mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 19:52:31 +00:00 
			
		
		
		
	- Techlib pmgens are now in relevant techlibs/*. - `peepopt` pmgens are now in passes/opt. - `test_pmgen` is still in passes/pmgen. - Update `Makefile.inc` and `.gitignore` file(s) to match new `*_pm.h` location, as well as the `#include`s. - Change default `%_pm.h` make target to `techlibs/%_pm.h` and move it to the top level Makefile. - Update pmgen target to use `$(notdir $*)` (where `$*` is the part of the file name that matched the '%' in the target) instead of `$(subst _pm.h,,$(notdir $@))`.
		
			
				
	
	
		
			490 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
			
		
		
	
	
			490 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
| // This file describes the main pattern matcher setup (of three total) that
 | |
| //   forms the `xilinx_dsp` pass described in xilinx_dsp.cc
 | |
| // At a high level, it works as follows:
 | |
| //   ( 1) Starting from a DSP48E1 cell
 | |
| //   ( 2) Match the driver of the 'A' input to a possible $sdffe cell (ADREG)
 | |
| //        If ADREG matched, treat 'A' input as input of ADREG
 | |
| //   ( 3) Match the driver of the 'A' and 'D' inputs for a possible $add cell
 | |
| //       (pre-adder)
 | |
| //   ( 4) If pre-adder was present, find match 'A' input for A2REG
 | |
| //        If pre-adder was not present, move ADREG to A2REG
 | |
| //        If A2REG, then match 'A' input for A1REG
 | |
| //   ( 5) Match 'B' input for B2REG
 | |
| //        If B2REG, then match 'B' input for B1REG
 | |
| //   ( 6) Match 'D' input for DREG
 | |
| //   ( 7) Match 'P' output that exclusively drives an MREG
 | |
| //   ( 8) Match 'P' output that exclusively drives one of two inputs to an $add
 | |
| //        cell (post-adder).
 | |
| //        The other input to the adder is assumed to come in from the 'C' input
 | |
| //        (note: 'P' -> 'C' connections that exist for accumulators are
 | |
| //         recognised in xilinx_dsp.cc).
 | |
| //   ( 9) Match 'P' output that exclusively drives a PREG
 | |
| //   (10) If post-adder and PREG both present, match for a $mux cell driving
 | |
| //        the 'C' input, where one of the $mux's inputs is the PREG output.
 | |
| //        This indicates an accumulator situation, and one where a $mux exists
 | |
| //        to override the accumulated value:
 | |
| //             +--------------------------------+
 | |
| //             |   ____                         |
 | |
| //             +--|    \                        |
 | |
| //                |$mux|-+                      |
 | |
| //         'C' ---|____/ |                      |
 | |
| //                       | /-------\   +----+   |
 | |
| //            +----+     +-| post- |___|PREG|---+ 'P'
 | |
| //            |MREG|------ | adder |   +----+
 | |
| //            +----+       \-------/
 | |
| //   (11) If PREG present, match for a greater-than-or-equal $ge cell attached
 | |
| //        to the 'P' output where it is compared to a constant that is a
 | |
| //        power-of-2: e.g. `assign overflow = (PREG >= 2**40);`
 | |
| //        In this scenario, the pattern detector functionality of a DSP48E1 can
 | |
| //        to implement this function
 | |
| // Notes:
 | |
| //   - The intention of this pattern matcher is for it to be compatible with
 | |
| //     DSP48E1 cells inferred from multiply operations by Yosys, as well as for
 | |
| //     user instantiations that may already contain the cells being packed...
 | |
| //     (though the latter is currently untested)
 | |
| //   - Since the $sdffe pattern is used
 | |
| //     for each *REG match, it has been factored out into two subpatterns:
 | |
| //     in_dffe and out_dffe located at the bottom of this file.
 | |
| //   - Matching for pattern detector features is currently incomplete. For
 | |
| //     example, matching for underflow as well as overflow detection is
 | |
| //     possible, as would auto-reset, enabling saturated arithmetic, detecting
 | |
| //     custom patterns, etc.
