mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-28 18:29:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			241 lines
		
	
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| #include "kernel/satgen.h"
 | |
| #include "kernel/sigtools.h"
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| struct EquivInductWorker
 | |
| {
 | |
| 	Module *module;
 | |
| 	SigMap sigmap;
 | |
| 
 | |
| 	vector<Cell*> cells;
 | |
| 	pool<Cell*> workset;
 | |
| 
 | |
| 	ezSatPtr ez;
 | |
| 	SatGen satgen;
 | |
| 
 | |
| 	int max_seq;
 | |
| 	int success_counter;
 | |
| 
 | |
| 	dict<int, int> ez_step_is_consistent;
 | |
| 	pool<Cell*> cell_warn_cache;
 | |
| 	SigPool undriven_signals;
 | |
| 
 | |
| 	EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, bool model_undef, int max_seq) : module(module), sigmap(module),
 | |
| 			cells(module->selected_cells()), workset(unproven_equiv_cells),
 | |
| 			satgen(ez.get(), &sigmap), max_seq(max_seq), success_counter(0)
 | |
| 	{
 | |
| 		satgen.model_undef = model_undef;
 | |
| 	}
 | |
| 
 | |
| 	void create_timestep(int step)
 | |
| 	{
 | |
| 		vector<int> ez_equal_terms;
 | |
| 
 | |
| 		for (auto cell : cells) {
 | |
| 			if (!satgen.importCell(cell, step) && !cell_warn_cache.count(cell)) {
 | |
| 				log_warning("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
 | |
| 				cell_warn_cache.insert(cell);
 | |
| 			}
 | |
| 			if (cell->type == ID($equiv)) {
 | |
| 				SigBit bit_a = sigmap(cell->getPort(ID::A)).as_bit();
 | |
| 				SigBit bit_b = sigmap(cell->getPort(ID::B)).as_bit();
 | |
| 				if (bit_a != bit_b) {
 | |
| 					int ez_a = satgen.importSigBit(bit_a, step);
 | |
| 					int ez_b = satgen.importSigBit(bit_b, step);
 | |
| 					int cond = ez->IFF(ez_a, ez_b);
 | |
| 					if (satgen.model_undef)
 | |
| 						cond = ez->OR(cond, satgen.importUndefSigBit(bit_a, step));
 | |
| 					ez_equal_terms.push_back(cond);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (satgen.model_undef) {
 | |
| 			for (auto bit : undriven_signals.export_all())
 | |
| 				ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step)));
 | |
| 		}
 | |
| 
 | |
| 		log_assert(!ez_step_is_consistent.count(step));
 | |
| 		ez_step_is_consistent[step] = ez->expression(ez->OpAnd, ez_equal_terms);
 | |
| 	}
 | |
| 
 | |
| 	void run()
 | |
| 	{
 | |
| 		log("Found %d unproven $equiv cells in module %s:\n", GetSize(workset), log_id(module));
 | |
| 
 | |
| 		if (satgen.model_undef) {
 | |
| 			for (auto cell : cells)
 | |
| 				if (yosys_celltypes.cell_known(cell->type))
 | |
| 					for (auto &conn : cell->connections())
 | |
| 						if (yosys_celltypes.cell_input(cell->type, conn.first))
 | |
| 							undriven_signals.add(sigmap(conn.second));
 | |
| 			for (auto cell : cells)
 | |
| 				if (yosys_celltypes.cell_known(cell->type))
 | |
| 					for (auto &conn : cell->connections())
 | |
| 						if (yosys_celltypes.cell_output(cell->type, conn.first))
 | |
| 							undriven_signals.del(sigmap(conn.second));
 | |
| 		}
 | |
| 
 | |
| 		create_timestep(1);
 | |
| 
 | |
| 		if (satgen.model_undef) {
 | |
| 			for (auto bit : satgen.initial_state.export_all())
 | |
| 				ez->assume(ez->NOT(satgen.importUndefSigBit(bit, 1)));
 | |
| 			log("  Undef modelling: force def on %d initial reg values and %d inputs.\n",
 | |
| 				GetSize(satgen.initial_state), GetSize(undriven_signals));
 | |
| 		}
 | |
| 
 | |
| 		for (int step = 1; step <= max_seq; step++)
 | |
| 		{
 | |
| 			ez->assume(ez_step_is_consistent[step]);
 | |
| 
 | |
| 			log("  Proving existence of base case for step %d. (%d clauses over %d variables)\n", step, ez->numCnfClauses(), ez->numCnfVariables());
 | |
| 			if (!ez->solve()) {
 | |
| 				log("  Proof for base case failed. Circuit inherently diverges!\n");
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			create_timestep(step+1);
 | |
| 			int new_step_not_consistent = ez->NOT(ez_step_is_consistent[step+1]);
 | |
| 			ez->bind(new_step_not_consistent);
 | |
| 
 | |
| 			log("  Proving induction step %d. (%d clauses over %d variables)\n", step, ez->numCnfClauses(), ez->numCnfVariables());
 | |
| 			if (!ez->solve(new_step_not_consistent)) {
 | |
| 				log("  Proof for induction step holds. Entire workset of %d cells proven!\n", GetSize(workset));
 | |
| 				for (auto cell : workset)
