3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-25 01:55:32 +00:00

Tabs, formatting.

This commit is contained in:
Christoph M. Wintersteiger 2017-09-17 14:29:32 +01:00
parent 8871cb120a
commit 00651f8f21
63 changed files with 715 additions and 717 deletions

View file

@ -21,6 +21,7 @@
#pragma once
#include "duality/duality_wrapper.h"
#include <vector>
#include <list>
#include <map>
@ -41,9 +42,9 @@ namespace Duality {
typedef expr Term;
Z3User(context &_ctx) : ctx(_ctx){}
const char *string_of_int(int n);
Term conjoin(const std::vector<Term> &args);
Term sum(const std::vector<Term> &args);
@ -130,58 +131,58 @@ namespace Duality {
/** This class represents a relation post-fixed point (RPFP) problem as
* a "problem graph". The graph consists of Nodes and hyper-edges.
*
*
* A node consists of
* - Annotation, a symbolic relation
* - Bound, a symbolic relation giving an upper bound on Annotation
*
*
*
* A hyper-edge consists of:
* - Children, a sequence of children Nodes,
* - F, a symbolic relational transformer,
* - Parent, a single parent Node.
*
*
* The graph is "solved" when:
* - For every Node n, n.Annotation subseteq n.Bound
* - For every hyperedge e, e.F(e.Children.Annotation) subseteq e.Parent.Annotation
*
*
* where, if x is a sequence of Nodes, x.Annotation is the sequences
* of Annotations of the nodes in the sequence.
*
*
* A symbolic Transformer consists of
* - RelParams, a sequence of relational symbols
* - IndParams, a sequence of individual symbols
* - Formula, a formula over RelParams and IndParams
*
*
* A Transformer t represents a function that takes sequence R of relations
* and yields the relation lambda (t.Indparams). Formula(R/RelParams).
*
*
* As a special case, a nullary Transformer (where RelParams is the empty sequence)
* represents a fixed relation.
*
*
* An RPFP consists of
* - Nodes, a set of Nodes
* - Edges, a set of hyper-edges
* - Context, a prover context that contains formula AST's
*
*
* Multiple RPFP's can use the same Context, but you should be careful
* that only one RPFP asserts constraints in the context at any time.
*
* that only one RPFP asserts constraints in the context at any time.
*
* */
class RPFP : public Z3User
{
public:
class Edge;
class Node;
bool HornClauses;
/** Interface class for interpolating solver. */
class LogicSolver {
public:
context *ctx; /** Z3 context for formulas */
solver *slvr; /** Z3 solver */
bool need_goals; /** Can the solver use the goal tree to optimize interpolants? */
@ -191,7 +192,7 @@ namespace Duality {
"assumptions" are currently asserted in the solver. The return
value indicates whether the assertions are satisfiable. In the
UNSAT case, a tree interpolant is returned in "interpolants".
In the SAT case, a model is returned.
In the SAT case, a model is returned.
*/
virtual
@ -201,7 +202,7 @@ namespace Duality {
TermTree *goals = 0,
bool weak = false
) = 0;
/** Declare a constant in the background theory. */
virtual void declare_constant(const func_decl &f) = 0;
@ -319,7 +320,7 @@ namespace Duality {
virtual void declare_constant(const func_decl &f){
bckg.insert(f);
}
/** Is this a background constant? */
virtual bool is_constant(const func_decl &f){
return bckg.find(f) != bckg.end();
@ -344,9 +345,9 @@ namespace Duality {
static iZ3LogicSolver *CreateLogicSolver(config &_config){
return new iZ3LogicSolver(_config);
}
#endif
#endif
/** Create a logic solver from a low-level Z3 context.
/** Create a logic solver from a low-level Z3 context.
Only use this if you know what you're doing. */
static iZ3LogicSolver *CreateLogicSolver(context c){
return new iZ3LogicSolver(c);
@ -357,7 +358,7 @@ namespace Duality {
protected:
int nodeCount;
int edgeCount;
class stack_entry
{
public:
@ -365,8 +366,8 @@ namespace Duality {
std::list<Node *> nodes;
std::list<std::pair<Edge *,Term> > constraints;
};
public:
model dualModel;
protected:
@ -375,14 +376,14 @@ namespace Duality {
std::vector<Term> axioms; // only saved here for printing purposes
solver &aux_solver;
hash_set<ast> *proof_core;
public:
/** Construct an RPFP graph with a given interpolating prover context. It is allowed to
have multiple RPFP's use the same context, but you should never have teo RPFP's
with the same conext asserting nodes or edges at the same time. Note, if you create
axioms in one RPFP, them create a second RPFP with the same context, the second will
inherit the axioms.
inherit the axioms.
*/
RPFP(LogicSolver *_ls) : Z3User(*(_ls->ctx)), dualModel(*(_ls->ctx)), aux_solver(_ls->aux_solver)
@ -396,7 +397,7 @@ namespace Duality {
}
virtual ~RPFP();
/** Symbolic representation of a relational transformer */
class Transformer
{
@ -406,12 +407,12 @@ namespace Duality {
Term Formula;
RPFP *owner;
hash_map<std::string,Term> labels;
Transformer *Clone()
{
return new Transformer(*this);
}
void SetEmpty(){
Formula = owner->ctx.bool_val(false);
}
@ -451,7 +452,7 @@ namespace Duality {
void Complement(){
Formula = !Formula;
}
void Simplify(){
Formula = Formula.simplify();
}
@ -459,7 +460,7 @@ namespace Duality {
Transformer(const std::vector<FuncDecl> &_RelParams, const std::vector<Term> &_IndParams, const Term &_Formula, RPFP *_owner)
: RelParams(_RelParams), IndParams(_IndParams), Formula(_Formula) {owner = _owner;}
};
/** Create a symbolic transformer. */
Transformer CreateTransformer(const std::vector<FuncDecl> &_RelParams, const std::vector<Term> &_IndParams, const Term &_Formula)
{
@ -469,13 +470,13 @@ namespace Duality {
// t.labels = foo.Item2;
return Transformer(_RelParams,_IndParams,_Formula,this);
}
/** Create a relation (nullary relational transformer) */
Transformer CreateRelation(const std::vector<Term> &_IndParams, const Term &_Formula)
{
return CreateTransformer(std::vector<FuncDecl>(), _IndParams, _Formula);
}
/** A node in the RPFP graph */
class Node
{
@ -491,17 +492,17 @@ namespace Duality {
Term dual;
Node *map;
unsigned recursion_bound;
Node(const FuncDecl &_Name, const Transformer &_Annotation, const Transformer &_Bound, const Transformer &_Underapprox, const Term &_dual, RPFP *_owner, int _number)
: Name(_Name), Annotation(_Annotation), Bound(_Bound), Underapprox(_Underapprox), dual(_dual) {owner = _owner; number = _number; Outgoing = 0; recursion_bound = UINT_MAX;}
};
/** Create a node in the graph. The input is a term R(v_1...v_n)
* where R is an arbitrary relational symbol and v_1...v_n are
* arbitary distinct variables. The names are only of mnemonic value,
* however, the number and type of arguments determine the type
