1.is_root());
SASSERT(t2.is_root());
if (&t1 == &t2) return;
term *a = &t1;
term *b = &t2;
if (a->get_class_size() > b->get_class_size()) {
std::swap(a, b);
}
// Remove parents of it from the cg table.
for (term* p : term::parents(b)) {
if (!p->is_marked()) {
p->set_mark(true);
m_cg_table.erase(p);
}
}
// make 'a' be the root of the equivalence class of 'b'
b->set_root(*a);
for (term *it = &b->get_next(); it != b; it = &it->get_next()) {
it->set_root(*a);
}
// merge equivalence classes
a->merge_eq_class(*b);
// Insert parents of b's old equilvalence class into the cg table
for (term* p : term::parents(a)) {
if (p->is_marked()) {
term* p_old = m_cg_table.insert_if_not_there(p);
p->set_mark(false);
a->add_parent(p);
// propagate new equalities.
if (p->get_root().get_id() != p_old->get_root().get_id()) {
m_merge.push_back(std::make_pair(p, p_old));
}
}
}
}
expr* term_graph::mk_app_core (expr *e) {
if (is_app(e)) {
expr_ref_vector kids(m);
app* a = ::to_app(e);
for (expr * arg : *a) {
kids.push_back (mk_app(arg));
}
app* res = m.mk_app(a->get_decl(), a->get_num_args(), kids.c_ptr());
m_pinned.push_back(res);
return res;
}
else {
return e;
}
}
}
expr_ref term_graph::mk_app(term const &r) {
SASSERT(r.is_root());
@ -598,6 +625,7 @@ void term_graph::reset() {
std::for_each(m_terms.begin(), m_terms.end(), delete_proc<term>());
m_terms.reset();
m_lits.reset();
m_cg_table.reset();
}
expr_ref term_graph::mk_pure(term& t) {
@ -631,7 +659,7 @@ expr_ref_vector term_graph::project(func_decl_ref_vector const& decls, bool excl
if (t->get_root().is_marked()) continue;
// if exclude = true, but t in decls, then skip
// if exclude = false, but t not in decls, then skip
if (exclude != _decls.contains(t->get_decl_id())) {
if (exclude == _decls.contains(t->get_decl_id())) {
continue;
}
//
@ -662,7 +690,7 @@ expr_ref_vector term_graph::project(func_decl_ref_vector const& decls, bool excl
// walk each root. Then traverse each term in the equivalence class
// create pure variant of the terms (if possible)
// equate t0 (that comes from the root, which can be purified)
// with any other t1.
// with any other purifiable t1.
expr_ref_vector result(m);
m_term2app.reset();
m_pinned.reset();
@ -675,7 +703,7 @@ expr_ref_vector term_graph::project(func_decl_ref_vector const& decls, bool excl
roots.insert(t0);
for (term* r = &t->get_next(); r != t; r = &r->get_next()) {
// main symbol of term must be consistent with what is included/excluded
if (exclude != _decls.contains(r->get_decl_id())) {
if (exclude == _decls.contains(r->get_decl_id())) {
continue;
}
expr_ref t1 = mk_pure(*r);

View file

@ -37,18 +37,23 @@ namespace qe {
/// Process (and potentially augment) a literal
virtual app_ref process_lit (app *lit) = 0;
};
class term_graph {
struct term_hash { unsigned operator()(term const* t) const; };
struct term_eq { bool operator()(term const* a, term const* b) const; };
ast_manager & m;
ptr_vector<term> m_terms;
app_ref_vector m_lits; // NSB: expr_ref_vector?
u_map<term* > m_app2term;
ast_ref_vector m_pinned;
u_map<expr*> m_term2app;
plugin_manager<term_graph_plugin> m_plugins;
ptr_hashtable<term, term_hash, term_eq> m_cg_table;
vector<std::pair<term*,term*>> m_merge;
void merge(term &t1, term &t2);
void merge_flush();
term *mk_term(expr *t);
term *get_term(expr *t);