3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2026-02-14 12:51:48 +00:00
yosys/tests/unit/kernel/threadingTest.cc
2026-02-08 22:52:17 +00:00

442 lines
12 KiB
C++

#include <gtest/gtest.h>
#include <gmock/gmock.h>
#include "kernel/threading.h"
YOSYS_NAMESPACE_BEGIN
class ThreadingTest : public testing::Test {
protected:
ThreadingTest() {
if (log_files.empty())
log_files.emplace_back(stdout);
}
};
TEST_F(ThreadingTest, ParallelDispatchThreadPoolCreate) {
// Test creating a pool with 0 threads (treated as 1)
ParallelDispatchThreadPool pool0(0);
EXPECT_EQ(pool0.num_threads(), 1);
// Test creating a pool with 1 thread
ParallelDispatchThreadPool pool1(1);
EXPECT_EQ(pool1.num_threads(), 1);
// Test creating a pool with 2 threads
ParallelDispatchThreadPool pool2(2);
// YOSYS_MAX_THREADS or system configuration could mean we
// decide to only use one thread.
EXPECT_GE(pool2.num_threads(), 1);
EXPECT_LE(pool2.num_threads(), 2);
}
TEST_F(ThreadingTest, ParallelDispatchThreadPoolRunSimple) {
ParallelDispatchThreadPool pool(2);
std::atomic<int> counter{0};
pool.run([&counter](const ParallelDispatchThreadPool::RunCtx &) {
counter.fetch_add(1, std::memory_order_relaxed);
});
EXPECT_EQ(counter.load(), pool.num_threads());
}
TEST_F(ThreadingTest, ParallelDispatchThreadPoolRunMultiple) {
ParallelDispatchThreadPool pool(2);
std::atomic<int> counter{0};
// Run multiple times to verify the pool can be reused
for (int i = 0; i < 5; ++i)
pool.run([&counter](const ParallelDispatchThreadPool::RunCtx &) {
counter.fetch_add(1, std::memory_order_relaxed);
});
EXPECT_EQ(counter.load(), pool.num_threads() * 5);
}
TEST_F(ThreadingTest, ParallelDispatchThreadPoolRunCtxThreadNums) {
ParallelDispatchThreadPool pool(4);
std::vector<int> thread_nums(pool.num_threads(), -1);
pool.run([&thread_nums](const ParallelDispatchThreadPool::RunCtx &ctx) {
thread_nums[ctx.thread_num] = ctx.thread_num;
});
// Every thread should have recorded its own thread number
for (int i = 0; i < pool.num_threads(); ++i)
EXPECT_EQ(thread_nums[i], i);
}
TEST_F(ThreadingTest, ParallelDispatchThreadPoolItemRange) {
ParallelDispatchThreadPool pool(3);
const int num_items = 100;
std::vector<std::atomic<int>> item_counts(num_items);
for (std::atomic<int> &c : item_counts)
c.store(0);
pool.run([&item_counts](const ParallelDispatchThreadPool::RunCtx &ctx) {
for (int i : ctx.item_range(num_items))
item_counts[i].fetch_add(1);
});
// Each item should have been processed exactly once
for (int i = 0; i < num_items; ++i)
EXPECT_EQ(item_counts[i].load(), 1);
}
TEST_F(ThreadingTest, ParallelDispatchThreadPoolSubpool) {
ParallelDispatchThreadPool pool(4);
// Subpool limited to 2 threads
ParallelDispatchThreadPool::Subpool subpool(pool, 2);
EXPECT_LE(subpool.num_threads(), 2);
std::atomic<int> counter{0};
subpool.run([&counter](const ParallelDispatchThreadPool::RunCtx &) {
counter.fetch_add(1, std::memory_order_relaxed);
});
EXPECT_EQ(counter.load(), subpool.num_threads());
}
TEST_F(ThreadingTest, IntRangeIteration) {
IntRange range{3, 7};
std::vector<int> values;
for (int i : range)
values.push_back(i);
EXPECT_THAT(values, testing::ElementsAre(3, 4, 5, 6));
}
TEST_F(ThreadingTest, IntRangeEmpty) {
IntRange range{5, 5};
for (int _ : range)
FAIL();
}
TEST_F(ThreadingTest, ItemRangeForWorker) {
EXPECT_EQ(item_range_for_worker(10, 0, 3), (IntRange{0, 4}));
EXPECT_EQ(item_range_for_worker(10, 1, 3), (IntRange{4, 7}));
EXPECT_EQ(item_range_for_worker(10, 2, 3), (IntRange{7, 10}));
}
TEST_F(ThreadingTest, ItemRangeForWorkerZeroThreads) {
EXPECT_EQ(item_range_for_worker(10, 0, 0), (IntRange{0, 10}));
}
TEST_F(ThreadingTest, ShardedVectorBasic) {
ParallelDispatchThreadPool pool(2);
ShardedVector<int> vec(pool);
pool.run([&vec](const ParallelDispatchThreadPool::RunCtx &ctx) {
vec.insert(ctx, ctx.thread_num * 10);
vec.insert(ctx, ctx.thread_num * 10 + 1);