 | |
| 
 | |
| pattern xilinx_dsp_pack
 | |
| 
 | |
| state <SigBit> clock
 | |
| state <SigSpec> sigA sigB sigC sigD sigM sigP
 | |
| state <IdString> postAddAB postAddMuxAB
 | |
| state <Cell*> ffAD ffA1 ffA2
 | |
| state <Cell*> ffB1 ffB2
 | |
| state <Cell*> ffD ffM ffP
 | |
| 
 | |
| // Variables used for subpatterns
 | |
| state <SigSpec> argQ argD
 | |
| udata <SigSpec> dffD dffQ
 | |
| udata <SigBit> dffclock
 | |
| udata <Cell*> dff
 | |
| 
 | |
| // (1) Starting from a DSP48E1 cell
 | |
| match dsp
 | |
| 	select dsp->type.in(\DSP48E1)
 | |
| endmatch
 | |
| 
 | |
| code sigA sigB sigC sigD sigM clock
 | |
| 	auto unextend = [](const SigSpec &sig) {
 | |
| 		int i;
 | |
| 		for (i = GetSize(sig)-1; i > 0; i--)
 | |
| 			if (sig[i] != sig[i-1])
 | |
| 				break;
 | |
| 		// Do not remove non-const sign bit
 | |
| 		if (sig[i].wire)
 | |
| 			++i;
 | |
| 		return sig.extract(0, i);
 | |
| 	};
 | |
| 	sigA = unextend(port(dsp, \A));
 | |
| 	sigB = unextend(port(dsp, \B));
 | |
| 
 | |
| 	sigC = port(dsp, \C, SigSpec());
 | |
| 	sigD = port(dsp, \D, SigSpec());
 | |
| 
 | |
| 	SigSpec P = port(dsp, \P);
 | |
| 	if (param(dsp, \USE_MULT).decode_string() == "MULTIPLY") {
 | |
| 		// Only care about those bits that are used
 | |
| 		int i;
 | |
| 		for (i = GetSize(P)-1; i >= 0; i--)
 | |
| 			if (nusers(P[i]) > 1)
 | |
| 				break;
 | |
| 		i++;
 | |
| 		log_assert(nusers(P.extract_end(i)) <= 1);
 | |
| 		// This sigM could have no users if downstream sinks (e.g. $add) is
 | |
| 		//   narrower than $mul result, for example
 | |
| 		if (i == 0)
 | |
| 			reject;
 | |
| 		sigM = P.extract(0, i);
 | |
| 	}
 | |
| 	else
 | |
| 		sigM = P;
 | |
| 
 | |
| 	clock = port(dsp, \CLK, SigBit());
 | |
| endcode
 | |
| 
 | |
| // (2) Match the driver of the 'A' input to a possible $sdffe cell (ADREG)
 | |
| //     If matched, treat 'A' input as input of ADREG
 | |
| code argQ ffAD sigA clock
 | |
| 	if (param(dsp, \ADREG).as_int() == 0) {
 | |
| 		argQ = sigA;
 | |
| 		subpattern(in_dffe);
 | |
| 		if (dff) {
 | |
| 			ffAD = dff;
 | |
| 			clock = dffclock;
 | |
| 			sigA = dffD;
 | |
| 		}
 | |
| 	}
 | |
| endcode
 | |
| 
 | |
| // (3) Match the driver of the 'A' and 'D' inputs for a possible $add cell
 | |
| //     (pre-adder)
 | |
| match preAdd
 | |
| 	if sigD.empty() || sigD.is_fully_zero()
 | |
| 	// Ensure that preAdder not already used
 | |
| 	if param(dsp, \USE_DPORT).decode_string() == "FALSE"
 | |
| 	if port(dsp, \INMODE, Const(0, 5)).is_fully_zero()
 | |
| 
 | |
| 	select preAdd->type.in($add)
 | |
| 	// Output has to be 25 bits or less
 | |
| 	select GetSize(port(preAdd, \Y)) <= 25
 | |
| 	select nusers(port(preAdd, \Y)) == 2
 | |
| 	choice <IdString> AB {\A, \B}
 | |
| 	// A port has to be 30 bits or less
 | |
| 	select GetSize(port(preAdd, AB)) <= 30
 | |
| 	define <IdString> BA (AB == \A ? \B : \A)