 | |
| 					cell->setPort(ID::B, cell->getPort(ID::A));
 | |
| 				success_counter += GetSize(workset);
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			log("  Proof for induction step failed. %s\n", step != max_seq ? "Extending to next time step." : "Trying to prove individual $equiv from workset.");
 | |
| 		}
 | |
| 
 | |
| 		workset.sort();
 | |
| 
 | |
| 		for (auto cell : workset)
 | |
| 		{
 | |
| 			SigBit bit_a = sigmap(cell->getPort(ID::A)).as_bit();
 | |
| 			SigBit bit_b = sigmap(cell->getPort(ID::B)).as_bit();
 | |
| 
 | |
| 			log("  Trying to prove $equiv for %s:", log_signal(sigmap(cell->getPort(ID::Y))));
 | |
| 
 | |
| 			int ez_a = satgen.importSigBit(bit_a, max_seq+1);
 | |
| 			int ez_b = satgen.importSigBit(bit_b, max_seq+1);
 | |
| 			int cond = ez->XOR(ez_a, ez_b);
 | |
| 
 | |
| 			if (satgen.model_undef)
 | |
| 				cond = ez->AND(cond, ez->NOT(satgen.importUndefSigBit(bit_a, max_seq+1)));
 | |
| 
 | |
| 			if (!ez->solve(cond)) {
 | |
| 				log(" success!\n");
 | |
| 				cell->setPort(ID::B, cell->getPort(ID::A));
 | |
| 				success_counter++;
 | |
| 			} else {
 | |
| 				log(" failed.\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| struct EquivInductPass : public Pass {
 | |
| 	EquivInductPass() : Pass("equiv_induct", "proving $equiv cells using temporal induction") { }
 | |
| 	void help() YS_OVERRIDE
 | |
| 	{
 | |
| 		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | |
| 		log("\n");
 | |
| 		log("    equiv_induct [options] [selection]\n");
 | |
| 		log("\n");
 | |
| 		log("Uses a version of temporal induction to prove $equiv cells.\n");
 | |
| 		log("\n");
 | |
| 		log("Only selected $equiv cells are proven and only selected cells are used to\n");
 | |
| 		log("perform the proof.\n");
 | |
| 		log("\n");
 | |
| 		log("    -undef\n");
 | |
| 		log("        enable modelling of undef states\n");
 | |
| 		log("\n");
 | |
| 		log("    -seq <N>\n");
 | |
| 		log("        the max. number of time steps to be considered (default = 4)\n");
 | |
| 		log("\n");
 | |
| 		log("This command is very effective in proving complex sequential circuits, when\n");
 | |
| 		log("the internal state of the circuit quickly propagates to $equiv cells.\n");
 | |
| 		log("\n");
 | |
| 		log("However, this command uses a weak definition of 'equivalence': This command\n");
 | |
| 		log("proves that the two circuits will not diverge after they produce equal\n");
 | |
| 		log("outputs (observable points via $equiv) for at least <N> cycles (the <N>\n");
 | |
| 		log("specified via -seq).\n");
 | |
| 		log("\n");
 | |
| 		log("Combined with simulation this is very powerful because simulation can give\n");
 | |
| 		log("you confidence that the circuits start out synced for at least <N> cycles\n");
 | |
| 		log("after reset.\n");
 | |
| 		log("\n");
 | |
| 	}
 | |
| 	void execute(std::vector<std::string> args, Design *design) YS_OVERRIDE
 | |
| 	{
 | |
| 		int success_counter = 0;
 | |
| 		bool model_undef = false;
 | |
| 		int max_seq = 4;
 | |
| 
 | |
| 		log_header(design, "Executing EQUIV_INDUCT pass.\n");
 | |
| 
 | |
| 		size_t argidx;
 | |
| 		for (argidx = 1; argidx < args.size(); argidx++) {
 | |
| 			if (args[argidx] == "-undef") {
 | |
| 				model_undef = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (args[argidx] == "-seq" && argidx+1 < args.size()) {
 | |
| 				max_seq = atoi(args[++argidx].c_str());
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		extra_args(args, argidx, design);
 | |
| 
 | |
| 		for (auto module : design->selected_modules())
 | |
| 		{
 | |
| 			pool<Cell*> unproven_equiv_cells;
 | |
| 
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 				if (cell->type == ID($equiv)) {
 | |
| 					if (cell->getPort(ID::A) != cell->getPort(ID::B))
 | |
| 						unproven_equiv_cells.insert(cell);
 | |
| 				}
 | |
| 
 | |
| 			if (unproven_equiv_cells.empty()) {
 | |
| 				log("No selected unproven $equiv cells found in %s.\n", log_id(module));
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq);
 | |
| 			worker.run();
 | |
| 			success_counter += worker.success_counter;
 | |
| 		}
 | |
| 
 | |
| 		log("Proved %d previously unproven $equiv cells.\n", success_counter);
 | |
| 	}
 | |
| } EquivInductPass;
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 |