3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-06 01:24:10 +00:00
yosys/passes/fsm/fsm_extract.cc
whitequark efa278e232 Fix typographical and grammatical errors and inconsistencies.
The initial list of hits was generated with the codespell command
below, and each hit was evaluated and fixed manually while taking
context into consideration.

    DIRS="kernel/ frontends/ backends/ passes/ techlibs/"
    DIRS="${DIRS} libs/ezsat/ libs/subcircuit"
    codespell $DIRS -S *.o -L upto,iff,thru,synopsys,uint

More hits were found by looking through comments and strings manually.
2019-01-02 13:12:17 +00:00

481 lines
16 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]]
// Yiqiong Shi; Chan Wai Ting; Bah-Hwee Gwee; Ye Ren, "A highly efficient method for extracting FSMs from flattened gate-level netlist,"
// Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.2610,2613, May 30 2010-June 2 2010
// doi: 10.1109/ISCAS.2010.5537093
#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/celltypes.h"
#include "fsmdata.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
static RTLIL::Module *module;
static SigMap assign_map;
typedef std::pair<RTLIL::IdString, RTLIL::IdString> sig2driver_entry_t;
static SigSet<sig2driver_entry_t> sig2driver, sig2trigger;
static std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> exclusive_ctrls;
static bool find_states(RTLIL::SigSpec sig, const RTLIL::SigSpec &dff_out, RTLIL::SigSpec &ctrl, std::map<RTLIL::Const, int> &states, RTLIL::Const *reset_state = NULL)
{
sig.extend_u0(dff_out.size(), false);
if (sig == dff_out)
return true;
assign_map.apply(sig);
if (sig.is_fully_const()) {
if (sig.is_fully_def() && states.count(sig.as_const()) == 0) {
log(" found state code: %s\n", log_signal(sig));
states[sig.as_const()] = -1;
}
return true;
}
std::set<sig2driver_entry_t> cellport_list;
sig2driver.find(sig, cellport_list);
if (GetSize(cellport_list) > 1) {
log(" found %d combined drivers for state signal %s.\n", GetSize(cellport_list), log_signal(sig));
return false;
}
if (GetSize(cellport_list) < 1) {
log(" found no driver for state signal %s.\n", log_signal(sig));
return false;
}
for (auto &cellport : cellport_list)
{
RTLIL::Cell *cell = module->cells_.at(cellport.first);
if ((cell->type != "$mux" && cell->type != "$pmux") || cellport.second != "\\Y") {
log(" unexpected cell type %s (%s) found in state selection tree.\n", cell->type.c_str(), cell->name.c_str());
return false;
}
RTLIL::SigSpec sig_a = assign_map(cell->getPort("\\A"));
RTLIL::SigSpec sig_b = assign_map(cell->getPort("\\B"));
RTLIL::SigSpec sig_s = assign_map(cell->getPort("\\S"));
RTLIL::SigSpec sig_y = assign_map(cell->getPort("\\Y"));
RTLIL::SigSpec sig_aa = sig;
sig_aa.replace(sig_y, sig_a);
RTLIL::SigSpec sig_bb;
for (int i = 0; i < GetSize(sig_b)/GetSize(sig_a); i++) {
RTLIL::SigSpec s = sig;
s.replace(sig_y, sig_b.extract(i*GetSize(sig_a), GetSize(sig_a)));
sig_bb.append(s);
}
if (reset_state && RTLIL::SigSpec(*reset_state).is_fully_undef())
do {
SigSpec new_reset_state;
if (sig_aa.is_fully_def())
new_reset_state = sig_aa.as_const();
else if (sig_bb.is_fully_def())
new_reset_state = sig_bb.as_const();
else
break;
new_reset_state.extend_u0(GetSize(*reset_state));
*reset_state = new_reset_state.as_const();
log(" found reset state: %s (guessed from mux tree)\n", log_signal(*reset_state));
} while (0);
for (auto sig_s_bit : sig_s) {
if (ctrl.extract(sig_s_bit).empty()) {
log(" found ctrl input: %s\n", log_signal(sig_s_bit));
ctrl.append(sig_s_bit);
}
}
if (!find_states(sig_aa, dff_out, ctrl, states))
return false;
for (int i = 0; i < GetSize(sig_bb)/GetSize(sig_aa); i++) {
if (!find_states(sig_bb.extract(i*GetSize(sig_aa), GetSize(sig_aa)), dff_out, ctrl, states))