 | |
| 	// D port has to be 25 bits or less
 | |
| 	select GetSize(port(preAdd, BA)) <= 25
 | |
| 	index <SigSpec> port(preAdd, \Y) === sigA
 | |
| 
 | |
| 	optional
 | |
| endmatch
 | |
| 
 | |
| code sigA sigD
 | |
| 	if (preAdd) {
 | |
| 		sigA = port(preAdd, \A);
 | |
| 		sigD = port(preAdd, \B);
 | |
| 	}
 | |
| endcode
 | |
| 
 | |
| // (4) If pre-adder was present, find match 'A' input for A2REG
 | |
| //     If pre-adder was not present, move ADREG to A2REG
 | |
| //     Then match 'A' input for A1REG
 | |
| code argQ ffAD sigA clock ffA2 ffA1
 | |
| 	// Only search for ffA2 if there was a pre-adder
 | |
| 	//   (otherwise ffA2 would have been matched as ffAD)
 | |
| 	if (preAdd) {
 | |
| 		if (param(dsp, \AREG).as_int() == 0) {
 | |
| 			argQ = sigA;
 | |
| 			subpattern(in_dffe);
 | |
| 			if (dff) {
 | |
| 				ffA2 = dff;
 | |
| 				clock = dffclock;
 | |
| 				sigA = dffD;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	// And if there wasn't a pre-adder,
 | |
| 	//   move AD register to A
 | |
| 	else if (ffAD) {
 | |
| 		log_assert(!ffA2);
 | |
| 		std::swap(ffA2, ffAD);
 | |
| 	}
 | |
| 
 | |
| 	// Now attempt to match A1
 | |
| 	if (ffA2) {
 | |
| 		argQ = sigA;
 | |
| 		subpattern(in_dffe);
 | |
| 		if (dff) {
 | |
| 			if (dff->type != ffA2->type)
 | |
| 				goto ffA1_end;
 | |
| 			if (dff->type.in($sdff, $sdffe, $sdffce)) {
 | |
| 				if (param(dff, \SRST_POLARITY) != param(ffA2, \SRST_POLARITY))
 | |
| 					goto ffA1_end;
 | |
| 				if (port(dff, \SRST) != port(ffA2, \SRST))
 | |
| 					goto ffA1_end;
 | |
| 			}
 | |
| 			if (dff->type.in($dffe, $sdffe, $sdffce)) {
 | |
| 				if (param(dff, \EN_POLARITY) != param(ffA2, \EN_POLARITY))
 | |
| 					goto ffA1_end;
 | |
| 				if (port(dff, \EN) != port(ffA2, \EN))
 | |
| 					goto ffA1_end;
 | |
| 			}
 | |
| 
 | |
| 			ffA1 = dff;
 | |
| 			clock = dffclock;
 | |
| 			sigA = dffD;
 | |
| 
 | |
| ffA1_end:		;
 | |
| 		}
 | |
| 	}
 | |
| endcode
 | |
| 
 | |
| // (5) Match 'B' input for B2REG
 | |
| //     If B2REG, then match 'B' input for B1REG
 | |
| code argQ ffB2 sigB clock ffB1
 | |
| 	if (param(dsp, \BREG).as_int() == 0) {
 | |
| 		argQ = sigB;
 | |
| 		subpattern(in_dffe);
 | |
| 		if (dff) {
 | |
| 			ffB2 = dff;
 | |
| 			clock = dffclock;
 | |
| 			sigB = dffD;
 | |
| 
 | |
| 			// Now attempt to match B1
 | |
| 			if (ffB2) {
 | |
| 				argQ = sigB;
 | |
| 				subpattern(in_dffe);
 | |
| 				if (dff) {
 | |
| 					if (dff->type != ffB2->type)
 | |
| 						goto ffB1_end;
 | |
| 					if (dff->type.in($sdff, $sdffe, $sdffce)) {
 | |
| 						if (param(dff, \SRST_POLARITY) != param(ffB2, \SRST_POLARITY))
 | |
| 							goto ffB1_end;
 | |
| 						if (port(dff, \SRST) != port(ffB2, \SRST))
 | |
| 							goto ffB1_end;
 | |
| 					}
 | |
| 					if (dff->type.in($dffe, $sdffe, $sdffce)) {
 | |
