mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-11-04 05:19:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			324 lines
		
	
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			324 lines
		
	
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 *  yosys -- Yosys Open SYnthesis Suite
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2017 Robert Ou <rqou@robertou.com>
 | 
						|
 *
 | 
						|
 *  Permission to use, copy, modify, and/or distribute this software for any
 | 
						|
 *  purpose with or without fee is hereby granted, provided that the above
 | 
						|
 *  copyright notice and this permission notice appear in all copies.
 | 
						|
 *
 | 
						|
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | 
						|
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | 
						|
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | 
						|
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | 
						|
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | 
						|
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | 
						|
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include "kernel/yosys.h"
 | 
						|
#include "kernel/sigtools.h"
 | 
						|
#include <deque>
 | 
						|
 | 
						|
USING_YOSYS_NAMESPACE
 | 
						|
PRIVATE_NAMESPACE_BEGIN
 | 
						|
 | 
						|
struct ExtractReducePass : public Pass
 | 
						|
{
 | 
						|
	enum GateType {
 | 
						|
		And,
 | 
						|
		Or,
 | 
						|
		Xor
 | 
						|
	};
 | 
						|
 | 
						|
	ExtractReducePass() : Pass("extract_reduce", "converts gate chains into $reduce_* cells") { }
 | 
						|
 | 
						|
	void help() YS_OVERRIDE
 | 
						|
	{
 | 
						|
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | 
						|
		log("\n");
 | 
						|
		log("    extract_reduce [options] [selection]\n");
 | 
						|
		log("\n");
 | 
						|
		log("converts gate chains into $reduce_* cells\n");
 | 
						|
		log("\n");
 | 
						|
		log("This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them\n");
 | 
						|
		log("with their corresponding $reduce_* cells. Because this command only operates on\n");
 | 
						|
		log("these cell types, it is recommended to map the design to only these cell types\n");
 | 
						|
		log("using the `abc -g` command. Note that, in some cases, it may be more effective\n");
 | 
						|
		log("to map the design to only $_AND_ cells, run extract_reduce, map the remaining\n");
 | 
						|
		log("parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.\n");
 | 
						|
		log("\n");
 | 
						|
		log("    -allow-off-chain\n");
 | 
						|
		log("        Allows matching of cells that have loads outside the chain. These cells\n");
 | 
						|
		log("        will be replicated and folded into the $reduce_* cell, but the original\n");
 | 
						|
		log("        cell will remain, driving its original loads.\n");
 | 
						|
		log("\n");
 | 
						|
	}
 | 
						|
 | 
						|
	inline bool IsRightType(Cell* cell, GateType gt)
 | 
						|
	{
 | 
						|
		return (cell->type == "$_AND_" && gt == GateType::And) ||
 | 
						|
				(cell->type == "$_OR_" && gt == GateType::Or) ||
 | 
						|
				(cell->type == "$_XOR_" && gt == GateType::Xor);
 | 
						|
	}
 | 
						|
 | 
						|
	void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
 | 
						|
	{
 | 
						|
		log_header(design, "Executing EXTRACT_REDUCE pass.\n");
 | 
						|
		log_push();
 | 
						|
 | 
						|
		size_t argidx;
 | 
						|
		bool allow_off_chain = false;
 | 
						|
		for (argidx = 1; argidx < args.size(); argidx++)
 | 
						|
		{
 | 
						|
			if (args[argidx] == "-allow-off-chain")
 | 
						|
			{
 | 
						|
				allow_off_chain = true;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		extra_args(args, argidx, design);
 | 
						|
 | 
						|
		for (auto module : design->selected_modules())
 | 
						|
		{
 | 
						|
			SigMap sigmap(module);
 | 
						|
 | 
						|
			// Index all of the nets in the module
 | 
						|
			dict<SigBit, Cell*> sig_to_driver;
 | 
						|
			dict<SigBit, pool<Cell*>> sig_to_sink;
 | 
						|
			for (auto cell : module->selected_cells())
 | 
						|
			{
 | 
						|
				for (auto &conn : cell->connections())
 | 
						|
				{
 | 
						|
					if (cell->output(conn.first))
 | 
						|
						for (auto bit : sigmap(conn.second))
 | 
						|
							sig_to_driver[bit] = cell;
 | 
						|
 | 
						|
					if (cell->input(conn.first))
 | 
						|
					{
 | 
						|
						for (auto bit : sigmap(conn.second))
 | 
						|
						{
 | 
						|
							if (sig_to_sink.count(bit) == 0)
 | 
						|
								sig_to_sink[bit] = pool<Cell*>();
 | 
						|
							sig_to_sink[bit].insert(cell);
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			// Need to check if any wires connect to module ports
 | 
						|
			pool<SigBit> port_sigs;