return false;
}
}
return true;
}
static RTLIL::Const sig2const(ConstEval &ce, RTLIL::SigSpec sig, RTLIL::State noconst_state, RTLIL::SigSpec dont_care = RTLIL::SigSpec())
{
if (dont_care.size() > 0) {
for (int i = 0; i < GetSize(sig); i++)
if (dont_care.extract(sig[i]).size() > 0)
sig[i] = noconst_state;
}
ce.assign_map.apply(sig);
ce.values_map.apply(sig);
for (int i = 0; i < GetSize(sig); i++)
if (sig[i].wire != NULL)
sig[i] = noconst_state;
return sig.as_const();
}
static void find_transitions(ConstEval &ce, ConstEval &ce_nostop, FsmData &fsm_data, std::map<RTLIL::Const, int> &states, int state_in, RTLIL::SigSpec ctrl_in, RTLIL::SigSpec ctrl_out, RTLIL::SigSpec dff_in, RTLIL::SigSpec dont_care)
{
bool undef_bit_in_next_state_mode = false;
RTLIL::SigSpec undef, constval;
if (ce.eval(ctrl_out, undef) && ce.eval(dff_in, undef))
{
if (0) {
undef_bit_in_next_state:
for (auto &bit : dff_in)
if (bit.wire != nullptr) bit = RTLIL::Sm;
for (auto &bit : ctrl_out)
if (bit.wire != nullptr) bit = RTLIL::Sm;
undef_bit_in_next_state_mode = true;
}
log_assert(ctrl_out.is_fully_const() && dff_in.is_fully_const());
FsmData::transition_t tr;
tr.ctrl_in = sig2const(ce, ctrl_in, RTLIL::State::Sa, dont_care);
tr.ctrl_out = sig2const(ce, ctrl_out, RTLIL::State::Sx);
std::map<RTLIL::SigBit, int> ctrl_in_bit_indices;
for (int i = 0; i < GetSize(ctrl_in); i++)
ctrl_in_bit_indices[ctrl_in[i]] = i;
for (auto &it : ctrl_in_bit_indices)
if (tr.ctrl_in.bits.at(it.second) == RTLIL::S1 && exclusive_ctrls.count(it.first) != 0)
for (auto &dc_bit : exclusive_ctrls.at(it.first))
if (ctrl_in_bit_indices.count(dc_bit))
tr.ctrl_in.bits.at(ctrl_in_bit_indices.at(dc_bit)) = RTLIL::State::Sa;
RTLIL::Const log_state_in = RTLIL::Const(RTLIL::State::Sx, fsm_data.state_bits);
if (state_in >= 0)
log_state_in = fsm_data.state_table.at(state_in);
if (states.count(ce.values_map(ce.assign_map(dff_in)).as_const()) == 0) {
log(" transition: %10s %s -> INVALID_STATE(%s) %s <ignored invalid transition!>%s\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(ce.values_map(ce.assign_map(dff_in))), log_signal(tr.ctrl_out),
undef_bit_in_next_state_mode ? " SHORTENED" : "");
return;
}
tr.state_in = state_in;
tr.state_out = states.at(ce.values_map(ce.assign_map(dff_in)).as_const());
if (dff_in.is_fully_def()) {
fsm_data.transition_table.push_back(tr);
log(" transition: %10s %s -> %10s %s\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out));
} else {
log(" transition: %10s %s -> %10s %s <ignored undef transition!>\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out));
}
return;
}
for (auto &bit : dff_in)
if (bit == RTLIL::Sx)
goto undef_bit_in_next_state;
log_assert(undef.size() > 0);
log_assert(ce.stop_signals.check_all(undef));
undef = undef.extract(0, 1);
constval = undef;
if (ce_nostop.eval(constval))
{
ce.push();
dont_care.append(undef);
ce.set(undef, constval.as_const());
if (exclusive_ctrls.count(undef) && constval == RTLIL::S1)
for (auto &bit : exclusive_ctrls.at(undef)) {
RTLIL::SigSpec bitval = bit;
if (ce.eval(bitval) && bitval != RTLIL::S0)
goto found_contradiction_1;
else
ce.set(bit, RTLIL::S0);
}
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
found_contradiction_1:
ce.pop();
}
else
{
ce.push(), ce_nostop.push();
ce.set(undef, RTLIL::S0);
ce_nostop.set(undef, RTLIL::S0);
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
ce.pop(), ce_nostop.pop();
ce.push(), ce_nostop.push();
ce.set(undef, RTLIL::S1);
ce_nostop.set(undef, RTLIL::S1);
if (exclusive_ctrls.count(undef))
for (auto &bit : exclusive_ctrls.at(undef)) {
RTLIL::SigSpec bitval = bit;
if ((ce.eval(bitval) || ce_nostop.eval(bitval)) && bitval != RTLIL::S0)
goto found_contradiction_2;
else
