3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-06 17:44:09 +00:00
yosys/passes/sat/clk2fflogic.cc
Jannis Harder 925f92918a clk2fflogic: Always correctly handle simultaneously changing signals
This is a complete rewrite of the FF replacing code.

The previous implementation tried to implement the negative hold time by
wrapping async control signals individually with pulse stretching. This
did not correctly model the interaction between different simultaneously
changing inputs (e.g. a falling ALOAD together with a changing AD would
load the changed AD instead of the value AD had when ALOAD was high; a
falling CLR could mask a raising SET for one cycle; etc.).

The new approach first has the logic for all updates using only sampled
values followed by the logic for all updates using only current values.
That way, e.g., a falling ALOAD will load the sampled AD value but a
still active ALOAD will load the current AD value.

The new code also has deterministic behavior for the initial state: no
operation is active when that operation would depend on a specific
previous signal value. This also means clk2fflogic will no longer
generate any additional uninitialized FFs.

I also documented the negative hold time behavior in the help message,
copying the relevant part from async2sync's help messages.
2022-10-07 16:04:51 +02:00

262 lines
10 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/ffinit.h"
#include "kernel/ff.h"
#include "kernel/mem.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct SampledSig {
SigSpec sampled, current;
SigSpec &operator[](bool get_current) { return get_current ? current : sampled; }
};
struct Clk2fflogicPass : public Pass {
Clk2fflogicPass() : Pass("clk2fflogic", "convert clocked FFs to generic $ff cells") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" clk2fflogic [options] [selection]\n");
log("\n");
log("This command replaces clocked flip-flops with generic $ff cells that use the\n");
log("implicit global clock. This is useful for formal verification of designs with\n");
log("multiple clocks.\n");
log("\n");
log("This pass assumes negative hold time for the async FF inputs. For example when\n");
log("a reset deasserts with the clock edge, then the FF output will still drive the\n");
log("reset value in the next cycle regardless of the data-in value at the time of\n");
log("the clock edge.\n");
log("\n");
}
// Active-high sampled and current value of a level-triggered control signal. Initial sampled values is low/non-asserted.
SampledSig sample_control(Module *module, SigSpec sig, bool polarity, bool is_fine) {
if (!polarity) {
if (is_fine)
sig = module->NotGate(NEW_ID, sig);
else
sig = module->Not(NEW_ID, sig);
}
std::string sig_str = log_signal(sig);
sig_str.erase(std::remove(sig_str.begin(), sig_str.end(), ' '), sig_str.end());
Wire *sampled_sig = module->addWire(NEW_ID_SUFFIX(stringf("%s#sampled", sig_str.c_str())), GetSize(sig));
sampled_sig->attributes[ID::init] = RTLIL::Const(State::S0, GetSize(sig));
if (is_fine)
module->addFfGate(NEW_ID, sig, sampled_sig);
else
module->addFf(NEW_ID, sig, sampled_sig);
return {sampled_sig, sig};
}
// Active-high trigger signal for an edge-triggered control signal. Initial values is low/non-edge.
SigSpec sample_control_edge(Module *module, SigSpec sig, bool polarity, bool is_fine) {
std::string sig_str = log_signal(sig);
