mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 19:52:31 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			734 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			734 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2021 gatecat <gatecat@ds0.me>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| #include "kernel/sigtools.h"
 | |
| #include "kernel/consteval.h"
 | |
| #include "kernel/celltypes.h"
 | |
| #include "kernel/utils.h"
 | |
| #include "kernel/satgen.h"
 | |
| #include "kernel/log_help.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <queue>
 | |
| #include <cinttypes>
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| 
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| // xorshift128 params
 | |
| #define INIT_X 123456789
 | |
| #define INIT_Y 362436069
 | |
| #define INIT_Z 521288629
 | |
| #define INIT_W  88675123
 | |
| 
 | |
| 
 | |
| // Similar to a SigBit; but module-independent
 | |
| struct IdBit {
 | |
|     IdBit() : name(), bit(0) {};
 | |
|     IdBit(IdString name, int bit = 0) : name(name), bit(bit) {};
 | |
| 
 | |
|     bool operator==(const IdBit &other) const { return name == other.name && bit == other.bit; };
 | |
|     bool operator!=(const IdBit &other) const { return name != other.name || bit != other.bit; };
 | |
|     [[nodiscard]] Hasher hash_into(Hasher h) const
 | |
|     {
 | |
|         h.eat(name);
 | |
|         h.eat(bit);
 | |
|         return h;
 | |
|     }
 | |
| 
 | |
|     IdString name;
 | |
|     int bit;
 | |
| };
 | |
| 
 | |
| // As above; but can be inverted
 | |
| struct InvBit {
 | |
|     InvBit() : bit(), inverted(false) {};
 | |
|     explicit InvBit(IdBit bit, bool inverted = false) : bit(bit), inverted(inverted) {};
 | |
| 
 | |
|     bool operator==(const InvBit &other) const { return bit == other.bit && inverted == other.inverted; };
 | |
|     bool operator!=(const InvBit &other) const { return bit != other.bit || inverted != other.inverted; };
 | |
|     [[nodiscard]] Hasher hash_into(Hasher h) const
 | |
|     {
 | |
|         h.eat(bit);
 | |
|         h.eat(inverted);
 | |
|         return h;
 | |
|     }
 | |
| 
 | |
|     IdBit bit;
 | |
|     bool inverted;
 | |
| };
 | |
| 
 | |
| typedef uint64_t equiv_cls_t;
 | |
| static const int sim_length = sizeof(equiv_cls_t) * 8;
 | |
| 
 | |
| struct RecoverModuleWorker {
 | |
|     Design *design = nullptr;
 | |
|     Module *mod, *flat = nullptr;
 | |
|     RecoverModuleWorker(Module *mod) : design(mod->design), mod(mod) {};
 | |
| 
 | |
|     ConstEval *ce = nullptr;
 | |
|     SigMap *sigmap = nullptr;
 | |
| 
 | |
|     dict<IdBit, SigBit> flat2orig;
 | |
|     dict<IdBit, IdBit> bit2primary;
 | |
|     dict<IdBit, Cell*> bit2driver;
 | |
| 
 | |
|     void prepare()
 | |
|     {
 | |
|         // Create a derivative of the module with whiteboxes flattened so we can
 | |
|         // run eval and sat on it
 | |
|         flat = design->addModule(NEW_ID);
 | |
|         mod->cloneInto(flat);
 | |
|         Pass::call_on_module(design, flat, "flatten -wb");
 | |
|         ce = new ConstEval(flat);
 | |
|         sigmap = new SigMap(flat);
 | |
|         // Create a mapping from primary name-bit in the box-flattened module to original sigbit
 | |
|         SigMap orig_sigmap(mod);
 | |
|         for (auto wire : mod->wires()) {
 | |
|             Wire *flat_wire = flat->wire(wire->name);
 | |
|             if (!flat_wire)
 | |
|                 continue;
 | |
|             for (int i = 0; i < wire->width; i++) {
 | |
|                 SigBit orig_sigbit = orig_sigmap(SigBit(wire, i));
 | |
|                 SigBit flat_sigbit = (*sigmap)(SigBit(flat_wire, i));
 | |
|                 if (!orig_sigbit.wire || !flat_sigbit.wire)
 | |
|                     continue;
 | |
|                 flat2orig[IdBit(flat_sigbit.wire->name, flat_sigbit.offset)] = orig_sigbit;
 | |
|             }
 | |
|         }
 | |
|         find_driven_bits();
 | |
|     }
 | |
| 
 | |
|     void find_driven_bits()
 | |
|     {
 | |
|         // Add primary inputs
 | |
|         for (auto wire : flat->wires()) {