 | 
						|
			for (auto wire : module->selected_wires())
 | 
						|
				if (wire->port_input || wire->port_output)
 | 
						|
					for (auto bit : sigmap(wire))
 | 
						|
						port_sigs.insert(bit);
 | 
						|
 | 
						|
			// Actual logic starts here
 | 
						|
			pool<Cell*> consumed_cells;
 | 
						|
			for (auto cell : module->selected_cells())
 | 
						|
			{
 | 
						|
				if (consumed_cells.count(cell))
 | 
						|
					continue;
 | 
						|
 | 
						|
				GateType gt;
 | 
						|
 | 
						|
				if (cell->type == "$_AND_")
 | 
						|
					gt = GateType::And;
 | 
						|
				else if (cell->type == "$_OR_")
 | 
						|
					gt = GateType::Or;
 | 
						|
				else if (cell->type == "$_XOR_")
 | 
						|
					gt = GateType::Xor;
 | 
						|
				else
 | 
						|
					continue;
 | 
						|
 | 
						|
				log("Working on cell %s...\n", cell->name.c_str());
 | 
						|
 | 
						|
				// If looking for a single chain, follow linearly to the sink
 | 
						|
				pool<Cell*> sinks;
 | 
						|
				if(!allow_off_chain)
 | 
						|
				{
 | 
						|
					Cell* head_cell = cell;
 | 
						|
					Cell* x = cell;
 | 
						|
					while (true)
 | 
						|
					{
 | 
						|
						if(!IsRightType(x, gt))
 | 
						|
							break;
 | 
						|
 | 
						|
						head_cell = x;
 | 
						|
 | 
						|
						auto y = sigmap(x->getPort("\\Y"));
 | 
						|
						log_assert(y.size() == 1);
 | 
						|
 | 
						|
						// Should only continue if there is one fanout back into a cell (not to a port)
 | 
						|
						if (sig_to_sink[y[0]].size() != 1)
 | 
						|
							break;
 | 
						|
 | 
						|
						x = *sig_to_sink[y[0]].begin();
 | 
						|
					}
 | 
						|
 | 
						|
					sinks.insert(head_cell);
 | 
						|
				}
 | 
						|
 | 
						|
				//If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is
 | 
						|
				else
 | 
						|
				{
 | 
						|
					//BFS, following all chains until they hit a cell of a different type
 | 
						|
					//Pick the longest one
 | 
						|
					auto y = sigmap(cell->getPort("\\Y"));
 | 
						|
					pool<Cell*> current_loads = sig_to_sink[y];
 | 
						|
					pool<Cell*> next_loads;
 | 
						|
 | 
						|
					while(!current_loads.empty())
 | 
						|
					{
 | 
						|
						//Find each sink and see what they are
 | 
						|
						for(auto x : current_loads)
 | 
						|
						{
 | 
						|
							//Not one of our gates? Don't follow any further
 | 
						|
							//(but add the originating cell to the list of sinks)
 | 
						|
							if(!IsRightType(x, gt))
 | 
						|
							{
 | 
						|
								sinks.insert(cell);
 | 
						|
								continue;
 | 
						|
							}
 | 
						|
 | 
						|
							//If this signal drives a port, add it to the sinks
 | 
						|
							//(even though it may not be the end of a chain)
 | 
						|
							if(port_sigs.count(x) && !consumed_cells.count(x))
 | 
						|
								sinks.insert(x);
 | 
						|
 | 
						|
							//It's a match, search everything out from it
 | 
						|
							auto& next = sig_to_sink[x];
 | 
						|
							for(auto z : next)
 | 
						|
								next_loads.insert(z);
 | 
						|
						}
 | 
						|
 | 
						|
						//If we couldn't find any downstream loads, stop.
 | 
						|
						//Create a reduction for each of the max-length chains we found
 | 
						|
						if(next_loads.empty())
 | 
						|
						{
 | 
						|
							for(auto s : current_loads)
 | 
						|
							{
 | 
						|
								//Not one of our gates? Don't follow any further
 | 
						|
								if(!IsRightType(s, gt))
 | 
						|
									continue;
 | 
						|
 | 
						|
								sinks.insert(s);
 | 
						|
							}
 | 
						|
							break;
 | 
						|
						}
 | 
						|
 | 
						|
						//Otherwise, continue down the chain
 | 
						|
						current_loads = next_loads;
 | 
						|
						next_loads.clear();
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				//We have our list, go act on it
 | 
						|
				for(auto head_cell : sinks)
 | 
						|
				{
 | 
						|
					log("  Head cell is %s\n", head_cell->name.c_str());
 | 
						|
 | 
						|
					//Avoid duplication if we already were covered
 | 
						|
					if(consumed_cells.count(head_cell))
 | 
						|
						continue;
 | 
						|
 | 
						|
					pool<Cell*> cur_supercell;
 | 
						|
					std::deque<Cell*> bfs_queue = {head_cell};
 | 
						|
					while (bfs_queue.size())
 | 
						|
					{
 | 
						|
						Cell* x = bfs_queue.front();
 | 
						|
						bfs_queue.pop_front();
 | 
						|
 | 
						|
						cur_supercell.insert(x);
 | 
						|
 | 
						|
						auto a = sigmap(x->getPort("\\A"));
 | 
						|
						log_assert(a.size() == 1);
 | 
						|
 | 
						|
						// Must have only one sink unless we're going off chain
 | 
						|
						// XXX: Check that it is indeed this node?
