mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 11:42:30 +00:00 
			
		
		
		
	There are some leftovers, but this is an easy regex-based approach that removes most of them.
		
			
				
	
	
		
			297 lines
		
	
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			297 lines
		
	
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2017 Robert Ou <rqou@robertou.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| #include "kernel/sigtools.h"
 | |
| #include <deque>
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| struct ExtractReducePass : public Pass
 | |
| {
 | |
| 	enum GateType {
 | |
| 		And,
 | |
| 		Or,
 | |
| 		Xor
 | |
| 	};
 | |
| 
 | |
| 	ExtractReducePass() : Pass("extract_reduce", "converts gate chains into $reduce_* cells") { }
 | |
| 
 | |
| 	void help() override
 | |
| 	{
 | |
| 		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | |
| 		log("\n");
 | |
| 		log("    extract_reduce [options] [selection]\n");
 | |
| 		log("\n");
 | |
| 		log("converts gate chains into $reduce_* cells\n");
 | |
| 		log("\n");
 | |
| 		log("This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them\n");
 | |
| 		log("with their corresponding $reduce_* cells. Because this command only operates on\n");
 | |
| 		log("these cell types, it is recommended to map the design to only these cell types\n");
 | |
| 		log("using the `abc -g` command. Note that, in some cases, it may be more effective\n");
 | |
| 		log("to map the design to only $_AND_ cells, run extract_reduce, map the remaining\n");
 | |
| 		log("parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.\n");
 | |
| 		log("\n");
 | |
| 		log("    -allow-off-chain\n");
 | |
| 		log("        Allows matching of cells that have loads outside the chain. These cells\n");
 | |
| 		log("        will be replicated and folded into the $reduce_* cell, but the original\n");
 | |
| 		log("        cell will remain, driving its original loads.\n");
 | |
| 		log("\n");
 | |
| 	}
 | |
| 
 | |
| 	inline bool IsRightType(Cell* cell, GateType gt)
 | |
| 	{
 | |
| 		return (cell->type == ID($_AND_) && gt == GateType::And) ||
 | |
| 				(cell->type == ID($_OR_) && gt == GateType::Or) ||
 | |
| 				(cell->type == ID($_XOR_) && gt == GateType::Xor);
 | |
| 	}
 | |
| 
 | |
| 	void execute(std::vector<std::string> args, RTLIL::Design *design) override
 | |
| 	{
 | |
| 		log_header(design, "Executing EXTRACT_REDUCE pass.\n");
 | |
| 		log_push();
 | |
| 
 | |
| 		size_t argidx;
 | |
| 		bool allow_off_chain = false;
 | |
| 		for (argidx = 1; argidx < args.size(); argidx++)
 | |
| 		{
 | |
| 			if (args[argidx] == "-allow-off-chain")
 | |
| 			{
 | |
| 				allow_off_chain = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		extra_args(args, argidx, design);
 | |
| 
 | |
| 		for (auto module : design->selected_modules())
 | |
| 		{
 | |
| 			SigMap sigmap(module);
 | |
| 
 | |
| 			// Index all of the nets in the module
 | |
| 			dict<SigBit, Cell*> sig_to_driver;
 | |
| 			dict<SigBit, pool<Cell*>> sig_to_sink;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				for (auto &conn : cell->connections())
 | |
| 				{
 | |
| 					if (cell->output(conn.first))
 | |
| 						for (auto bit : sigmap(conn.second))
 | |
| 							sig_to_driver[bit] = cell;
 | |
| 
 | |
| 					if (cell->input(conn.first))
 | |
| 					{
 | |
| 						for (auto bit : sigmap(conn.second))
 | |
| 						{
 | |
| 							if (sig_to_sink.count(bit) == 0)
 | |
| 								sig_to_sink[bit] = pool<Cell*>();
 | |
| 							sig_to_sink[bit].insert(cell);
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Need to check if any wires connect to module ports
 | |
| 			pool<SigBit> port_sigs;
 | |
| 			for (auto wire : module->selected_wires())
 | |
| 				if (wire->port_input || wire->port_output)
 | |
| 					for (auto bit : sigmap(wire))
 | |
| 						port_sigs.insert(bit);
 | |
| 
 | |
| 			// Actual logic starts here
 | |
| 			pool<Cell*> consumed_cells;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (consumed_cells.count(cell))
 | |
| 					continue;
 | |
| 
 | |
| 				GateType gt;
 | |
| 
 | |
| 				if (cell->type == ID($_AND_))
 | |
| 					gt = GateType::And;
 | |
| 				else if (cell->type == ID($_OR_))
 | |
| 					gt = GateType::Or;
 | |
| 				else if (cell->type == ID($_XOR_))
 | |
| 					gt = GateType::Xor;
 | |
| 				else
 | |
| 					continue;
 | |
| 
 | |
| 				log("Working on cell %s...\n", cell->name);
 | |
| 
 | |
| 				// If looking for a single chain, follow linearly to the sink
 | |
| 				pool<Cell*> sinks;
 | |
| 				if(!allow_off_chain)
 | |
| 				{
 | |
| 					Cell* head_cell = cell;
 | |
| 					Cell* x = cell;
 | |
| 					while (true)
 | |
| 					{
 | |
| 						if(!IsRightType(x, gt))
 | |
| 							break;
 | |
| 
 | |
| 						head_cell = x;
 | |
| 
 | |
| 						auto y = sigmap(x->getPort(ID::Y));