sig_str.erase(std::remove(sig_str.begin(), sig_str.end(), ' '), sig_str.end());
Wire *sampled_sig = module->addWire(NEW_ID_SUFFIX(stringf("%s#sampled", sig_str.c_str())), GetSize(sig));
sampled_sig->attributes[ID::init] = RTLIL::Const(polarity ? State::S1 : State::S0, GetSize(sig));
if (is_fine)
module->addFfGate(NEW_ID, sig, sampled_sig);
else
module->addFf(NEW_ID, sig, sampled_sig);
return module->Eqx(NEW_ID, {sampled_sig, sig}, polarity ? SigSpec {State::S0, State::S1} : SigSpec {State::S1, State::S0});
}
// Sampled and current value of a data signal.
SampledSig sample_data(Module *module, SigSpec sig, RTLIL::Const init, bool is_fine) {
std::string sig_str = log_signal(sig);
sig_str.erase(std::remove(sig_str.begin(), sig_str.end(), ' '), sig_str.end());
Wire *sampled_sig = module->addWire(NEW_ID_SUFFIX(stringf("%s#sampled", sig_str.c_str())), GetSize(sig));
sampled_sig->attributes[ID::init] = init;
if (is_fine)
module->addFfGate(NEW_ID, sig, sampled_sig);
else
module->addFf(NEW_ID, sig, sampled_sig);
return {sampled_sig, sig};
}
SigSpec mux(Module *module, SigSpec a, SigSpec b, SigSpec s, bool is_fine) {
if (is_fine)
return module->MuxGate(NEW_ID, a, b, s);
else
return module->Mux(NEW_ID, a, b, s);
}
SigSpec bitwise_sr(Module *module, SigSpec a, SigSpec s, SigSpec r, bool is_fine) {
if (is_fine)
return module->AndGate(NEW_ID, module->OrGate(NEW_ID, a, s), module->NotGate(NEW_ID, r));
else
return module->And(NEW_ID, module->Or(NEW_ID, a, s), module->Not(NEW_ID, r));
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
// bool flag_noinit = false;
log_header(design, "Executing CLK2FFLOGIC pass (convert clocked FFs to generic $ff cells).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
// if (args[argidx] == "-noinit") {
// flag_noinit = true;
// continue;
// }
break;
}
extra_args(args, argidx, design);
for (auto module : design->selected_modules())
{
SigMap sigmap(module);
FfInitVals initvals(&sigmap, module);
for (auto &mem : Mem::get_selected_memories(module))
{
for (int i = 0; i < GetSize(mem.rd_ports); i++) {
auto &port = mem.rd_ports[i];
if (port.clk_enable)
log_error("Read port %d of memory %s.%s is clocked. This is not supported by \"clk2fflogic\"! "
"Call \"memory\" with -nordff to avoid this error.\n", i, log_id(mem.memid), log_id(module));
}
for (int i = 0; i < GetSize(mem.wr_ports); i++)
{
auto &port = mem.wr_ports[i];
if (!port.clk_enable)
continue;
log("Modifying write port %d on memory %s.%s: CLK=%s, A=%s, D=%s\n",
i, log_id(module), log_id(mem.memid), log_signal(port.clk),
log_signal(port.addr), log_signal(port.data));
Wire *past_clk = module->addWire(NEW_ID_SUFFIX(stringf("%s#%d#past_clk#%s", log_id(mem.memid), i, log_signal(port.clk))));
past_clk->attributes[ID::init] = port.clk_polarity ? State::S1 : State::S0;
module->addFf(NEW_ID, port.clk, past_clk);
SigSpec clock_edge_pattern;
if (port.clk_polarity) {
clock_edge_pattern.append(State::S0);
clock_edge_pattern.append(State::S1);
} else {
clock_edge_pattern.append(State::S1);
clock_edge_pattern.append(State::S0);
}
SigSpec clock_edge = module->Eqx(NEW_ID, {port.clk, SigSpec(past_clk)}, clock_edge_pattern);
SigSpec en_q = module->addWire(NEW_ID_SUFFIX(stringf("%s#%d#en_q", log_id(mem.memid), i)), GetSize(port.en));
module->addFf(NEW_ID, port.en, en_q);
SigSpec addr_q = module->addWire(NEW_ID_SUFFIX(stringf("%s#%d#addr_q", log_id(mem.memid), i)), GetSize(port.addr));