 | 
						|
						if( allow_off_chain || (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1) )
 | 
						|
						{
 | 
						|
							Cell* cell_a = sig_to_driver[a[0]];
 | 
						|
							if(cell_a && IsRightType(cell_a, gt))
 | 
						|
							{
 | 
						|
								// The cell here is the correct type, and it's definitely driving
 | 
						|
								// this current cell.
 | 
						|
								bfs_queue.push_back(cell_a);
 | 
						|
							}
 | 
						|
						}
 | 
						|
 | 
						|
						auto b = sigmap(x->getPort("\\B"));
 | 
						|
						log_assert(b.size() == 1);
 | 
						|
 | 
						|
						// Must have only one sink
 | 
						|
						// XXX: Check that it is indeed this node?
 | 
						|
						if( allow_off_chain || (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1) )
 | 
						|
						{
 | 
						|
							Cell* cell_b = sig_to_driver[b[0]];
 | 
						|
							if(cell_b && IsRightType(cell_b, gt))
 | 
						|
							{
 | 
						|
								// The cell here is the correct type, and it's definitely driving only
 | 
						|
								// this current cell.
 | 
						|
								bfs_queue.push_back(cell_b);
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
 | 
						|
					log("  Cells:\n");
 | 
						|
					for (auto x : cur_supercell)
 | 
						|
						log("    %s\n", x->name.c_str());
 | 
						|
 | 
						|
					if (cur_supercell.size() > 1)
 | 
						|
					{
 | 
						|
						// Worth it to create reduce cell
 | 
						|
						log("  Creating $reduce_* cell!\n");
 | 
						|
 | 
						|
						pool<SigBit> input_pool;
 | 
						|
						pool<SigBit> input_pool_intermed;
 | 
						|
						for (auto x : cur_supercell)
 | 
						|
						{
 | 
						|
							input_pool.insert(sigmap(x->getPort("\\A"))[0]);
 | 
						|
							input_pool.insert(sigmap(x->getPort("\\B"))[0]);
 | 
						|
							input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]);
 | 
						|
						}
 | 
						|
						SigSpec input;
 | 
						|
						for (auto b : input_pool)
 | 
						|
							if (input_pool_intermed.count(b) == 0)
 | 
						|
								input.append_bit(b);
 | 
						|
 | 
						|
						SigBit output = sigmap(head_cell->getPort("\\Y")[0]);
 | 
						|
 | 
						|
						auto new_reduce_cell = module->addCell(NEW_ID,
 | 
						|
							gt == GateType::And ? "$reduce_and" :
 | 
						|
							gt == GateType::Or ? "$reduce_or" :
 | 
						|
							gt == GateType::Xor ? "$reduce_xor" : "");
 | 
						|
						new_reduce_cell->setParam("\\A_SIGNED", 0);
 | 
						|
						new_reduce_cell->setParam("\\A_WIDTH", input.size());
 | 
						|
						new_reduce_cell->setParam("\\Y_WIDTH", 1);
 | 
						|
						new_reduce_cell->setPort("\\A", input);
 | 
						|
						new_reduce_cell->setPort("\\Y", output);
 | 
						|
 | 
						|
						if(allow_off_chain)
 | 
						|
							consumed_cells.insert(head_cell);
 | 
						|
						else
 | 
						|
						{
 | 
						|
							for (auto x : cur_supercell)
 | 
						|
								consumed_cells.insert(x);
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			// Remove all of the head cells, since we supplant them.
 | 
						|
			// Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones)
 | 
						|
			for (auto cell : consumed_cells)
 | 
						|
				module->remove(cell);
 | 
						|
		}
 | 
						|
 | 
						|
		log_pop();
 | 
						|
	}
 | 
						|
} ExtractReducePass;
 | 
						|
 | 
						|
PRIVATE_NAMESPACE_END
 |