 | |
| 						log_assert(y.size() == 1);
 | |
| 
 | |
| 						// Should only continue if there is one fanout back into a cell (not to a port)
 | |
| 						if (sig_to_sink[y].size() != 1 || port_sigs.count(y))
 | |
| 							break;
 | |
| 
 | |
| 						x = *sig_to_sink[y].begin();
 | |
| 					}
 | |
| 
 | |
| 					sinks.insert(head_cell);
 | |
| 				}
 | |
| 
 | |
| 				//If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is
 | |
| 				else
 | |
| 				{
 | |
| 					//BFS, following all chains until they hit a cell of a different type
 | |
| 					//Pick the longest one
 | |
| 					auto y = sigmap(cell->getPort(ID::Y));
 | |
| 					pool<Cell*> current_loads = sig_to_sink[y];
 | |
| 					pool<Cell*> next_loads;
 | |
| 
 | |
| 					while(!current_loads.empty())
 | |
| 					{
 | |
| 						//Find each sink and see what they are
 | |
| 						for(auto x : current_loads)
 | |
| 						{
 | |
| 							//Not one of our gates? Don't follow any further
 | |
| 							//(but add the originating cell to the list of sinks)
 | |
| 							if(!IsRightType(x, gt))
 | |
| 							{
 | |
| 								sinks.insert(cell);
 | |
| 								continue;
 | |
| 							}
 | |
| 
 | |
| 							auto xy = sigmap(x->getPort(ID::Y));
 | |
| 
 | |
| 							//If this signal drives a port, add it to the sinks
 | |
| 							//(even though it may not be the end of a chain)
 | |
| 							if(port_sigs.count(xy) && !consumed_cells.count(x))
 | |
| 								sinks.insert(x);
 | |
| 
 | |
| 							//It's a match, search everything out from it
 | |
| 							auto& next = sig_to_sink[xy];
 | |
| 							for(auto z : next)
 | |
| 								next_loads.insert(z);
 | |
| 						}
 | |
| 
 | |
| 						//If we couldn't find any downstream loads, stop.
 | |
| 						//Create a reduction for each of the max-length chains we found
 | |
| 						if(next_loads.empty())
 | |
| 						{
 | |
| 							for(auto s : current_loads)
 | |
| 							{
 | |
| 								//Not one of our gates? Don't follow any further
 | |
| 								if(!IsRightType(s, gt))
 | |
| 									continue;
 | |
| 
 | |
| 								sinks.insert(s);
 | |
| 							}
 | |
| 							break;
 | |
| 						}
 | |
| 
 | |
| 						//Otherwise, continue down the chain
 | |
| 						current_loads = next_loads;
 | |
| 						next_loads.clear();
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				//We have our list, go act on it
 | |
| 				for(auto head_cell : sinks)
 | |
| 				{
 | |
| 					log("  Head cell is %s\n", head_cell->name);
 | |
| 
 | |
| 					//Avoid duplication if we already were covered
 | |
| 					if(consumed_cells.count(head_cell))
 | |
| 						continue;
 | |
| 
 | |
| 					dict<SigBit, int> sources;
 | |
| 					int inner_cells = 0;
 | |
| 					std::deque<Cell*> bfs_queue = {head_cell};
 | |
| 					while (bfs_queue.size())
 | |
| 					{
 | |
| 						Cell* x = bfs_queue.front();
 | |
| 						bfs_queue.pop_front();
 | |
| 
 | |
| 						for (auto port: {ID::A, ID::B}) {
 | |
| 							auto bit = sigmap(x->getPort(port)[0]);
 | |
| 
 | |
| 							bool sink_single = sig_to_sink[bit].size() == 1 && !port_sigs.count(bit);
 | |
| 
 | |
| 							Cell* drv = sig_to_driver[bit];
 | |
| 							bool drv_ok = drv && drv->type == head_cell->type;
 | |
| 
 | |
| 							if (drv_ok && (allow_off_chain || sink_single)) {
 | |
| 								inner_cells++;
 | |
| 								bfs_queue.push_back(drv);
 | |
| 							} else {
 | |
| 								sources[bit]++;
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					if (inner_cells)
 | |
| 					{
 | |
| 						// Worth it to create reduce cell
 | |
| 						log("  Creating $reduce_* cell!\n");
 | |
| 
 | |
| 						SigBit output = sigmap(head_cell->getPort(ID::Y)[0]);
 | |
| 
 | |
| 						SigSpec input;
 | |
| 						for (auto it : sources) {
 | |
| 							bool cond;
 | |
| 							if (head_cell->type == ID($_XOR_))
 | |
| 								cond = it.second & 1;
 | |
| 							else
 | |
| 								cond = it.second != 0;
 | |
| 							if (cond)
 | |
| 								input.append(it.first);
 | |
| 						}
 | |
| 
 | |
| 						if (head_cell->type == ID($_AND_)) {
 | |
| 							module->addReduceAnd(NEW_ID, input, output);
 | |
| 						} else if (head_cell->type == ID($_OR_)) {
 | |
| 							module->addReduceOr(NEW_ID, input, output);
 | |
| 						} else if (head_cell->type == ID($_XOR_)) {
 | |
| 							module->addReduceXor(NEW_ID, input, output);
 | |
| 						} else {
 | |
| 							log_assert(false);
 | |
| 						}
 | |
| 
 | |
| 						consumed_cells.insert(head_cell);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Remove all of the head cells, since we supplant them.
 | |
| 			// Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones)
 | |
| 			for (auto cell : consumed_cells)
 | |
| 				module->remove(cell);
 | |
| 		}
 | |
| 
 | |
| 		log_pop();
 | |
| 	}
 | |
| } ExtractReducePass;
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 |