* of the relation at this node. */
Node *CreateNode(const Term &t)
{
std::vector<Term> _IndParams;
@ -517,9 +518,9 @@ namespace Duality {
nodes.push_back(n);
return n;
}
/** Clone a node (can be from another graph). */
Node *CloneNode(Node *old)
{
Node *n = new Node(old->Name,
@ -534,7 +535,7 @@ namespace Duality {
n->map = old;
return n;
}
/** Delete a node. You can only do this if not connected to any edges.*/
void DeleteNode(Node *node){
if(node->Outgoing || !node->Incoming.empty())
@ -549,7 +550,7 @@ namespace Duality {
}
/** This class represents a hyper-edge in the RPFP graph */
class Edge
{
public:
@ -565,15 +566,15 @@ namespace Duality {
Edge *map;
Term labeled;
std::vector<Term> constraints;
Edge(Node *_Parent, const Transformer &_F, const std::vector<Node *> &_Children, RPFP *_owner, int _number)
: F(_F), Parent(_Parent), Children(_Children), dual(expr(_owner->ctx)) {
owner = _owner;
number = _number;
}
};
/** Create a hyper-edge. */
Edge *CreateEdge(Node *_Parent, const Transformer &_F, const std::vector<Node *> &_Children)
{
@ -584,8 +585,8 @@ namespace Duality {
edges.push_back(e);
return e;
}
/** Delete a hyper-edge and unlink it from any nodes. */
void DeleteEdge(Edge *edge){
if(edge->Parent)
@ -607,19 +608,19 @@ namespace Duality {
}
delete edge;
}
/** Create an edge that lower-bounds its parent. */
Edge *CreateLowerBoundEdge(Node *_Parent)
{
return CreateEdge(_Parent, _Parent->Annotation, std::vector<Node *>());
}
/** For incremental solving, asserts the constraint associated
* with this edge in the SMT context. If this edge is removed,
* you must pop the context accordingly. The second argument is
* the number of pushes we are inside. */
virtual void AssertEdge(Edge *e, int persist = 0, bool with_children = false, bool underapprox = false);
/* Constrain an edge by the annotation of one of its children. */
@ -629,19 +630,19 @@ namespace Duality {
/** For incremental solving, asserts the negation of the upper bound associated
* with a node.
* */
void AssertNode(Node *n);
/** Assert a constraint on an edge in the SMT context.
/** Assert a constraint on an edge in the SMT context.
*/
void ConstrainEdge(Edge *e, const Term &t);
/** Fix the truth values of atomic propositions in the given
edge to their values in the current assignment. */
void FixCurrentState(Edge *root);
void FixCurrentStateFull(Edge *edge, const expr &extra);
void FixCurrentStateFull(Edge *edge, const std::vector<expr> &assumps, const hash_map<ast,expr> &renaming);
/** Declare a constant in the background theory. */
@ -660,78 +661,78 @@ namespace Duality {
#if 0
/** Do not call this. */
void RemoveAxiom(const Term &t);
#endif
/** Solve an RPFP graph. This means either strengthen the annotation
* so that the bound at the given root node is satisfied, or
* show that this cannot be done by giving a dual solution
* (i.e., a counterexample).
*
* show that this cannot be done by giving a dual solution
* (i.e., a counterexample).
*
* In the current implementation, this only works for graphs that
* are:
* - tree-like
*
*
* - closed.
*
*
* In a tree-like graph, every nod has out most one incoming and one out-going edge,
* and there are no cycles. In a closed graph, every node has exactly one out-going
* edge. This means that the leaves of the tree are all hyper-edges with no
* children. Such an edge represents a relation (nullary transformer) and thus
* a lower bound on its parent. The parameter root must be the root of this tree.
*
*
* If Solve returns LBool.False, this indicates success. The annotation of the tree
* has been updated to satisfy the upper bound at the root.
*
* has been updated to satisfy the upper bound at the root.
*
* If Solve returns LBool.True, this indicates a counterexample. For each edge,
* you can then call Eval to determine the values of symbols in the transformer formula.
* You can also call Empty on a node to determine if its value in the counterexample
* is the empty relation.
*
*
* \param root The root of the tree
* \param persist Number of context pops through which result should persist
*
*
* \param persist Number of context pops through which result should persist
*
*
*/
lbool Solve(Node *root, int persist);
/** Same as Solve, but annotates only a single node. */
lbool SolveSingleNode(Node *root, Node *node);
/** Get the constraint tree (but don't solve it) */
TermTree *GetConstraintTree(Node *root, Node *skip_descendant = 0);
/** Dispose of the dual model (counterexample) if there is one. */
void DisposeDualModel();
/** Check satisfiability of asserted edges and nodes. Same functionality as
* Solve, except no primal solution (interpolant) is generated in the unsat case. */
check_result Check(Node *root, std::vector<Node *> underapproxes = std::vector<Node *>(),
* Solve, except no primal solution (interpolant) is generated in the unsat case. */
check_result Check(Node *root, std::vector<Node *> underapproxes = std::vector<Node *>(),
std::vector<Node *> *underapprox_core = 0);
/** Update the model, attempting to make the propositional literals in assumps true. If possible,
return sat, else return unsat and keep the old model. */
check_result CheckUpdateModel(Node *root, std::vector<expr> assumps);
/** Determines the value in the counterexample of a symbol occuring in the transformer formula of
* a given edge. */
Term Eval(Edge *e, Term t);
/** Return the fact derived at node p in a counterexample. */
Term EvalNode(Node *p);
/** Returns true if the given node is empty in the primal solution. For proecudure summaries,
this means that the procedure is not called in the current counter-model. */
bool Empty(Node *p);
/** Compute an underapproximation of every node in a tree rooted at "root",
@ -747,11 +748,11 @@ namespace Duality {
void InterpolateByCases(Node *root, Node *node);
/** Push a scope. Assertions made after Push can be undone by Pop. */
void Push();
/** Exception thrown when bad clause is encountered */
struct bad_clause {
std::string msg;
int i;
@ -777,7 +778,7 @@ namespace Duality {
// thrown on internal error
struct Bad {
};
// thrown on more serious internal error
struct ReallyBad {
};
@ -786,56 +787,56 @@ namespace Duality {
struct greedy_reduce_failed {};
/** Pop a scope (see Push). Note, you cannot pop axioms. */
void Pop(int num_scopes);
/** Erase the proof by performing a Pop, Push and re-assertion of
all the popped constraints */
void PopPush();
/** Return true if the given edge is used in the proof of unsat.