 | |
|             if (!wire->port_input)
 | |
|                 continue;
 | |
|             for (int i = 0; i < wire->width; i++) {
 | |
|                 SigBit bit(wire, i);
 | |
|                 bit = (*sigmap)(bit);
 | |
|                 if (bit.wire)
 | |
|                     bit2driver[IdBit(bit.wire->name, bit.offset)] = nullptr;
 | |
|             }
 | |
|         }
 | |
|         // Add cell outputs
 | |
|         for (auto cell : flat->cells()) {
 | |
|             for (auto conn : cell->connections()) {
 | |
|                 if (!cell->output(conn.first))
 | |
|                     continue;
 | |
|                 for (auto bit : conn.second) {
 | |
|                     auto resolved = (*sigmap)(bit);
 | |
|                     if (resolved.wire)
 | |
|                         bit2driver[IdBit(resolved.wire->name, resolved.offset)] = cell;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // Setup bit2primary
 | |
|         for (auto wire : flat->wires()) {
 | |
|             for (int i = 0; i < wire->width; i++) {
 | |
|                 SigBit bit(wire, i);
 | |
|                 bit = (*sigmap)(bit);
 | |
|                 if (bit.wire)
 | |
|                     bit2primary[IdBit(wire->name, i)] = IdBit(bit.wire->name, bit.offset);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Mapping from bit to (candidate) equivalence classes
 | |
|     dict<IdBit, equiv_cls_t> bit2cls;
 | |
|     void sim_cycle(int t, const dict<IdBit, RTLIL::State> &anchors)
 | |
|     {
 | |
|         ce->clear();
 | |
|         for (auto anchor : anchors) {
 | |
|             SigBit bit = (*sigmap)(SigBit(flat->wire(anchor.first.name), anchor.first.bit));
 | |
|             // Ignore in the rare case that it's already determined
 | |
|             SigSpec res(bit);
 | |
|             if (ce->eval(res))
 | |
|                 continue;
 | |
|             ce->set(bit, anchor.second);
 | |
|         }
 | |
|         // Only evaluate IdBits that exist in the non-flat design; as they are all we care about
 | |
|         for (auto idbit : flat2orig) {
 | |
|             if (anchors.count(idbit.first))
 | |
|                 continue;
 | |
|             SigBit bit = (*sigmap)(SigBit(flat->wire(idbit.first.name), idbit.first.bit));
 | |
|             SigSpec res(bit);
 | |
|             if (!ce->eval(res))
 | |
|                 continue;
 | |
|             if (res != State::S0 && res != State::S1)
 | |
|                 continue;
 | |
|             // Update equivalence classes
 | |
|             if (res == State::S1)
 | |
|                 bit2cls[idbit.first] = bit2cls[idbit.first] | (equiv_cls_t(1) << t);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Update the equivalence class groupings
 | |
|     void group_classes(dict<equiv_cls_t, std::pair<pool<IdBit>, pool<InvBit>>> &cls2bits, bool is_gate)
 | |
|     {
 | |
|         equiv_cls_t all_ones = 0;
 | |
|         for (int i = 0; i < sim_length; i++) all_ones |= (equiv_cls_t(1) << i);
 | |
|         for (auto pair : bit2cls) {
 | |
|             if (pair.second == 0 || pair.second == all_ones)
 | |
|                 continue; // skip stuck-ats
 | |
|             if (is_gate) {
 | |
|                 // True doesn't exist in gold; but inverted does
 | |
|                 if (!cls2bits.count(pair.second) && cls2bits.count(pair.second ^ all_ones))
 | |
|                     cls2bits[pair.second ^ all_ones].second.emplace(pair.first, true);
 | |
|                 else
 | |
|                     cls2bits[pair.second].second.emplace(pair.first, false);
 | |
|             } else {
 | |
|                 cls2bits[pair.second].first.insert(pair.first);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Compute depths of IdBits
 | |
|     dict<IdBit, int> bit2depth;
 | |
|     void compute_depths(const dict<IdBit, IdBit> &anchor_bits)
 | |
|     {
 | |
|         dict<SigBit, pool<IdString>> bit_drivers, bit_users;
 | |
|         TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
 | |
| 
 | |
|         for (auto cell : flat->cells())
 | |