});
EXPECT_FALSE(vec.empty());
// Count elements
std::vector<int> elements;
for (int v : vec) {
elements.push_back(v);
}
if (pool.num_threads() == 2)
EXPECT_THAT(elements, testing::ElementsAre(0, 1, 10, 11));
else
EXPECT_THAT(elements, testing::ElementsAre(0, 1));
}
TEST_F(ThreadingTest, MonotonicFlagBasic) {
MonotonicFlag flag;
EXPECT_FALSE(flag.load());
flag.set();
EXPECT_TRUE(flag.load());
flag.set();
EXPECT_TRUE(flag.load());
}
TEST_F(ThreadingTest, MonotonicFlagSetAndReturnOld) {
MonotonicFlag flag;
EXPECT_FALSE(flag.set_and_return_old());
EXPECT_TRUE(flag.load());
EXPECT_TRUE(flag.set_and_return_old());
}
TEST_F(ThreadingTest, ConcurrentQueueBasic) {
ConcurrentQueue<int> queue;
queue.push_back(1);
queue.push_back(2);
queue.push_back(3);
auto v1 = queue.pop_front();
auto v2 = queue.pop_front();
auto v3 = queue.pop_front();
ASSERT_TRUE(v1.has_value());
ASSERT_TRUE(v2.has_value());
ASSERT_TRUE(v3.has_value());
EXPECT_EQ(*v1, 1);
EXPECT_EQ(*v2, 2);
EXPECT_EQ(*v3, 3);
}
TEST_F(ThreadingTest, ConcurrentQueueTryPopEmpty) {
ConcurrentQueue<int> queue;
auto v = queue.try_pop_front();
EXPECT_FALSE(v.has_value());
}
TEST_F(ThreadingTest, ConcurrentQueueClose) {
ConcurrentQueue<int> queue;
queue.push_back(42);
queue.close();
// Can still pop existing elements
auto v1 = queue.pop_front();
ASSERT_TRUE(v1.has_value());
EXPECT_EQ(*v1, 42);
// After close and empty, pop_front returns nullopt
auto v2 = queue.pop_front();
EXPECT_FALSE(v2.has_value());
}
TEST_F(ThreadingTest, ThreadPoolCreate) {
// pool_size of 0 means no worker threads
ThreadPool pool0(0, [](int) {});
EXPECT_EQ(pool0.num_threads(), 0);
// pool_size of 1 means 1 worker thread
std::atomic<int> counter{0};
{
ThreadPool pool1(1, [&counter](int thread_num) {
EXPECT_EQ(thread_num, 0);
counter.fetch_add(1);
});
}
#ifdef YOSYS_ENABLE_THREADS
EXPECT_EQ(counter.load(), 1);
#else
EXPECT_EQ(counter.load(), 0);
#endif
}
TEST_F(ThreadingTest, ThreadPoolMultipleThreads) {
std::atomic<int> counter{0};
{
ThreadPool pool(2, [&counter](int) {
counter.fetch_add(1);
});
EXPECT_LE(pool.num_threads(), 2);
}
#ifdef YOSYS_ENABLE_THREADS
EXPECT_GE(counter.load(), 1);
EXPECT_LE(counter.load(), 2);
#else
EXPECT_EQ(counter.load(), 0);
#endif
}
// Helper types for ShardedHashSet tests
struct IntValue {
using Accumulated = IntValue;
int value;
operator int() const { return value; }
};
struct IntValueEquality {
bool operator()(int a, int b) const { return a == b; }
};
TEST_F(ThreadingTest, ShardedHashSetBasic) {
ParallelDispatchThreadPool pool(1);
using HashSet = ShardedHashSet<IntValue, IntValueEquality>;
HashSet::Builder builder(pool);
// Insert some values
pool.run([&builder](const ParallelDispatchThreadPool::RunCtx &ctx) {
builder.insert(ctx, {{10}, 10});
builder.insert(ctx, {{20}, 20});
builder.insert(ctx, {{30}, 30});
});
// Process
pool.run([&builder](const ParallelDispatchThreadPool::RunCtx &ctx) {
builder.process(ctx);
});
// Build and lookup
HashSet set(builder);
const IntValue *found10 = set.find({{10}, 10});
const IntValue *found20 = set.find({{20}, 20});
const IntValue *found99 = set.find({{99}, 99});
ASSERT_NE(found10, nullptr);
ASSERT_NE(found20, nullptr);
EXPECT_EQ(found99, nullptr);
EXPECT_EQ(*found10, 10);
EXPECT_EQ(*found20, 20);
}
TEST_F(ThreadingTest, ShardedHashSetParallelInsert) {
ParallelDispatchThreadPool pool(3);
using HashSet = ShardedHashSet<IntValue, IntValueEquality>;
HashSet::Builder builder(pool);
// Insert values from multiple threads
pool.run([&builder](const ParallelDispatchThreadPool::RunCtx &ctx) {
for (int i = 0; i < 10; ++i) {
int val = ctx.thread_num * 100 + i;
builder.insert(ctx, {{val}, static_cast<unsigned>(val)});
}
});
pool.run([&builder](const ParallelDispatchThreadPool::RunCtx &ctx) {
builder.process(ctx);
});
HashSet set(builder);
// Verify all values can be found
for (int t = 0; t < pool.num_threads(); ++t) {