Can be called only after Solve or Check returns an unsat result. */
bool EdgeUsedInProof(Edge *edge);
/** Convert a collection of clauses to Nodes and Edges in the RPFP.
Predicate unknowns are uninterpreted predicates not
occurring in the background theory.
Clauses are of the form
Clauses are of the form
B => P(t_1,...,t_k)
where P is a predicate unknown and predicate unknowns
occur only positivey in H and only under existential
quantifiers in prenex form.
Each predicate unknown maps to a node. Each clause maps to
an edge. Let C be a clause B => P(t_1,...,t_k) where the
sequence of predicate unknowns occurring in B (in order
of occurrence) is P_1..P_n. The clause maps to a transformer
T where:
T.Relparams = P_1..P_n
T.Indparams = x_1...x+k
T.Formula = B /\ t_1 = x_1 /\ ... /\ t_k = x_k
Throws exception bad_clause(msg,i) if a clause i is
in the wrong form.
*/
struct label_struct {
symbol name;
expr value;
bool pos;
label_struct(const symbol &s, const expr &e, bool b)
: name(s), value(e), pos(b) {}
label_struct(const symbol &s, const expr &e, bool b)
: name(s), value(e), pos(b) {}
};
#ifdef _WINDOWS
__declspec(dllexport)
#endif
@ -847,7 +848,7 @@ namespace Duality {
void WriteCounterexample(std::ostream &s, Node *node);
enum FileFormat {DualityFormat, SMT2Format, HornFormat};
enum FileFormat {DualityFormat, SMT2Format, HornFormat};
/** Write the RPFP to a file (currently in SMTLIB 1.2 format) */
void WriteProblemToFile(std::string filename, FileFormat format = DualityFormat);
@ -870,9 +871,9 @@ namespace Duality {
/** Fuse a vector of transformers. If the total number of inputs of the transformers
is N, then the result is an N-ary transfomer whose output is the union of
the outputs of the given transformers. The is, suppose we have a vetor of transfoermers
{T_i(r_i1,...,r_iN(i) : i=1..M}. The the result is a transformer
F(r_11,...,r_iN(1),...,r_M1,...,r_MN(M)) =
{T_i(r_i1,...,r_iN(i) : i=1..M}. The the result is a transformer
F(r_11,...,r_iN(1),...,r_M1,...,r_MN(M)) =
T_1(r_11,...,r_iN(1)) U ... U T_M(r_M1,...,r_MN(M))
*/
@ -921,7 +922,7 @@ namespace Duality {
}
protected:
void ClearProofCore(){
if(proof_core)
delete proof_core;
@ -929,7 +930,7 @@ namespace Duality {
}
Term SuffixVariable(const Term &t, int n);
Term HideVariable(const Term &t, int n);
void RedVars(Node *node, Term &b, std::vector<Term> &v);
@ -958,16 +959,16 @@ namespace Duality {
#if 0
void WriteInterps(System.IO.StreamWriter f, TermTree t);
#endif
#endif
void WriteEdgeVars(Edge *e, hash_map<ast,int> &memo, const Term &t, std::ostream &s);
void WriteEdgeAssignment(std::ostream &s, Edge *e);
// Scan the clause body for occurrences of the predicate unknowns
Term ScanBody(hash_map<ast,Term> &memo,
Term ScanBody(hash_map<ast,Term> &memo,
const Term &t,
hash_map<func_decl,Node *> &pmap,
std::vector<func_decl> &res,
@ -1035,7 +1036,7 @@ namespace Duality {
void ConstrainEdgeLocalized(Edge *e, const Term &t);
void GreedyReduce(solver &s, std::vector<expr> &conjuncts);
void NegateLits(std::vector<expr> &lits);
expr SimplifyOr(std::vector<expr> &lits);
@ -1053,7 +1054,7 @@ namespace Duality {
void GetGroundLitsUnderQuants(hash_set<ast> *memo, const Term &f, std::vector<Term> &res, int under);
Term StrengthenFormulaByCaseSplitting(const Term &f, std::vector<expr> &case_lits);
expr NegateLit(const expr &f);
expr GetEdgeFormula(Edge *e, int persist, bool with_children, bool underapprox);
@ -1065,7 +1066,7 @@ namespace Duality {
expr UnhoistPullRec(hash_map<ast,expr> & memo, const expr &w, hash_map<ast,expr> & init_defs, hash_map<ast,expr> & const_params, hash_map<ast,expr> &const_params_inv, std::vector<expr> &new_params);
void AddParamsToTransformer(Transformer &trans, const std::vector<expr> &params);
expr AddParamsToApp(const expr &app, const func_decl &new_decl, const std::vector<expr> &params);
expr GetRelRec(hash_set<ast> &memo, const expr &t, const func_decl &rel);
@ -1081,7 +1082,7 @@ namespace Duality {
void UnhoistLoop(Edge *loop_edge, Edge *init_edge);
void Unhoist();
Term ElimIteRec(hash_map<ast,expr> &memo, const Term &t, std::vector<expr> &cnsts);
Term ElimIte(const Term &t);
@ -1089,11 +1090,11 @@ namespace Duality {
void MarkLiveNodes(hash_map<Node *,std::vector<Edge *> > &outgoing, hash_set<Node *> &live_nodes, Node *node);
virtual void slvr_add(const expr &e);
virtual void slvr_pop(int i);
virtual void slvr_push();
virtual check_result slvr_check(unsigned n = 0, expr * const assumptions = 0, unsigned *core_size = 0, expr *core = 0);
virtual lbool ls_interpolate_tree(TermTree *assumptions,
@ -1105,14 +1106,14 @@ namespace Duality {
virtual bool proof_core_contains(const expr &e);
};
/** RPFP solver base class. */
class Solver {
public:
class Counterexample {
private:
RPFP *tree;
@ -1148,18 +1149,18 @@ namespace Duality {
Counterexample &operator=(const Counterexample &);
Counterexample(const Counterexample &);
};
/** Solve the problem. You can optionally give an old
counterexample to use as a guide. This is chiefly useful for
abstraction refinement metholdologies, and is only used as a
heuristic. */
virtual bool Solve() = 0;
virtual Counterexample &GetCounterexample() = 0;
virtual bool SetOption(const std::string &option, const std::string &value) = 0;
/** Learn heuristic information from another solver. This
is chiefly useful for abstraction refinement, when we want to
solve a series of similar problems. */
@ -1184,7 +1185,7 @@ namespace Duality {
/** Object thrown on cancellation */
struct Canceled {};
/** Object thrown on incompleteness */
struct Incompleteness {};
};
@ -1235,16 +1236,16 @@ namespace Duality {
public:
/** appends assumption literals for edge to lits. if with_children is true,
includes that annotation of the edge's children.
*/
includes that annotation of the edge's children.