|         for (auto conn : cell->connections())
 | |
|         {
 | |
|             for (auto bit : (*sigmap)(conn.second)) {
 | |
|                 if (!bit.wire)
 | |
|                     continue;
 | |
|                 IdBit idbit(bit.wire->name, bit.offset);
 | |
|                 if (anchor_bits.count(idbit))
 | |
|                     continue;
 | |
|                 if (cell->input(conn.first))
 | |
|                     bit_users[bit].insert(cell->name);
 | |
| 
 | |
|                 if (cell->output(conn.first))
 | |
|                     bit_drivers[bit].insert(cell->name);
 | |
|             }
 | |
| 
 | |
|             toposort.node(cell->name);
 | |
|         }
 | |
| 
 | |
|         for (auto &it : bit_users)
 | |
|             if (bit_drivers.count(it.first))
 | |
|                 for (auto driver_cell : bit_drivers.at(it.first))
 | |
|                 for (auto user_cell : it.second)
 | |
|                     toposort.edge(driver_cell, user_cell);
 | |
| 
 | |
|         toposort.sort();
 | |
|         for (auto cell_name : toposort.sorted) {
 | |
|             Cell *cell = flat->cell(cell_name);
 | |
|             int cell_depth = 0;
 | |
|             for (auto conn : cell->connections()) {
 | |
|                 if (!cell->input(conn.first))
 | |
|                     continue;
 | |
|                 for (auto bit : (*sigmap)(conn.second)) {
 | |
|                     if (!bit.wire)
 | |
|                         continue;
 | |
|                     IdBit idbit(bit.wire->name, bit.offset);
 | |
|                     if (!bit2depth.count(idbit))
 | |
|                         continue;
 | |
|                     cell_depth = std::max(cell_depth, bit2depth.at(idbit));
 | |
|                 }
 | |
|             }
 | |
|             for (auto conn : cell->connections()) {
 | |
|                 if (!cell->output(conn.first))
 | |
|                     continue;
 | |
|                 for (auto bit : (*sigmap)(conn.second)) {
 | |
|                     if (!bit.wire)
 | |
|                         continue;
 | |
|                     IdBit idbit(bit.wire->name, bit.offset);
 | |
|                     bit2depth[idbit] = std::max(bit2depth[idbit], cell_depth + 1);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // SAT thresholds
 | |
|     const int max_sat_cells = 50;
 | |
| 
 | |
|     SigBit id2bit(IdBit bit) { return SigBit(flat->wire(bit.name), bit.bit); }
 | |
| 
 | |
|     // Set up the SAT problem for an IdBit
 | |
|     // the value side of 'anchors' will be populated with the SAT variable for anchor bits
 | |
|     int setup_sat(SatGen *sat, const std::string &prefix, IdBit bit, const dict<IdBit, IdBit> &anchor_bits, dict<IdBit, int> &anchor2var)
 | |
|     {
 | |
|         sat->setContext(sigmap, prefix);
 | |
|         pool<IdString> imported_cells;
 | |
|         int result = sat->importSigBit(id2bit(bit));
 | |
|         // Recursively import driving cells
 | |
|         std::queue<IdBit> to_import;
 | |
|         to_import.push(bit);
 | |
|         while (!to_import.empty()) {
 | |
|             // Too many cells imported
 | |
|             if (GetSize(imported_cells) > max_sat_cells)
 | |
|                 return -1;
 | |
|             IdBit cursor = to_import.front();
 | |
|             to_import.pop();
 | |
|             if (anchor_bits.count(cursor)) {
 | |
|                 if (!anchor2var.count(cursor)) {
 | |
|                     anchor2var[cursor] = sat->importSigBit(id2bit(cursor));
 | |
|                 }
 | |
|                 continue;
 | |
|             }
 | |
|             // Import driver if it exists
 | |
|             if (!bit2driver.count(cursor))
 | |
|                 continue;
 | |
|             Cell *driver = bit2driver.at(cursor);
 | |
|             if (!driver || imported_cells.count(driver->name))
 | |
|                 continue;
 | |
|             if (!sat->importCell(driver))
 | |
|                 return -1; // cell can't be imported
 | |
|             imported_cells.insert(driver->name);
 | |
|             // Add cell inputs to queue
 | |
|             for (auto conn : driver->connections()) {