| 						if (param(dff, \EN_POLARITY) != param(ffB2, \EN_POLARITY))
 | |
| 							goto ffB1_end;
 | |
| 						if (port(dff, \EN) != port(ffB2, \EN))
 | |
| 							goto ffB1_end;
 | |
| 					}
 | |
| 
 | |
| 					ffB1 = dff;
 | |
| 					clock = dffclock;
 | |
| 					sigB = dffD;
 | |
| 
 | |
| ffB1_end:				;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| endcode
 | |
| 
 | |
| // (6) Match 'D' input for DREG
 | |
| code argQ ffD sigD clock
 | |
| 	if (param(dsp, \DREG).as_int() == 0) {
 | |
| 		argQ = sigD;
 | |
| 		subpattern(in_dffe);
 | |
| 		if (dff) {
 | |
| 			ffD = dff;
 | |
| 			clock = dffclock;
 | |
| 			sigD = dffD;
 | |
| 		}
 | |
| 	}
 | |
| endcode
 | |
| 
 | |
| // (7) Match 'P' output that exclusively drives an MREG
 | |
| code argD ffM sigM sigP clock
 | |
| 	if (param(dsp, \MREG).as_int() == 0 && nusers(sigM) == 2) {
 | |
| 		argD = sigM;
 | |
| 		subpattern(out_dffe);
 | |
| 		if (dff) {
 | |
| 			ffM = dff;
 | |
| 			clock = dffclock;
 | |
| 			sigM = dffQ;
 | |
| 		}
 | |
| 	}
 | |
| 	sigP = sigM;
 | |
| endcode
 | |
| 
 | |
| // (8) Match 'P' output that exclusively drives one of two inputs to an $add
 | |
| //     cell (post-adder).
 | |
| //     The other input to the adder is assumed to come in from the 'C' input
 | |
| //     (note: 'P' -> 'C' connections that exist for accumulators are
 | |
| //      recognised in xilinx_dsp.cc).
 | |
| match postAdd
 | |
| 	// Ensure that Z mux is not already used
 | |
| 	if port(dsp, \OPMODE, SigSpec(0, 7)).extract(4,3).is_fully_zero()
 | |
| 
 | |
| 	select postAdd->type.in($add)
 | |
| 	select GetSize(port(postAdd, \Y)) <= 48
 | |
| 	choice <IdString> AB {\A, \B}
 | |
| 	select nusers(port(postAdd, AB)) == 2
 | |
| 
 | |
| 	index <SigBit> port(postAdd, AB)[0] === sigP[0]
 | |
| 	filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
 | |
| 	filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
 | |
| 	// Check that remainder of AB is a sign- or zero-extension
 | |
| 	filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
 | |
| 
 | |
| 	set postAddAB AB
 | |
| 	optional
 | |
| endmatch
 | |
| 
 | |
| code sigC sigP
 | |
| 	if (postAdd) {
 | |
| 		sigC = port(postAdd, postAddAB == \A ? \B : \A);
 | |
| 		sigP = port(postAdd, \Y);
 | |
| 	}
 | |
| endcode
 | |
| 
 | |
| // (9) Match 'P' output that exclusively drives a PREG
 | |
| code argD ffP sigP clock
 | |
| 	if (param(dsp, \PREG).as_int() == 0) {
 | |
| 		if (nusers(sigP) == 2) {
 | |
| 			argD = sigP;
 | |
| 			subpattern(out_dffe);
 | |
| 			if (dff) {
 | |
| 				ffP = dff;
 | |
| 				clock = dffclock;
 | |
| 				sigP = dffQ;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| endcode
 | |
| 
 | |
| // (10) If post-adder and PREG both present, match for a $mux cell driving
 | |
| //      the 'C' input, where one of the $mux's inputs is the PREG output.