*/
void AssertEdgeCache(Edge *e, std::vector<Term> &lits, bool with_children = false);
/** appends assumption literals for node to lits */
void AssertNodeCache(Node *, std::vector<Term> lits);
/** check assumption lits, and return core */
check_result CheckCore(const std::vector<Term> &assumps, std::vector<Term> &core);
/** Clone another RPFP into this one, keeping a map */
void Clone(RPFP *other);
@ -1287,7 +1288,7 @@ namespace Duality {
uptr<solver> slvr;
};
hash_map<Edge *, edge_solver > edge_solvers;
#ifdef LIMIT_STACK_WEIGHT
struct weight_counter {
int val;
@ -1296,7 +1297,7 @@ namespace Duality {
std::swap(val,other.val);
}
};
struct big_stack_entry {
weight_counter weight_added;
std::vector<expr> new_alits;
@ -1319,11 +1320,11 @@ namespace Duality {
void ConstrainEdgeLocalizedCache(Edge *e, const Term &tl, std::vector<expr> &lits);
virtual void slvr_add(const expr &e);
virtual void slvr_pop(int i);
virtual void slvr_push();
virtual check_result slvr_check(unsigned n = 0, expr * const assumptions = 0, unsigned *core_size = 0, expr *core = 0);
virtual lbool ls_interpolate_tree(TermTree *assumptions,
@ -1348,7 +1349,7 @@ namespace Duality {
scoped_solver_for_edge(RPFP_caching *_rpfp, Edge *edge, bool models = false, bool axioms = false){
rpfp = _rpfp;
orig_slvr = rpfp->ls->slvr;
es = &(rpfp->SolverForEdge(edge,models,axioms));
es = &(rpfp->SolverForEdge(edge,models,axioms));
rpfp->ls->slvr = es->slvr.get();
rpfp->AssumptionLits.swap(es->AssumptionLits);
}

View file

@ -176,7 +176,7 @@ namespace Duality {
m_datalog_fid = m().mk_family_id("datalog_relation");
}
~context() { }
ast_manager &m() const {return *(ast_manager *)&mgr;}
void set(char const * param, char const * value) { m_config.set(param,value); }
@ -186,13 +186,13 @@ namespace Duality {
symbol str_symbol(char const * s);
symbol int_symbol(int n);
sort bool_sort();
sort int_sort();
sort real_sort();
sort bv_sort(unsigned sz);
sort array_sort(sort d, sort r);
func_decl function(symbol const & name, unsigned arity, sort const * domain, sort const & range);
func_decl function(char const * name, unsigned arity, sort const * domain, sort const & range);
func_decl function(char const * name, sort const & domain, sort const & range);
@ -210,22 +210,22 @@ namespace Duality {
expr int_const(char const * name);
expr real_const(char const * name);
expr bv_const(char const * name, unsigned sz);
expr bool_val(bool b);
expr int_val(int n);
expr int_val(unsigned n);
expr int_val(char const * n);
expr real_val(int n, int d);
expr real_val(int n);
expr real_val(unsigned n);
expr real_val(char const * n);
expr bv_val(int n, unsigned sz);
expr bv_val(unsigned n, unsigned sz);
expr bv_val(char const * n, unsigned sz);
expr num_val(int n, sort const & s);
expr mki(family_id fid, ::decl_kind dk, int n, ::expr **args);
@ -281,17 +281,17 @@ namespace Duality {
object(object const & s):m_ctx(s.m_ctx) {}
context & ctx() const { return *m_ctx; }
friend void check_context(object const & a, object const & b) { assert(a.m_ctx == b.m_ctx); }
ast_manager &m() const {return m_ctx->m();}
ast_manager &m() const {return m_ctx->m();}
};
class symbol : public object {
::symbol m_sym;
public:
symbol(context & c, ::symbol s):object(c), m_sym(s) {}
symbol(symbol const & s):object(s), m_sym(s.m_sym) {}
symbol(context & c, ::symbol s):object(c), m_sym(s) {}
symbol(symbol const & s):object(s), m_sym(s.m_sym) {}
symbol & operator=(symbol const & s) { m_ctx = s.m_ctx; m_sym = s.m_sym; return *this; }
operator ::symbol() const {return m_sym;}
std::string str() const {
operator ::symbol() const {return m_sym;}
std::string str() const {
if (m_sym.is_numerical()) {
std::ostringstream buffer;
buffer << m_sym.get_num();
@ -300,13 +300,13 @@ namespace Duality {
else {
return m_sym.bare_str();
}
}
friend std::ostream & operator<<(std::ostream & out, symbol const & s){
}
friend std::ostream & operator<<(std::ostream & out, symbol const & s) {
return out << s.str();
}
friend bool operator==(const symbol &x, const symbol &y){
}
friend bool operator==(const symbol &x, const symbol &y) {
return x.m_sym == y.m_sym;
}
}
};
class params : public config {};
@ -318,7 +318,7 @@ namespace Duality {
public:
::ast * const &raw() const {return _ast;}
ast_i(context & c, ::ast *a = 0) : object(c) {_ast = a;}
ast_i(){_ast = 0;}
bool eq(const ast_i &other) const {
return _ast == other._ast;
@ -345,19 +345,19 @@ namespace Duality {
operator ::ast*() const { return raw(); }
friend bool eq(ast const & a, ast const & b) { return a.raw() == b.raw(); }
ast(context &c, ::ast *a = 0) : ast_i(c,a) {
if(_ast)
m().inc_ref(a);
}
ast() {}
ast(const ast &other) : ast_i(other) {
if(_ast)
m().inc_ref(_ast);
}
ast &operator=(const ast &other) {
if(_ast)
m().dec_ref(_ast);
@ -367,7 +367,7 @@ namespace Duality {
m().inc_ref(_ast);
return *this;
}
~ast(){
if(_ast)
m().dec_ref(_ast);
@ -386,15 +386,15 @@ namespace Duality {
sort & operator=(sort const & s) { return static_cast<sort&>(ast::operator=(s)); }
bool is_bool() const { return m().is_bool(*this); }
bool is_int() const { return ctx().get_sort_kind(*this) == IntSort; }
bool is_real() const { return ctx().get_sort_kind(*this) == RealSort; }
bool is_int() const { return ctx().get_sort_kind(*this) == IntSort; }
bool is_real() const { return ctx().get_sort_kind(*this) == RealSort; }
bool is_arith() const;
bool is_array() const { return ctx().get_sort_kind(*this) == ArraySort; }
bool is_datatype() const;
bool is_relation() const;
bool is_finite_domain() const;
bool is_array() const { return ctx().get_sort_kind(*this) == ArraySort; }
bool is_datatype() const;
bool is_relation() const;
bool is_finite_domain() const;
sort array_domain() const;
sort array_range() const;
@ -404,7 +404,7 @@ namespace Duality {
}
};
class func_decl : public ast {
public:
func_decl() : ast() {}
@ -413,7 +413,7 @@ namespace Duality {
func_decl(func_decl const & s):ast(s) {}
operator ::func_decl*() const { return to_func_decl(*this); }
func_decl & operator=(func_decl const & s) { return static_cast<func_decl&>(ast::operator=(s)); }
unsigned arity() const;
sort domain(unsigned i) const;
sort range() const;
@ -434,9 +434,9 @@ namespace Duality {
expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const;
expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const;
func_decl get_func_decl_parameter(unsigned idx){
func_decl get_func_decl_parameter(unsigned idx){
return func_decl(ctx(),to_func_decl(to_func_decl(raw())->get_parameters()[idx].get_ast()));
}
}
};
@ -447,8 +447,8 @@ namespace Duality {
expr(context & c, ::ast *n):ast(c, n) {}
expr(expr const & n):ast(n) {}
expr & operator=(expr const & n) { return static_cast<expr&>(ast::operator=(n)); }
operator ::expr*() const { return to_expr(raw()); }
unsigned get_id() const {return to_expr(raw())->get_id();}
operator ::expr*() const { return to_expr(raw()); }
unsigned get_id() const {return to_expr(raw())->get_id();}
sort get_sort() const { return sort(ctx(),m().get_sort(to_expr(raw()))); }
@ -460,27 +460,27 @@ namespace Duality {
bool is_datatype() const { return get_sort().is_datatype(); }
bool is_relation() const { return get_sort().is_relation(); }
bool is_finite_domain() const { return get_sort().is_finite_domain(); }
bool is_true() const {return is_app() && decl().get_decl_kind() == True; }
bool is_true() const {return is_app() && decl().get_decl_kind() == True; }
bool is_numeral() const {
return is_app() && decl().get_decl_kind() == OtherArith && m().is_unique_value(to_expr(raw()));
}
bool is_app() const {return raw()->get_kind() == AST_APP;}
}
bool is_app() const {return raw()->get_kind() == AST_APP;}
bool is_quantifier() const {return raw()->get_kind() == AST_QUANTIFIER;}
bool is_var() const {return raw()->get_kind() == AST_VAR;}
bool is_label (bool &pos,std::vector<symbol> &names) const ;
bool is_ground() const {return to_app(raw())->is_ground();}
bool has_quantifiers() const {return to_app(raw())->has_quantifiers();}
bool has_free(int idx) const {
bool is_label (bool &pos,std::vector<symbol> &names) const ;
bool is_ground() const {return to_app(raw())->is_ground();}
bool has_quantifiers() const {return to_app(raw())->has_quantifiers();}
bool has_free(int idx) const {
used_vars proc;
proc.process(to_expr(raw()));
return proc.contains(idx);
}
unsigned get_max_var_idx_plus_1() const {
}
unsigned get_max_var_idx_plus_1() const {
used_vars proc;
proc.process(to_expr(raw()));
return proc.get_max_found_var_idx_plus_1();
}
}
// operator Z3_app() const { assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }
func_decl decl() const {return func_decl(ctx(),to_app(raw())->get_decl());}
@ -493,11 +493,11 @@ namespace Duality {
return 1;
case AST_VAR:
return 0;
default:;
default:;
}
SASSERT(0);
return 0;
}
}
expr arg(unsigned i) const {
ast_kind dk = raw()->get_kind();
switch(dk){
@ -509,25 +509,25 @@ namespace Duality {
}
assert(0);
return expr();
}
}
expr body() const {
return ctx().cook(to_quantifier(raw())->get_expr());
}
}
friend expr operator!(expr const & a) {
// ::expr *e = a;
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_NOT,a));
}
}
friend expr operator&&(expr const & a, expr const & b) {
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_AND,a,b));
}
}
friend expr operator||(expr const & a, expr const & b) {
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_OR,a,b));
}
friend expr implies(expr const & a, expr const & b) {
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_IMPLIES,a,b));
}
@ -546,12 +546,12 @@ namespace Duality {
friend expr operator*(expr const & a, expr const & b) {
return a.ctx().make(Times,a,b); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_MUL,a,b));
}
}
friend expr operator/(expr const & a, expr const & b) {
return a.ctx().make(Div,a,b); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_DIV,a,b));
}
friend expr operator-(expr const & a) {
return a.ctx().make(Uminus,a); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_UMINUS,a));
}
@ -562,71 +562,71 @@ namespace Duality {
friend expr operator<=(expr const & a, expr const & b) {
return a.ctx().make(Leq,a,b); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_LE,a,b));
}
}
friend expr operator>=(expr const & a, expr const & b) {
return a.ctx().make(Geq,a,b); //expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_GE,a,b));
}
friend expr operator<(expr const & a, expr const & b) {
return a.ctx().make(Lt,a,b); expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_LT,a,b));
}
friend expr operator>(expr const & a, expr const & b) {
return a.ctx().make(Gt,a,b); expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_GT,a,b));
}
}
expr simplify() const;
expr simplify(params const & p) const;
expr qe_lite() const;
expr qe_lite(const std::set<int> &idxs, bool index_of_bound) const;
expr qe_lite(const std::set<int> &idxs, bool index_of_bound) const;
friend expr clone_quantifier(const expr &, const expr &);
friend expr clone_quantifier(const expr &, const expr &);
friend expr clone_quantifier(const expr &q, const expr &b, const std::vector<expr> &patterns);
friend expr clone_quantifier(decl_kind, const expr &, const expr &);
friend expr clone_quantifier(decl_kind, const expr &, const expr &);
friend std::ostream & operator<<(std::ostream & out, expr const & m){
m.ctx().print_expr(out,m);
return out;
}
}
void get_patterns(std::vector<expr> &pats) const ;
void get_patterns(std::vector<expr> &pats) const ;
unsigned get_quantifier_num_bound() const {
unsigned get_quantifier_num_bound() const {
return to_quantifier(raw())->get_num_decls();
}
}
unsigned get_index_value() const {
unsigned get_index_value() const {
var* va = to_var(raw());
return va->get_idx();
}
}
bool is_quantifier_forall() const {
return to_quantifier(raw())->is_forall();
}
}
sort get_quantifier_bound_sort(unsigned n) const {
sort get_quantifier_bound_sort(unsigned n) const {
return sort(ctx(),to_quantifier(raw())->get_decl_sort(n));
}
}
symbol get_quantifier_bound_name(unsigned n) const {
symbol get_quantifier_bound_name(unsigned n) const {
return symbol(ctx(),to_quantifier(raw())->get_decl_names()[n]);
}
}
friend expr forall(const std::vector<expr> &quants, const expr &body);
friend expr forall(const std::vector<expr> &quants, const expr &body);
friend expr exists(const std::vector<expr> &quants, const expr &body);
friend expr exists(const std::vector<expr> &quants, const expr &body);
};
typedef ::decl_kind pfrule;
class proof : public ast {