 | |
|                 if (!driver->input(conn.first))
 | |
|                     continue;
 | |
|                 for (SigBit in_bit : (*sigmap)(conn.second)) {
 | |
|                     if (!in_bit.wire)
 | |
|                         continue;
 | |
|                     IdBit in_idbit(in_bit.wire->name, in_bit.offset);
 | |
|                     to_import.push(in_idbit);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     void find_buffers(const pool<IdString> &buffer_types, dict<SigBit, pool<SigBit>> &root2buffered)
 | |
|     {
 | |
|         SigMap orig_sigmap(mod);
 | |
|         dict<SigBit, SigBit> buffer2root;
 | |
|         for (auto cell : mod->cells()) {
 | |
|             if (!buffer_types.count(cell->type))
 | |
|                 continue;
 | |
|             SigBit in, out;
 | |
|             for (auto conn : cell->connections()) {
 | |
|                 if (cell->input(conn.first)) {
 | |
|                     in = orig_sigmap(conn.second[0]);
 | |
|                 }
 | |
|                 if (cell->output(conn.first)) {
 | |
|                     out = orig_sigmap(conn.second[0]);
 | |
|                 }
 | |
|             }
 | |
|             if (!in.wire || !out.wire)
 | |
|                 continue;
 | |
|             SigBit root = in;
 | |
|             if (buffer2root.count(root))
 | |
|                 root = buffer2root[root];
 | |
|             if (root2buffered.count(out)) {
 | |
|                 for (auto out_sig : root2buffered.at(out))
 | |
|                     root2buffered[root].insert(out_sig);
 | |
|                 root2buffered.erase(out);
 | |
|             }
 | |
|             root2buffered[root].insert(out);
 | |
|             buffer2root[out] = root;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void do_rename(Module *gold, const dict<IdBit, InvBit> &gate2gold, const pool<IdString> &buffer_types)
 | |
|     {
 | |
|         dict<SigBit, std::vector<std::tuple<Cell*, IdString, int>>> bit2port;
 | |
|         pool<SigBit> unused_bits;
 | |
|         SigMap orig_sigmap(mod);
 | |
|         for (auto wire : mod->wires()) {
 | |
|             if (wire->port_input || wire->port_output)
 | |
|                 continue;
 | |
|             for (int i = 0; i < wire->width; i++)
 | |
|                 unused_bits.insert(orig_sigmap(SigBit(wire, i)));
 | |
|         }
 | |
|         for (auto cell : mod->cells()) {
 | |
|             for (auto conn : cell->connections()) {
 | |
|                 for (int i = 0; i < GetSize(conn.second); i++) {
 | |
|                     SigBit bit = orig_sigmap(conn.second[i]);
 | |
|                     if (!bit.wire)
 | |
|                         continue;
 | |
|                     bit2port[bit].emplace_back(cell, conn.first, i);
 | |
|                     unused_bits.erase(bit);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         dict<SigBit, pool<SigBit>> root2buffered;
 | |
|         find_buffers(buffer_types, root2buffered);
 | |
| 
 | |
|         // An extension of gate2gold that deals with buffers too
 | |
|         // gate sigbit --> (new name, invert, gold wire)
 | |
|         dict<SigBit, std::pair<InvBit, Wire*>> rename_map;
 | |
|         for (auto pair : gate2gold) {
 | |
|             SigBit gate_bit = flat2orig.at(pair.first);
 | |
|             Wire *gold_wire = gold->wire(pair.second.bit.name);
 | |
|             rename_map[gate_bit] = std::make_pair(pair.second, gold_wire);
 | |
|             if (root2buffered.count(gate_bit)) {
 | |
|                 int buf_idx = 0;
 | |
|                 for (auto buf_bit : root2buffered.at(gate_bit)) {
 | |
|                     std::string buf_name_str = stringf("%s_buf_%d", pair.second.bit.name, ++buf_idx);
 | |
|                     if (buf_name_str[0] == '\\')
 | |
|                         buf_name_str[0] = '$';
 | |
|                     rename_map[buf_bit] = std::make_pair(
 | |
|                         InvBit(IdBit(IdString(buf_name_str), pair.second.bit.bit), pair.second.inverted), gold_wire);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (auto rule : rename_map) {