 | |
| //      This indicates an accumulator situation, and one where a $mux exists
 | |
| //      to override the accumulated value:
 | |
| //           +--------------------------------+
 | |
| //           |   ____                         |
 | |
| //           +--|    \                        |
 | |
| //              |$mux|-+                      |
 | |
| //       'C' ---|____/ |                      |
 | |
| //                     | /-------\   +----+   |
 | |
| //          +----+     +-| post- |___|PREG|---+ 'P'
 | |
| //          |MREG|------ | adder |   +----+
 | |
| //          +----+       \-------/
 | |
| match postAddMux
 | |
| 	if postAdd
 | |
| 	if ffP
 | |
| 	select postAddMux->type.in($mux)
 | |
| 	select nusers(port(postAddMux, \Y)) == 2
 | |
| 	choice <IdString> AB {\A, \B}
 | |
| 	index <SigSpec> port(postAddMux, AB) === sigP
 | |
| 	index <SigSpec> port(postAddMux, \Y) === sigC
 | |
| 	set postAddMuxAB AB
 | |
| 	optional
 | |
| endmatch
 | |
| 
 | |
| code sigC
 | |
| 	if (postAddMux)
 | |
| 		sigC = port(postAddMux, postAddMuxAB == \A ? \B : \A);
 | |
| endcode
 | |
| 
 | |
| // (11) If PREG present, match for a greater-than-or-equal $ge cell attached to
 | |
| //      the 'P' output where it is compared to a constant that is a power-of-2:
 | |
| //      e.g. `assign overflow = (PREG >= 2**40);`
 | |
| //      In this scenario, the pattern detector functionality of a DSP48E1 can
 | |
| //      to implement this function
 | |
| match overflow
 | |
| 	if ffP
 | |
| 	if param(dsp, \USE_PATTERN_DETECT).decode_string() == "NO_PATDET"
 | |
| 	select overflow->type.in($ge)
 | |
| 	select GetSize(port(overflow, \Y)) <= 48
 | |
| 	select port(overflow, \B).is_fully_const()
 | |
| 	define <Const> B port(overflow, \B).as_const()
 | |
| 	select std::count(B.begin(), B.end(), State::S1) == 1
 | |
| 	index <SigSpec> port(overflow, \A) === sigP
 | |
| 	optional
 | |
| endmatch
 | |
| 
 | |
| code
 | |
| 	accept;
 | |
| endcode
 | |
| 
 | |
| // #######################
 | |
| 
 | |
| // Subpattern for matching against input registers, based on knowledge of the
 | |
| //   'Q' input.
 | |
| subpattern in_dffe
 | |
| arg argQ clock
 | |
| 
 | |
| code
 | |
| 	dff = nullptr;
 | |
| 	if (argQ.empty())
 | |
| 		reject;
 | |
| 	for (const auto &c : argQ.chunks()) {
 | |
| 		// Abandon matches when 'Q' is a constant
 | |
| 		if (!c.wire)
 | |
| 			reject;
 | |
| 		// Abandon matches when 'Q' has the keep attribute set
 | |
| 		if (c.wire->get_bool_attribute(\keep))
 | |
| 			reject;
 | |
| 		// Abandon matches when 'Q' has a non-zero init attribute set
 | |
| 		// (not supported by DSP48E1)
 | |
| 		Const init = c.wire->attributes.at(\init, Const());
 | |
| 		if (!init.empty())
 | |
| 			for (auto b : init.extract(c.offset, c.width))
 | |
| 				if (b != State::Sx && b != State::S0)
 | |
| 					reject;
 | |
| 	}
 | |
| endcode
 | |
| 
 | |
| match ff
 | |
| 	select ff->type.in($dff, $dffe, $sdff, $sdffe)
 | |
| 	// DSP48E1 does not support clock inversion
 | |
| 	select param(ff, \CLK_POLARITY).as_bool()
 | |
| 
 | |
| 	// Check that reset value, if present, is fully 0.