public:
proof(context & c):ast(c) {}
@ -643,15 +643,15 @@ namespace Duality {
unsigned num_prems() const {
return to_app(raw())->get_num_args() - 1;
}
expr conc() const {
return ctx().cook(to_app(raw())->get_arg(num_prems()));
}
proof prem(unsigned i) const {
return proof(ctx(),to_app(to_app(raw())->get_arg(i)));
}
void get_assumptions(std::vector<expr> &assumps);
};
@ -675,12 +675,12 @@ namespace Duality {
T back() const { return operator[](size() - 1); }
void pop_back() { assert(size() > 0); resize(size() - 1); }
bool empty() const { return size() == 0; }
ast_vector_tpl & operator=(ast_vector_tpl const & s) {
Z3_ast_vector_inc_ref(s.ctx(), s.m_vector);
ast_vector_tpl & operator=(ast_vector_tpl const & s) {
Z3_ast_vector_inc_ref(s.ctx(), s.m_vector);
// Z3_ast_vector_dec_ref(ctx(), m_vector);
m_ctx = s.m_ctx;
m_ctx = s.m_ctx;
m_vector = s.m_vector;
return *this;
return *this;
}
friend std::ostream & operator<<(std::ostream & out, ast_vector_tpl const & v) { out << Z3_ast_vector_to_string(v.ctx(), v); return out; }
};
@ -705,9 +705,9 @@ namespace Duality {
~func_interp() { }
operator ::func_interp *() const { return m_interp; }
func_interp & operator=(func_interp const & s) {
m_ctx = s.m_ctx;
m_ctx = s.m_ctx;
m_interp = s.m_interp;
return *this;
return *this;
}
unsigned num_entries() const { return m_interp->num_entries(); }
expr get_arg(unsigned ent, unsigned arg) const {
@ -729,32 +729,32 @@ namespace Duality {
m_model = m;
}
public:
model(context & c, ::model * m = 0):object(c), m_model(m) { }
model(model const & s):object(s), m_model(s.m_model) { }
~model() { }
model(context & c, ::model * m = 0):object(c), m_model(m) { }
model(model const & s):object(s), m_model(s.m_model) { }
~model() { }
operator ::model *() const { return m_model.get(); }
model & operator=(model const & s) {
// ::model *_inc_ref(s.ctx(), s.m_model);
// ::model *_dec_ref(ctx(), m_model);
m_ctx = s.m_ctx;
m_ctx = s.m_ctx;
m_model = s.m_model.get();
return *this;
return *this;
}
model & operator=(::model *s) {
m_model = s;
return *this;
m_model = s;
return *this;
}
bool null() const {return !m_model;}
bool null() const {return !m_model;}
expr eval(expr const & n, bool model_completion=true) const {
::model * _m = m_model.get();
expr_ref result(ctx().m());
_m->eval(n, result, model_completion);
return expr(ctx(), result);
}
void show() const;
void show_hash() const;
void show_hash() const;
unsigned num_consts() const {return m_model.get()->get_num_constants();}
unsigned num_funcs() const {return m_model.get()->get_num_functions();}
@ -765,11 +765,11 @@ namespace Duality {
expr get_const_interp(func_decl f) const {
return ctx().cook(m_model->get_const_interp(to_func_decl(f.raw())));
}
}
func_interp get_func_interp(func_decl f) const {
return func_interp(ctx(),m_model->get_func_interp(to_func_decl(f.raw())));
}
}
#if 0
friend std::ostream & operator<<(std::ostream & out, model const & m) { out << Z3_model_to_string(m.ctx(), m); return out; }
@ -792,9 +792,9 @@ namespace Duality {
stats & operator=(stats const & s) {
Z3_stats_inc_ref(s.ctx(), s.m_stats);
if (m_stats) Z3_stats_dec_ref(ctx(), m_stats);
m_ctx = s.m_ctx;
m_ctx = s.m_ctx;
m_stats = s.m_stats;
return *this;
return *this;
}
unsigned size() const { return Z3_stats_size(ctx(), m_stats); }
std::string key(unsigned i) const { Z3_string s = Z3_stats_get_key(ctx(), m_stats, i); check_error(); return s; }
@ -820,7 +820,7 @@ namespace Duality {
void assert_cnst(const expr &cnst);
};
inline std::ostream & operator<<(std::ostream & out, check_result r) {
inline std::ostream & operator<<(std::ostream & out, check_result r) {
if (r == unsat) out << "unsat";
else if (r == sat) out << "sat";
else out << "unknown";
@ -837,54 +837,54 @@ namespace Duality {
protected:
::solver *m_solver;
model the_model;
bool canceled;
proof_gen_mode m_mode;
bool extensional;
bool canceled;
proof_gen_mode m_mode;
bool extensional;
public:
solver(context & c, bool extensional = false, bool models = true);
solver(context & c, ::solver *s):object(c),the_model(c) { m_solver = s; canceled = false;}
solver(solver const & s):object(s), the_model(s.the_model) { m_solver = s.m_solver; canceled = false;}
solver(context & c, ::solver *s):object(c),the_model(c) { m_solver = s; canceled = false;}
solver(solver const & s):object(s), the_model(s.the_model) { m_solver = s.m_solver; canceled = false;}
~solver() {
if(m_solver)
dealloc(m_solver);
}
operator ::solver*() const { return m_solver; }
solver & operator=(solver const & s) {
m_ctx = s.m_ctx;
m_solver = s.m_solver;
the_model = s.the_model;
m_mode = s.m_mode;
return *this;
}
struct cancel_exception {};
void checkpoint(){
operator ::solver*() const { return m_solver; }
solver & operator=(solver const & s) {
m_ctx = s.m_ctx;
m_solver = s.m_solver;
the_model = s.the_model;
m_mode = s.m_mode;
return *this;
}
struct cancel_exception {};
void checkpoint(){
if(canceled)
throw(cancel_exception());
}
}
// void set(params const & p) { Z3_solver_set_params(ctx(), m_solver, p); check_error(); }
void push() { scoped_proof_mode spm(m(),m_mode); m_solver->push(); }
void pop(unsigned n = 1) { scoped_proof_mode spm(m(),m_mode); m_solver->pop(n); }
// void reset() { Z3_solver_reset(ctx(), m_solver); check_error(); }
void add(expr const & e) { scoped_proof_mode spm(m(),m_mode); m_solver->assert_expr(e); }
check_result check() {
scoped_proof_mode spm(m(),m_mode);
check_result check() {
scoped_proof_mode spm(m(),m_mode);
checkpoint();
lbool r = m_solver->check_sat(0,0);
model_ref m;
m_solver->get_model(m);
the_model = m.get();
return to_check_result(r);
}
check_result check_keep_model(unsigned n, expr * const assumptions, unsigned *core_size = 0, expr *core = 0) {
scoped_proof_mode spm(m(),m_mode);
}
check_result check_keep_model(unsigned n, expr * const assumptions, unsigned *core_size = 0, expr *core = 0) {
scoped_proof_mode spm(m(),m_mode);
model old_model(the_model);
check_result res = check(n,assumptions,core_size,core);
if(the_model == 0)
the_model = old_model;
return res;
}
}
check_result check(unsigned n, expr * const assumptions, unsigned *core_size = 0, expr *core = 0) {
scoped_proof_mode spm(m(),m_mode);
scoped_proof_mode spm(m(),m_mode);
checkpoint();