 | |
|             // Pick a uniq new name
 | |
|             IdBit new_name = rule.second.first.bit;
 | |
|             int dup_idx = 0;
 | |
|             bool must_invert_name = rule.second.first.inverted;
 | |
|             while (must_invert_name ||
 | |
|                     (mod->wire(new_name.name) && !unused_bits.count(SigBit(mod->wire(new_name.name), new_name.bit)))) {
 | |
|                 std::string new_name_str = stringf("%s_%s_%d", rule.second.first.bit.name,
 | |
|                     rule.second.first.inverted ? "inv" : "dup", ++dup_idx);
 | |
|                 if (new_name_str[0] == '\\')
 | |
|                     new_name_str[0] = '$';
 | |
|                 new_name.name = IdString(new_name_str);
 | |
|                 must_invert_name = false;
 | |
|             }
 | |
|             // Create the wire if needed
 | |
|             Wire *new_wire = mod->wire(new_name.name);
 | |
|             if (!new_wire) {
 | |
|                 Wire *gold_wire = rule.second.second;
 | |
|                 new_wire = mod->addWire(new_name.name, gold_wire->width);
 | |
|                 new_wire->start_offset = gold_wire->start_offset;
 | |
|                 new_wire->upto = gold_wire->upto;
 | |
|                 for (const auto &attr : gold_wire->attributes)
 | |
|                     new_wire->attributes[attr.first] = attr.second;
 | |
|                 for (int i = 0; i < new_wire->width; i++)
 | |
|                     unused_bits.insert(SigBit(new_wire, i));
 | |
|             }
 | |
|             // Ensure it's wide enough
 | |
|             if (new_wire->width <= new_name.bit)
 | |
|                 new_wire->width = new_name.bit + 1;
 | |
|             SigBit old_bit = rule.first;
 | |
|             SigBit new_bit(new_wire, new_name.bit);
 | |
|             unused_bits.erase(new_bit);
 | |
|             // Replace all users
 | |
|             if (bit2port.count(old_bit))
 | |
|                 for (auto port_ref : bit2port.at(old_bit)) {
 | |
|                     Cell *cell = std::get<0>(port_ref);
 | |
|                     IdString port_name = std::get<1>(port_ref);
 | |
|                     int port_bit = std::get<2>(port_ref);
 | |
|                     SigSpec port_sig = cell->getPort(port_name);
 | |
|                     port_sig.replace(port_bit, new_bit);
 | |
|                     cell->unsetPort(port_name);
 | |
|                     cell->setPort(port_name, port_sig);
 | |
|                 }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ~RecoverModuleWorker()
 | |
|     {
 | |
|         delete ce;
 | |
|         delete sigmap;
 | |
|         if (flat)
 | |
|             design->remove(flat);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct RecoverNamesWorker {
 | |
|     Design *design, *gold_design = nullptr;
 | |
|     CellTypes ct_all;
 | |
|     RecoverNamesWorker(Design *design) : design(design) {}
 | |
| 
 | |
|     pool<IdString> comb_whiteboxes, buffer_types;
 | |
| 
 | |
|     // class -> (gold, (gate, inverted))
 | |
|     dict<equiv_cls_t, std::pair<pool<IdBit>, dict<IdBit, bool>>> cls2bits;
 | |
| 
 | |
|     void analyse_boxes()
 | |
|     {
 | |
|         for (auto mod : design->modules()) {
 | |
|             if (!mod->get_bool_attribute(ID::whitebox))
 | |
|                 continue;
 | |
|             bool is_comb = true;
 | |
|             for (auto cell : mod->cells()) {
 | |
|                 if (ct_all.cell_evaluable(cell->type)) {
 | |
|                     is_comb = false;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (!is_comb)
 | |
|                 continue;
 | |
|             comb_whiteboxes.insert(mod->name);
 | |
|             // Buffers have one input and one output; exactly
 | |
|             SigBit in{}, out{};
 | |
|             ConstEval eval(mod);
 | |
|             for (auto wire : mod->wires()) {
 | |
|                 if (wire->port_input) {
 | |
|                     if (wire->width != 1 || in.wire)
 | |
|                         goto not_buffer;
 | |
|                     in = SigBit(wire, 0);
 | |
|                 }