for (int i = 0; i < 10; ++i) {
int val = t * 100 + i;
const IntValue *found = set.find({{val}, static_cast<unsigned>(val)});
ASSERT_NE(found, nullptr) << "Value " << val << " not found";
EXPECT_EQ(*found, val);
}
}
}
// Helper types for ShardedHashSet tests
struct IntDictValue {
using Accumulated = IntDictValue;
int key;
int value;
bool operator==(const IntDictValue &other) const { return key == other.key && value == other.value; }
bool operator!=(const IntDictValue &other) const { return !(*this == other); }
};
struct IntDictKeyEquality {
bool operator()(const IntDictValue &a, const IntDictValue &b) const { return a.key == b.key; }
};
// Collision handler that sums values
struct SumCollisionHandler {
void operator()(IntDictValue &existing, IntDictValue &incoming) const {
existing.value += incoming.value;
}
};
TEST_F(ThreadingTest, ShardedHashSetCollision) {
ParallelDispatchThreadPool pool(1);
using HashSet = ShardedHashSet<IntDictValue, IntDictKeyEquality, SumCollisionHandler>;
HashSet::Builder builder(pool);
// Insert duplicate keys with same hash - duplicates should collapse
pool.run([&builder](const ParallelDispatchThreadPool::RunCtx &ctx) {
builder.insert(ctx, {{5, 10}, 5});
builder.insert(ctx, {{5, 12}, 5}); // Duplicate key/hash
builder.insert(ctx, {{5, 14}, 5}); // Another duplicate
});
pool.run([&builder](const ParallelDispatchThreadPool::RunCtx &ctx) {
builder.process(ctx);
});
HashSet set(builder);
const IntDictValue *found = set.find({{5, 0}, 5});
ASSERT_NE(found, nullptr);
// With default collision handler, first value is kept
EXPECT_EQ(*found, (IntDictValue{5, 36}));
}
TEST_F(ThreadingTest, ShardedHashSetEmpty) {
ParallelDispatchThreadPool pool(1);
using HashSet = ShardedHashSet<IntValue, IntValueEquality>;
HashSet::Builder builder(pool);
// Don't insert anything, just process
pool.run([&builder](const ParallelDispatchThreadPool::RunCtx &ctx) {
builder.process(ctx);
});
HashSet set(builder);
const IntValue *found = set.find({{42}, 42});
EXPECT_EQ(found, nullptr);
}
TEST_F(ThreadingTest, ConcurrentWorkQueueSingleThread) {
ConcurrentWorkQueue<int> queue(1, 10); // 1 thread, batch size 10
EXPECT_EQ(queue.num_threads(), 1);
ThreadIndex thread{0};
// Push some items (less than batch size)
for (int i = 0; i < 5; ++i)
queue.push(thread, i);
// Pop should return those items
std::vector<int> batch = queue.pop_batch(thread);
EXPECT_THAT(batch, testing::UnorderedElementsAre(0, 1, 2, 3, 4));
// Next pop should return empty (all threads "waiting")
std::vector<int> empty_batch = queue.pop_batch(thread);
EXPECT_TRUE(empty_batch.empty());
}
TEST_F(ThreadingTest, ConcurrentWorkQueueBatching) {
ConcurrentWorkQueue<int> queue(1, 3); // batch size 3
ThreadIndex thread{0};
queue.push(thread, 10);
queue.push(thread, 20);
queue.push(thread, 30);
queue.push(thread, 40);
queue.push(thread, 50);
std::vector<int> popped;
while (true) {
std::vector<int> batch = queue.pop_batch(thread);
if (batch.empty())
break;
popped.insert(popped.end(), batch.begin(), batch.end());
}
EXPECT_THAT(popped, testing::UnorderedElementsAre(10, 20, 30, 40, 50));
}
TEST_F(ThreadingTest, ConcurrentWorkQueueParallel) {
ParallelDispatchThreadPool pool(2);
if (pool.num_threads() < 2) {
// Skip test if we don't have multiple threads
return;
}
ConcurrentWorkQueue<int> queue(2, 3);
std::atomic<int> sum{0};
pool.run([&queue, &sum](const ParallelDispatchThreadPool::RunCtx &ctx) {
// Each thread pushes some work
for (int i = 0; i < 10; ++i)
queue.push(ctx, ctx.thread_num * 100 + i);
// Each thread processes work until done
while (true) {
std::vector<int> batch = queue.pop_batch(ctx);
if (batch.empty())
break;
for (int v : batch)
sum.fetch_add(v);
}
});
// Thread 0 pushes: 0+1+2+...+9 = 45
// Thread 1 pushes: 100+101+...+109 = 1045
// Total = 45 + 1045 = 1090
EXPECT_EQ(sum.load(), 1090);
}
YOSYS_NAMESPACE_END