std::vector< ::expr *> _assumptions(n);
for (unsigned i = 0; i < n; i++) {
@ -892,7 +892,7 @@ namespace Duality {
}
the_model = 0;
lbool r = m_solver->check_sat(n, VEC2PTR(_assumptions));
if(core_size && core){
ptr_vector< ::expr> _core;
m_solver->get_unsat_core(_core);
@ -905,20 +905,20 @@ namespace Duality {
m_solver->get_model(m);
the_model = m.get();
return to_check_result(r);
return to_check_result(r);
}
#if 0
check_result check(expr_vector assumptions) {
scoped_proof_mode spm(m(),m_mode);
check_result check(expr_vector assumptions) {
scoped_proof_mode spm(m(),m_mode);
unsigned n = assumptions.size();
z3array<Z3_ast> _assumptions(n);
for (unsigned i = 0; i < n; i++) {
check_context(*this, assumptions[i]);
_assumptions[i] = assumptions[i];
}
Z3_lbool r = Z3_check_assumptions(ctx(), m_solver, n, _assumptions.ptr());
check_error();
return to_check_result(r);
Z3_lbool r = Z3_check_assumptions(ctx(), m_solver, n, _assumptions.ptr());
check_error();
return to_check_result(r);
}
#endif
model get_model() const { return model(ctx(), the_model); }
@ -930,27 +930,26 @@ namespace Duality {
#endif
// expr proof() const { Z3_ast r = Z3_solver_proof(ctx(), m_solver); check_error(); return expr(ctx(), r); }
// friend std::ostream & operator<<(std::ostream & out, solver const & s) { out << Z3_solver_to_string(s.ctx(), s); return out; }
int get_num_decisions();
int get_num_decisions();
void cancel(){
scoped_proof_mode spm(m(),m_mode);
void cancel(){
scoped_proof_mode spm(m(),m_mode);
canceled = true;
m().limit().cancel();
}
}
unsigned get_scope_level(){ scoped_proof_mode spm(m(),m_mode); return m_solver->get_scope_level();}
unsigned get_scope_level(){ scoped_proof_mode spm(m(),m_mode); return m_solver->get_scope_level();}
void show();
void print(const char *filename);
void show_assertion_ids();
void show();
void print(const char *filename);
void show_assertion_ids();
proof get_proof(){
scoped_proof_mode spm(m(),m_mode);
proof get_proof(){
scoped_proof_mode spm(m(),m_mode);
return proof(ctx(),m_solver->get_proof());
}
}
bool extensional_array_theory() {return extensional;}
bool extensional_array_theory() {return extensional;}
};
#if 0
@ -969,20 +968,20 @@ namespace Duality {
goal & operator=(goal const & s) {
Z3_goal_inc_ref(s.ctx(), s.m_goal);
Z3_goal_dec_ref(ctx(), m_goal);
m_ctx = s.m_ctx;
m_ctx = s.m_ctx;
m_goal = s.m_goal;
return *this;
return *this;
}
void add(expr const & f) { check_context(*this, f); Z3_goal_assert(ctx(), m_goal, f); check_error(); }
unsigned size() const { return Z3_goal_size(ctx(), m_goal); }
expr operator[](unsigned i) const { Z3_ast r = Z3_goal_formula(ctx(), m_goal, i); check_error(); return expr(ctx(), r); }
Z3_goal_prec precision() const { return Z3_goal_precision(ctx(), m_goal); }
bool inconsistent() const { return Z3_goal_inconsistent(ctx(), m_goal) != 0; }
unsigned depth() const { return Z3_goal_depth(ctx(), m_goal); }
unsigned depth() const { return Z3_goal_depth(ctx(), m_goal); }
void reset() { Z3_goal_reset(ctx(), m_goal); }
unsigned num_exprs() const { Z3_goal_num_exprs(ctx(), m_goal); }
bool is_decided_sat() const { return Z3_goal_is_decided_sat(ctx(), m_goal) != 0; }
bool is_decided_unsat() const { return Z3_goal_is_decided_unsat(ctx(), m_goal) != 0; }
bool is_decided_sat() const { return Z3_goal_is_decided_sat(ctx(), m_goal) != 0; }
bool is_decided_unsat() const { return Z3_goal_is_decided_unsat(ctx(), m_goal) != 0; }
friend std::ostream & operator<<(std::ostream & out, goal const & g) { out << Z3_goal_to_string(g.ctx(), g); return out; }
};
@ -1000,15 +999,15 @@ namespace Duality {
apply_result & operator=(apply_result const & s) {
Z3_apply_result_inc_ref(s.ctx(), s.m_apply_result);
Z3_apply_result_dec_ref(ctx(), m_apply_result);
m_ctx = s.m_ctx;
m_ctx = s.m_ctx;
m_apply_result = s.m_apply_result;
return *this;
return *this;
}
unsigned size() const { return Z3_apply_result_get_num_subgoals(ctx(), m_apply_result); }
goal operator[](unsigned i) const { Z3_goal r = Z3_apply_result_get_subgoal(ctx(), m_apply_result, i); check_error(); return goal(ctx(), r); }
goal operator[](int i) const { assert(i >= 0); return this->operator[](static_cast<unsigned>(i)); }
model convert_model(model const & m, unsigned i = 0) const {
check_context(*this, m);
model convert_model(model const & m, unsigned i = 0) const {
check_context(*this, m);
Z3_model new_m = Z3_apply_result_convert_model(ctx(), m_apply_result, i, m);
check_error();
return model(ctx(), new_m);
@ -1031,16 +1030,16 @@ namespace Duality {
tactic & operator=(tactic const & s) {
Z3_tactic_inc_ref(s.ctx(), s.m_tactic);
Z3_tactic_dec_ref(ctx(), m_tactic);
m_ctx = s.m_ctx;
m_ctx = s.m_ctx;
m_tactic = s.m_tactic;
return *this;
return *this;
}
solver mk_solver() const { Z3_solver r = Z3_mk_solver_from_tactic(ctx(), m_tactic); check_error(); return solver(ctx(), r); }
apply_result apply(goal const & g) const {
apply_result apply(goal const & g) const {
check_context(*this, g);
Z3_apply_result r = Z3_tactic_apply(ctx(), m_tactic, g);
check_error();
return apply_result(ctx(), r);
Z3_apply_result r = Z3_tactic_apply(ctx(), m_tactic, g);
check_error();
return apply_result(ctx(), r);
}
apply_result operator()(goal const & g) const {
return apply(g);
@ -1091,45 +1090,45 @@ namespace Duality {
probe & operator=(probe const & s) {
Z3_probe_inc_ref(s.ctx(), s.m_probe);
Z3_probe_dec_ref(ctx(), m_probe);
m_ctx = s.m_ctx;
m_ctx = s.m_ctx;
m_probe = s.m_probe;
return *this;
return *this;
}
double apply(goal const & g) const { double r = Z3_probe_apply(ctx(), m_probe, g); check_error(); return r; }
double operator()(goal const & g) const { return apply(g); }
friend probe operator<=(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_le(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
friend probe operator<=(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_le(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator<=(probe const & p1, double p2) { return p1 <= probe(p1.ctx(), p2); }
friend probe operator<=(double p1, probe const & p2) { return probe(p2.ctx(), p1) <= p2; }
friend probe operator>=(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_ge(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