 | |
|                 if (wire->port_output) {
 | |
|                     if (wire->width != 1 || out.wire)
 | |
|                         goto not_buffer;
 | |
|                     out = SigBit(wire, 0);
 | |
|                 }
 | |
|             }
 | |
|             if (!in.wire || !out.wire)
 | |
|                 goto not_buffer;
 | |
|             // Buffer input mirrors output
 | |
|             for (auto bit : {State::S0, State::S1}) {
 | |
|                 eval.clear();
 | |
|                 eval.set(in, bit);
 | |
|                 SigSpec result(out);
 | |
|                 if (!eval.eval(result))
 | |
|                     goto not_buffer;
 | |
|                 if (result != bit)
 | |
|                     goto not_buffer;
 | |
|             }
 | |
|             buffer_types.insert(mod->name);
 | |
|             if (false) {
 | |
|                 not_buffer:
 | |
|                     continue;
 | |
|             }
 | |
|         }
 | |
|         log_debug("Found %d combinational cells and %d buffer whiteboxes.\n", GetSize(comb_whiteboxes), GetSize(buffer_types));
 | |
|     }
 | |
| 
 | |
|     uint32_t x, y, z, w, rng_val;
 | |
|     int rng_bit;
 | |
|     void rng_init()
 | |
|     {
 | |
|         x = INIT_X;
 | |
|         y = INIT_Y;
 | |
|         z = INIT_Z;
 | |
|         w = INIT_W;
 | |
|         rng_bit = 32;
 | |
|     }
 | |
|     uint32_t xorshift128()
 | |
|     {
 | |
|         uint32_t t = x ^ (x << 11);
 | |
|         x = y; y = z; z = w;
 | |
|         w ^= (w >> 19) ^ t ^ (t >> 8);
 | |
|         return w;
 | |
|     }
 | |
|     RTLIL::State next_randbit()
 | |
|     {
 | |
|         if (rng_bit >= 32) {
 | |
|             rng_bit = 0;
 | |
|             rng_val = xorshift128();
 | |
|         }
 | |
|         return ((rng_val >> (rng_bit++)) & 0x1) ? RTLIL::State::S1 : RTLIL::State::S0;
 | |
|     }
 | |
| 
 | |
|     int popcount(equiv_cls_t cls) {
 | |
|     	int result = 0;
 | |
|     	for (unsigned i = 0; i < 8*sizeof(equiv_cls_t); i++)
 | |
|     		if ((cls >> i) & 0x1)
 | |
|     			++result;
 | |
|     	return result;
 | |
|     }
 | |
| 
 | |
|     bool prove_equiv(RecoverModuleWorker &gold_worker, RecoverModuleWorker &gate_worker,
 | |
|             const dict<IdBit, IdBit> &gold_anchors, const dict<IdBit, IdBit> &gate_anchors,
 | |
|             IdBit gold_bit, IdBit gate_bit, bool invert) {
 | |
|         ezSatPtr ez;
 | |
|         SatGen satgen(ez.get(), nullptr);
 | |
|         dict<IdBit, int> anchor2var_gold, anchor2var_gate;
 | |
|         int gold_var = gold_worker.setup_sat(&satgen, "gold", gold_bit, gold_anchors, anchor2var_gold);
 | |
|         if (gold_var == -1)
 | |
|             return false;
 | |
|         int gate_var = gate_worker.setup_sat(&satgen, "gate", gate_bit, gate_anchors, anchor2var_gate);
 | |
|         if (gate_var == -1)
 | |
|             return false;
 | |
|         // Assume anchors are equal
 | |
|         for (auto anchor : anchor2var_gate) {
 | |
|             IdBit gold_anchor = gate_anchors.at(anchor.first);
 | |
|             if (!anchor2var_gold.count(gold_anchor))
 | |
|                 continue;
 | |
|             ez->assume(ez->IFF(anchor.second, anchor2var_gold.at(gold_anchor)));
 | |
|         }
 | |
|         // Prove equivalence
 | |
|         return !ez->solve(ez->NOT(ez->IFF(gold_var, invert ? ez->NOT(gate_var) : gate_var)));
 | |
|     }
 | |
| 
 | |
|     void analyse_mod(Module *gate_mod)
 | |
|     {
 | |
|         Module *gold_mod = gold_design->module(gate_mod->name);
 | |
|         if (!gold_mod)
 | |
|             return;
 | |
| 
 | |
|         RecoverModuleWorker gold_worker(gold_mod);
 | |
|         RecoverModuleWorker gate_worker(gate_mod);
 | |
| 
 | |
|         gold_worker.prepare();
 | |
|         gate_worker.prepare();
 | |
| 
 | |
|         // Find anchors (same-name wire-bits driven in both gold and gate)
 | |
|         dict<IdBit, IdBit> gold_anchors, gate_anchors;
 | |
| 
 | |
|         for (auto gold_bit : gold_worker.bit2driver) {
 | |
|             if (gate_worker.bit2primary.count(gold_bit.first)) {