 | |
| 	filter ff->type.in($dff, $dffe) || param(ff, \SRST_VALUE).is_fully_zero()
 | |
| 
 | |
| 	slice offset GetSize(port(ff, \D))
 | |
| 	index <SigBit> port(ff, \Q)[offset] === argQ[0]
 | |
| 
 | |
| 	// Check that the rest of argQ is present
 | |
| 	filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
 | |
| 	filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
 | |
| 
 | |
| 	filter clock == SigBit() || port(ff, \CLK)[0] == clock
 | |
| endmatch
 | |
| 
 | |
| code argQ
 | |
| 	SigSpec Q = port(ff, \Q);
 | |
| 	dff = ff;
 | |
| 	dffclock = port(ff, \CLK);
 | |
| 	dffD = argQ;
 | |
| 	SigSpec D = port(ff, \D);
 | |
| 	argQ = Q;
 | |
| 	dffD.replace(argQ, D);
 | |
| endcode
 | |
| 
 | |
| // #######################
 | |
| 
 | |
| // Subpattern for matching against output registers, based on knowledge of the
 | |
| //   'D' input.
 | |
| // At a high level:
 | |
| //   (1) Starting from an optional $mux cell that implements clock enable
 | |
| //       semantics --- one where the given 'D' argument (partially or fully)
 | |
| //       drives one of its two inputs
 | |
| //   (2) Starting from, or continuing onto, another optional $mux cell that
 | |
| //       implements synchronous reset semantics --- one where the given 'D'
 | |
| //       argument (or the clock enable $mux output) drives one of its two inputs
 | |
| //       and where the other input is fully zero
 | |
| //   (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
 | |
| //       output of the previous clock enable or reset $mux cells)
 | |
| subpattern out_dffe
 | |
| arg argD argQ clock
 | |
| 
 | |
| code
 | |
| 	dff = nullptr;
 | |
| 	for (auto c : argD.chunks())
 | |
| 		// Abandon matches when 'D' has the keep attribute set
 | |
| 		if (c.wire->get_bool_attribute(\keep))
 | |
| 			reject;
 | |
| endcode
 | |
| 
 | |
| match ff
 | |
| 	select ff->type.in($dff, $dffe, $sdff, $sdffe)
 | |
| 	// DSP48E1 does not support clock inversion
 | |
| 	select param(ff, \CLK_POLARITY).as_bool()
 | |
| 
 | |
| 	slice offset GetSize(port(ff, \D))
 | |
| 	index <SigBit> port(ff, \D)[offset] === argD[0]
 | |
| 
 | |
| 	// Check that the rest of argD is present
 | |
| 	filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
 | |
| 	filter port(ff, \D).extract(offset, GetSize(argD)) == argD
 | |
| 
 | |
| 	filter clock == SigBit() || port(ff, \CLK)[0] == clock
 | |
| endmatch
 | |
| 
 | |
| code argQ
 | |
| 	SigSpec D = port(ff, \D);
 | |
| 	SigSpec Q = port(ff, \Q);
 | |
| 	argQ = argD;
 | |
| 	argQ.replace(D, Q);
 | |
| 
 | |
| 	// Abandon matches when 'Q' has a non-zero init attribute set
 | |
| 	// (not supported by DSP48E1)
 | |
| 	for (auto c : argQ.chunks()) {
 | |
| 		Const init = c.wire->attributes.at(\init, Const());
 | |
| 		if (!init.empty())
 | |
| 			for (auto b : init.extract(c.offset, c.width))
 | |
| 				if (b != State::Sx && b != State::S0)
 | |
| 					reject;
 | |
| 	}
 | |
| 
 | |
| 	dff = ff;
 | |
| 	dffQ = argQ;
 | |
| 	dffclock = port(ff, \CLK);
 | |
| endcode
 |