friend probe operator>=(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_ge(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator>=(probe const & p1, double p2) { return p1 >= probe(p1.ctx(), p2); }
friend probe operator>=(double p1, probe const & p2) { return probe(p2.ctx(), p1) >= p2; }
friend probe operator<(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_lt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
friend probe operator<(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_lt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator<(probe const & p1, double p2) { return p1 < probe(p1.ctx(), p2); }
friend probe operator<(double p1, probe const & p2) { return probe(p2.ctx(), p1) < p2; }
friend probe operator>(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_gt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
friend probe operator>(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_gt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator>(probe const & p1, double p2) { return p1 > probe(p1.ctx(), p2); }
friend probe operator>(double p1, probe const & p2) { return probe(p2.ctx(), p1) > p2; }
friend probe operator==(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_eq(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
friend probe operator==(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_eq(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator==(probe const & p1, double p2) { return p1 == probe(p1.ctx(), p2); }
friend probe operator==(double p1, probe const & p2) { return probe(p2.ctx(), p1) == p2; }
friend probe operator&&(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_and(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
friend probe operator&&(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_and(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator||(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_or(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
friend probe operator||(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_or(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator!(probe const & p) {
Z3_probe r = Z3_probe_not(p.ctx(), p); p.check_error(); return probe(p.ctx(), r);
Z3_probe r = Z3_probe_not(p.ctx(), p); p.check_error(); return probe(p.ctx(), r);
}
};
@ -1159,15 +1158,15 @@ namespace Duality {
inline symbol context::int_symbol(int n) { ::symbol r = ::symbol(n); return symbol(*this, r); }
inline sort context::bool_sort() {
::sort *s = m().mk_sort(m_basic_fid, BOOL_SORT);
::sort *s = m().mk_sort(m_basic_fid, BOOL_SORT);
return sort(*this, s);
}
inline sort context::int_sort() {
::sort *s = m().mk_sort(m_arith_fid, INT_SORT);
::sort *s = m().mk_sort(m_arith_fid, INT_SORT);
return sort(*this, s);
}
inline sort context::real_sort() {
::sort *s = m().mk_sort(m_arith_fid, REAL_SORT);
::sort *s = m().mk_sort(m_arith_fid, REAL_SORT);
return sort(*this, s);
}
inline sort context::array_sort(sort d, sort r) {
@ -1188,7 +1187,7 @@ namespace Duality {
inline func_decl context::function(char const * name, unsigned arity, sort const * domain, sort const & range) {
return function(str_symbol(name), arity, domain, range);
}
inline func_decl context::function(char const * name, sort const & domain, sort const & range) {
sort args[1] = { domain };
return function(name, 1, args, range);
@ -1196,7 +1195,7 @@ namespace Duality {
inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & range) {
sort args[2] = { d1, d2 };
return function(name, 2, args, range);
return function(name, 2, args, range);
}
inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range) {
@ -1208,7 +1207,7 @@ namespace Duality {
sort args[4] = { d1, d2, d3, d4 };
return function(name, 4, args, range);
}
inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range) {
sort args[5] = { d1, d2, d3, d4, d5 };
return function(name, 5, args, range);
@ -1217,7 +1216,7 @@ namespace Duality {
inline expr context::constant(symbol const & name, sort const & s) {
::expr *r = m().mk_const(m().mk_const_decl(name, s));
return expr(*this, r);
return expr(*this, r);
}
inline expr context::constant(char const * name, sort const & s) { return constant(str_symbol(name), s); }
inline expr context::bool_const(char const * name) { return constant(name, bool_sort()); }
@ -1250,11 +1249,11 @@ namespace Duality {
expr args[5] = {a1,a2,a3,a4,a5};
return operator()(5,args);
}
inline expr select(expr const & a, expr const & i) { return a.ctx().make(Select,a,i); }
inline expr store(expr const & a, expr const & i, expr const & v) { return a.ctx().make(Store,a,i,v); }
inline expr forall(const std::vector<expr> &quants, const expr &body){
return body.ctx().make_quant(Forall,quants,body);
}
@ -1304,7 +1303,7 @@ namespace Duality {
}
inline void setTerm(expr t){term = t;}
inline void addTerm(expr t){terms.push_back(t);}
inline void setChildren(const std::vector<TermTree *> & _children){
@ -1326,7 +1325,7 @@ namespace Duality {
std::vector<TermTree *> children;
int num;
};
typedef context interpolating_context;
class interpolating_solver : public solver {
@ -1336,7 +1335,7 @@ namespace Duality {
{
weak_mode = false;
}
public:
lbool interpolate(const std::vector<expr> &assumptions,
std::vector<expr> &interpolants,
@ -1344,41 +1343,41 @@ namespace Duality {
literals &lits,
bool incremental
);
lbool interpolate_tree(TermTree *assumptions,
TermTree *&interpolants,
model &_model,
literals &lits,
bool incremental
);
bool read_interpolation_problem(const std::string &file_name,
std::vector<expr> &assumptions,
std::vector<expr> &theory,
std::string &error_message
);
void write_interpolation_problem(const std::string &file_name,
const std::vector<expr> &assumptions,
const std::vector<expr> &theory
);
void AssertInterpolationAxiom(const expr &expr);
void RemoveInterpolationAxiom(const expr &expr);
void SetWeakInterpolants(bool weak);
void SetPrintToFile(const std::string &file_name);
const std::vector<expr> &GetInterpolationAxioms() {return theory;}
const char *profile();
private:
bool weak_mode;
std::string print_filename;
std::vector<expr> theory;
};
inline expr context::cook(::expr *a) {return expr(*this,a);}
inline std::vector<expr> context::cook(ptr_vector< ::expr> v) {