module->addFf(NEW_ID, port.addr, addr_q);
SigSpec data_q = module->addWire(NEW_ID_SUFFIX(stringf("%s#%d#data_q", log_id(mem.memid), i)), GetSize(port.data));
module->addFf(NEW_ID, port.data, data_q);
port.clk = State::S0;
port.en = module->Mux(NEW_ID, Const(0, GetSize(en_q)), en_q, clock_edge);
port.addr = addr_q;
port.data = data_q;
port.clk_enable = false;
port.clk_polarity = false;
}
mem.emit();
}
for (auto cell : vector<Cell*>(module->selected_cells()))
{
SigSpec qval;
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
FfData ff(&initvals, cell);
if (ff.has_gclk) {
// Already a $ff or $_FF_ cell.
continue;
}
if (ff.has_clk) {
log("Replacing %s.%s (%s): CLK=%s, D=%s, Q=%s\n",
log_id(module), log_id(cell), log_id(cell->type),
log_signal(ff.sig_clk), log_signal(ff.sig_d), log_signal(ff.sig_q));
} else if (ff.has_aload) {
log("Replacing %s.%s (%s): EN=%s, D=%s, Q=%s\n",
log_id(module), log_id(cell), log_id(cell->type),
log_signal(ff.sig_aload), log_signal(ff.sig_ad), log_signal(ff.sig_q));
} else {
// $sr.
log("Replacing %s.%s (%s): SET=%s, CLR=%s, Q=%s\n",
log_id(module), log_id(cell), log_id(cell->type),
log_signal(ff.sig_set), log_signal(ff.sig_clr), log_signal(ff.sig_q));
}
ff.remove();
if (ff.has_clk)
ff.unmap_ce_srst();
auto next_q = sample_data(module, ff.sig_q, ff.val_init, ff.is_fine).sampled;
if (ff.has_clk) {
// The init value for the sampled d is never used, so we can set it to fixed zero, reducing uninit'd FFs
auto sampled_d = sample_data(module, ff.sig_d, RTLIL::Const(State::S0, ff.width), ff.is_fine);
auto clk_edge = sample_control_edge(module, ff.sig_clk, ff.pol_clk, ff.is_fine);
next_q = mux(module, next_q, sampled_d.sampled, clk_edge, ff.is_fine);
}
SampledSig sampled_aload, sampled_ad, sampled_set, sampled_clr, sampled_arst;
// The check for a constant sig_aload is also done by opt_dff, but when using verific and running
// clk2fflogic before opt_dff (which does more and possibly unwanted optimizations) this check avoids
// generating a lot of extra logic.
bool has_nonconst_aload = ff.has_aload && ff.sig_aload != (ff.pol_aload ? State::S0 : State::S1);
if (has_nonconst_aload) {
sampled_aload = sample_control(module, ff.sig_aload, ff.pol_aload, ff.is_fine);
// The init value for the sampled ad is never used, so we can set it to fixed zero, reducing uninit'd FFs
sampled_ad = sample_data(module, ff.sig_ad, RTLIL::Const(State::S0, ff.width), ff.is_fine);
}
if (ff.has_sr) {
sampled_set = sample_control(module, ff.sig_set, ff.pol_set, ff.is_fine);
sampled_clr = sample_control(module, ff.sig_clr, ff.pol_clr, ff.is_fine);
}
if (ff.has_arst)
sampled_arst = sample_control(module, ff.sig_arst, ff.pol_arst, ff.is_fine);
// First perform updates using _only_ sampled values, then again using _only_ current values. Unlike the previous
// implementation, this approach correctly handles all the cases of multiple signals changing simultaneously.
for (int current = 0; current < 2; current++) {
if (has_nonconst_aload)
next_q = mux(module, next_q, sampled_ad[current], sampled_aload[current], ff.is_fine);
if (ff.has_sr)
next_q = bitwise_sr(module, next_q, sampled_set[current], sampled_clr[current], ff.is_fine);
if (ff.has_arst)
next_q = mux(module, next_q, ff.val_arst, sampled_arst[current], ff.is_fine);
}
module->connect(ff.sig_q, next_q);
}
}
}
}
} Clk2fflogicPass;
PRIVATE_NAMESPACE_END