ce.set(bit, RTLIL::S0), ce_nostop.set(bit, RTLIL::S0);
}
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
found_contradiction_2:
ce.pop(), ce_nostop.pop();
}
}
static void extract_fsm(RTLIL::Wire *wire)
{
log("Extracting FSM `%s' from module `%s'.\n", wire->name.c_str(), module->name.c_str());
// get input and output signals for state ff
RTLIL::SigSpec dff_out = assign_map(RTLIL::SigSpec(wire));
RTLIL::SigSpec dff_in(RTLIL::State::Sm, wire->width);
RTLIL::Const reset_state(RTLIL::State::Sx, wire->width);
RTLIL::SigSpec clk = RTLIL::S0;
RTLIL::SigSpec arst = RTLIL::S0;
bool clk_polarity = true;
bool arst_polarity = true;
std::set<sig2driver_entry_t> cellport_list;
sig2driver.find(dff_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
if ((cell->type != "$dff" && cell->type != "$adff") || cellport.second != "\\Q")
continue;
log(" found %s cell for state register: %s\n", cell->type.c_str(), cell->name.c_str());
RTLIL::SigSpec sig_q = assign_map(cell->getPort("\\Q"));
RTLIL::SigSpec sig_d = assign_map(cell->getPort("\\D"));
clk = cell->getPort("\\CLK");
clk_polarity = cell->parameters["\\CLK_POLARITY"].as_bool();
if (cell->type == "$adff") {
arst = cell->getPort("\\ARST");
arst_polarity = cell->parameters["\\ARST_POLARITY"].as_bool();
reset_state = cell->parameters["\\ARST_VALUE"];
}
sig_q.replace(dff_out, sig_d, &dff_in);
break;
}
log(" root of input selection tree: %s\n", log_signal(dff_in));
if (dff_in.has_marked_bits()) {
log(" fsm extraction failed: incomplete input selection tree root.\n");
return;
}
// find states and control inputs
RTLIL::SigSpec ctrl_in;
std::map<RTLIL::Const, int> states;
if (!arst.is_fully_const()) {
log(" found reset state: %s (from async reset)\n", log_signal(reset_state));
states[reset_state] = -1;
}
if (!find_states(dff_in, dff_out, ctrl_in, states, &reset_state)) {
log(" fsm extraction failed: state selection tree is not closed.\n");
return;
}
if (GetSize(states) <= 1) {
log(" fsm extraction failed: at least two states are required.\n");
return;
}
// find control outputs
// (add the state signals to the list of control outputs. if everything goes right, this signals
// become unused and can then be removed from the fsm control output)
RTLIL::SigSpec ctrl_out = dff_in;
cellport_list.clear();
sig2trigger.find(dff_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
RTLIL::SigSpec sig_a = assign_map(cell->getPort("\\A"));
RTLIL::SigSpec sig_b;
if (cell->hasPort("\\B"))
sig_b = assign_map(cell->getPort("\\B"));
RTLIL::SigSpec sig_y = assign_map(cell->getPort("\\Y"));
if (cellport.second == "\\A" && !sig_b.is_fully_const())
continue;
if (cellport.second == "\\B" && !sig_a.is_fully_const())
continue;
log(" found ctrl output: %s\n", log_signal(sig_y));
ctrl_out.append(sig_y);
}
ctrl_in.remove(ctrl_out);
ctrl_in.sort_and_unify();
ctrl_out.sort_and_unify();
log(" ctrl inputs: %s\n", log_signal(ctrl_in));
log(" ctrl outputs: %s\n", log_signal(ctrl_out));
// Initialize fsm data struct
FsmData fsm_data;
fsm_data.num_inputs = ctrl_in.size();
fsm_data.num_outputs = ctrl_out.size();
fsm_data.state_bits = wire->width;
fsm_data.reset_state = -1;
for (auto &it : states) {
it.second = fsm_data.state_table.size();
fsm_data.state_table.push_back(it.first);
}
if (!arst.is_fully_const() || RTLIL::SigSpec(reset_state).is_fully_def())
fsm_data.reset_state = states[reset_state];
// Create transition table
ConstEval ce(module), ce_nostop(module);
ce.stop(ctrl_in);
for (int state_idx = 0; state_idx < int(fsm_data.state_table.size()); state_idx++) {
ce.push(), ce_nostop.push();
ce.set(dff_out, fsm_data.state_table[state_idx]);
ce_nostop.set(dff_out, fsm_data.state_table[state_idx]);
find_transitions(ce, ce_nostop, fsm_data, states, state_idx, ctrl_in, ctrl_out, dff_in, RTLIL::SigSpec());