 | |
|                 IdBit gate_bit = gate_worker.bit2primary.at(gold_bit.first);
 | |
|                 if (!gate_worker.bit2driver.count(gate_bit))
 | |
|                     continue;
 | |
|                 gold_anchors[gold_bit.first] = gate_bit;
 | |
|                 gate_anchors[gate_bit] = gold_bit.first;
 | |
|             }
 | |
|         }
 | |
|         // Run a random-value combinational simulation to find candidate equivalence classes
 | |
|         dict<IdBit, RTLIL::State> gold_anchor_vals, gate_anchor_vals;
 | |
|         rng_init();
 | |
|         for (int t = 0; t < sim_length; t++) {
 | |
|             for (auto anchor : gold_anchors) {
 | |
|                 gold_anchor_vals[anchor.first] = next_randbit();
 | |
|                 gate_anchor_vals[anchor.second] = gold_anchor_vals[anchor.first];
 | |
|             }
 | |
|             gold_worker.sim_cycle(t, gold_anchor_vals);
 | |
|             gate_worker.sim_cycle(t, gate_anchor_vals);
 | |
|         }
 | |
|         log_debug("%d candidate equiv classes in gold; %d in gate\n", GetSize(gold_worker.bit2cls), GetSize(gate_worker.bit2cls));
 | |
|         // Group bits by equivalence classes together
 | |
|         dict<equiv_cls_t, std::pair<pool<IdBit>, pool<InvBit>>> cls2bits;
 | |
|         gold_worker.group_classes(cls2bits, false);
 | |
|         gate_worker.group_classes(cls2bits, true);
 | |
|         gate_worker.compute_depths(gate_anchors);
 | |
|         // Sort equivalence classes by shallowest first (so we have as many anchors as possible when reaching deeper bits)
 | |
|         std::vector<std::pair<equiv_cls_t, int>> cls_depth;
 | |
|         for (auto &cls : cls2bits) {
 | |
|             if (cls.second.second.empty())
 | |
|                 continue;
 | |
|             int depth = 0;
 | |
|             for (auto gate_bit : cls.second.second) {
 | |
|                 if (!gate_worker.bit2depth.count(gate_bit.bit))
 | |
|                     continue;
 | |
|                 depth = std::max(depth, gate_worker.bit2depth.at(gate_bit.bit));
 | |
|             }
 | |
|             cls_depth.emplace_back(cls.first, depth);
 | |
|         }
 | |
|         std::stable_sort(cls_depth.begin(), cls_depth.end(),
 | |
|             [](const std::pair<equiv_cls_t, int> &a, const std::pair<equiv_cls_t, int> &b) {
 | |
|                 return a.second < b.second;
 | |
|             });
 | |
|         // The magic result we've worked hard for....
 | |
|         dict<IdBit, InvBit> gate2gold;
 | |
|         // Solve starting from shallowest
 | |
|         for (auto cls : cls_depth) {
 | |
|         	int pop = popcount(cls.first);
 | |
|         	// Equivalence classes with only one set bit are invariably a waste of SAT time
 | |
|         	if (pop == 1 || pop == (8*sizeof(equiv_cls_t) - 1))
 | |
|         		continue;
 | |
| 
 | |
|         	log_debug("equivalence class: %016" PRIx64 "\n", cls.first);
 | |
|             const pool<IdBit> &gold_bits = cls2bits.at(cls.first).first;
 | |
|             const pool<InvBit> &gate_bits = cls2bits.at(cls.first).second;
 | |
|             if (gold_bits.empty() || gate_bits.empty())
 | |
|                 continue;
 | |
|             pool<IdBit> solved_gate;
 | |
|             if (GetSize(gold_bits) > 10)
 | |
|                 continue; // large equivalence classes are not very interesting; skip
 | |
|             for (IdBit gold_bit : gold_bits) {
 | |
|                 for (auto gate_bit : gate_bits) {
 | |
|                     if (solved_gate.count(gate_bit.bit))
 | |
|                         continue;
 | |
|                     log_debug("   attempting to prove %s[%d] == %s%s[%d]\n", log_id(gold_bit.name), gold_bit.bit,
 | |
|                         gate_bit.inverted ? "" : "!", log_id(gate_bit.bit.name), gate_bit.bit.bit);
 | |
|                     if (!prove_equiv(gold_worker, gate_worker, gold_anchors, gate_anchors, gold_bit, gate_bit.bit, gate_bit.inverted))
 | |
|                         continue;
 | |
|                     log_debug("       success!\n");
 | |
|                     // Success!