ce.pop(), ce_nostop.pop();
}
// create fsm cell
RTLIL::Cell *fsm_cell = module->addCell(stringf("$fsm$%s$%d", wire->name.c_str(), autoidx++), "$fsm");
fsm_cell->setPort("\\CLK", clk);
fsm_cell->setPort("\\ARST", arst);
fsm_cell->parameters["\\CLK_POLARITY"] = clk_polarity ? RTLIL::S1 : RTLIL::S0;
fsm_cell->parameters["\\ARST_POLARITY"] = arst_polarity ? RTLIL::S1 : RTLIL::S0;
fsm_cell->setPort("\\CTRL_IN", ctrl_in);
fsm_cell->setPort("\\CTRL_OUT", ctrl_out);
fsm_cell->parameters["\\NAME"] = RTLIL::Const(wire->name.str());
fsm_cell->attributes = wire->attributes;
fsm_data.copy_to_cell(fsm_cell);
// rename original state wire
module->wires_.erase(wire->name);
wire->attributes.erase("\\fsm_encoding");
wire->name = stringf("$fsm$oldstate%s", wire->name.c_str());
module->wires_[wire->name] = wire;
// unconnect control outputs from old drivers
cellport_list.clear();
sig2driver.find(ctrl_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
RTLIL::SigSpec port_sig = assign_map(cell->getPort(cellport.second));
RTLIL::SigSpec unconn_sig = port_sig.extract(ctrl_out);
RTLIL::Wire *unconn_wire = module->addWire(stringf("$fsm_unconnect$%s$%d", log_signal(unconn_sig), autoidx++), unconn_sig.size());
port_sig.replace(unconn_sig, RTLIL::SigSpec(unconn_wire), &cell->connections_[cellport.second]);
}
}
struct FsmExtractPass : public Pass {
FsmExtractPass() : Pass("fsm_extract", "extracting FSMs in design") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" fsm_extract [selection]\n");
log("\n");
log("This pass operates on all signals marked as FSM state signals using the\n");
log("'fsm_encoding' attribute. It consumes the logic that creates the state signal\n");
log("and uses the state signal to generate control signal and replaces it with an\n");
log("FSM cell.\n");
log("\n");
log("The generated FSM cell still generates the original state signal with its\n");
log("original encoding. The 'fsm_opt' pass can be used in combination with the\n");
log("'opt_clean' pass to eliminate this signal.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing FSM_EXTRACT pass (extracting FSM from design).\n");
extra_args(args, 1, design);
CellTypes ct;
ct.setup_internals();
ct.setup_internals_mem();
ct.setup_stdcells();
ct.setup_stdcells_mem();
for (auto &mod_it : design->modules_)
{
if (!design->selected(mod_it.second))
continue;
module = mod_it.second;
assign_map.set(module);
sig2driver.clear();
sig2trigger.clear();
exclusive_ctrls.clear();
for (auto cell : module->cells()) {
for (auto &conn_it : cell->connections()) {
if (ct.cell_output(cell->type, conn_it.first) || !ct.cell_known(cell->type)) {
RTLIL::SigSpec sig = conn_it.second;
assign_map.apply(sig);
sig2driver.insert(sig, sig2driver_entry_t(cell->name, conn_it.first));
}
if (ct.cell_input(cell->type, conn_it.first) && cell->hasPort("\\Y") &&
cell->getPort("\\Y").size() == 1 && (conn_it.first == "\\A" || conn_it.first == "\\B")) {
RTLIL::SigSpec sig = conn_it.second;
assign_map.apply(sig);
sig2trigger.insert(sig, sig2driver_entry_t(cell->name, conn_it.first));
}
}
if (cell->type == "$pmux") {
RTLIL::SigSpec sel_sig = assign_map(cell->getPort("\\S"));
for (auto &bit1 : sel_sig)
for (auto &bit2 : sel_sig)
if (bit1 != bit2)
exclusive_ctrls[bit1].insert(bit2);
}
}
std::vector<RTLIL::Wire*> wire_list;
for (auto &wire_it : module->wires_)
if (wire_it.second->attributes.count("\\fsm_encoding") > 0 && wire_it.second->attributes["\\fsm_encoding"].decode_string() != "none")
if (design->selected(module, wire_it.second))
wire_list.push_back(wire_it.second);
for (auto wire : wire_list)
extract_fsm(wire);
}
assign_map.clear();
sig2driver.clear();
sig2trigger.clear();
}
} FsmExtractPass;
PRIVATE_NAMESPACE_END