 | |
|                     gate2gold[gate_bit.bit] = InvBit(gold_bit, gate_bit.inverted);
 | |
|                     if (!gate_bit.inverted) {
 | |
|                         // Only add as anchor if not inverted
 | |
|                         gold_anchors[gold_bit] = gate_bit.bit;
 | |
|                         gate_anchors[gate_bit.bit] = gold_bit;
 | |
|                     }
 | |
|                     solved_gate.insert(gate_bit.bit);
 | |
|                 }
 | |
|                 // All solved...
 | |
|                 if (GetSize(solved_gate) == GetSize(gate_bits))
 | |
|                     break;
 | |
|             }
 | |
|         }
 | |
|         log("Recovered %d net name pairs in module `%s' out.\n", GetSize(gate2gold), log_id(gate_mod));
 | |
|         gate_worker.do_rename(gold_mod, gate2gold, buffer_types);
 | |
|     }
 | |
| 
 | |
|     void operator()(string command)
 | |
|     {
 | |
|         // Make a backup copy of the pre-mapping design for later
 | |
|         gold_design = new RTLIL::Design;
 | |
| 
 | |
|         for (auto mod : design->modules())
 | |
|             gold_design->add(mod->clone());
 | |
| 
 | |
|         run_pass(command, design);
 | |
| 
 | |
|         analyse_boxes();
 | |
| 
 | |
|         // keeping our own std::vector here avoids modify-while-iterating issues
 | |
|         std::vector<Module *> to_analyse;
 | |
|         for (auto mod : design->modules())
 | |
|             if (!mod->get_blackbox_attribute())
 | |
|                 to_analyse.push_back(mod);
 | |
|         for (auto mod : to_analyse)
 | |
|             analyse_mod(mod);
 | |
|     }
 | |
|     ~RecoverNamesWorker() {
 | |
|         delete gold_design;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct RecoverNamesPass : public Pass {
 | |
|     RecoverNamesPass() : Pass("recover_names", "Execute a lossy mapping command and recover original netnames") { }
 | |
| 	bool formatted_help() override {
 | |
| 		auto *help = PrettyHelp::get_current();
 | |
| 		help->set_group("passes/opt");
 | |
| 		return false;
 | |
| 	}
 | |
|     void help() override
 | |
|     {
 | |
|         //   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | |
|         log("\n");
 | |
|         log("    recover_names [command]\n");
 | |
|         log("\n");
 | |
|         log("This pass executes a lossy mapping command and uses a combination of simulation\n");
 | |
|         log(" to find candidate equivalences and SAT to recover exact original net names.\n");
 | |
|         log("\n");
 | |
|     }
 | |
|     void execute(std::vector<std::string> args, RTLIL::Design *design) override
 | |
|     {
 | |
|         log_header(design, "Executing RECOVER_NAMES pass (run mapping and recover original names).\n");
 | |
|         string command;
 | |
| 
 | |
|         size_t argidx = 1;
 | |
|         for (; argidx < args.size(); argidx++) {
 | |
|             if (command.empty()) {
 | |
|                 if (args[argidx].compare(0, 1, "-") == 0)
 | |
|                     cmd_error(args, argidx, "Unknown option.");
 | |
|             } else {
 | |
|                 command += " ";
 | |
|             }
 | |
|             command += args[argidx];
 | |
|         }
 | |
| 
 | |
|         if (command.empty())
 | |
|             log_cmd_error("No mapping pass specified!\n");
 | |
| 
 | |
|         RecoverNamesWorker worker(design);
 | |
|         worker(command);
 | |
| 
 | |
|     }
 | |
| } RecoverNamesPass;
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 |