mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 11:42:30 +00:00 
			
		
		
		
	There are some leftovers, but this is an easy regex-based approach that removes most of them.
		
			
				
	
	
		
			622 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			622 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "kernel/register.h"
 | |
| #include "kernel/sigtools.h"
 | |
| #include "kernel/log.h"
 | |
| #include "kernel/celltypes.h"
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <unordered_map>
 | |
| #include <unordered_set>
 | |
| #include <set>
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| /**
 | |
|   * TERMINOLOGY
 | |
|   *
 | |
|   * A multiplexer tree (mux tree) is a tree composed exclusively of muxes.
 | |
|   * By mux, I mean $mux or $pmux. By port, I usually mean input port.
 | |
|   * The children of a node are all the muxes driving its input ports (A, B).
 | |
|   * It must be rooted in a "root mux", a mux which has multiple mux users
 | |
|   * or any number of non-mux users. Only the root and leaf nodes can be
 | |
|   * root muxes, not the internal nodes. Leaf nodes that are root muxes
 | |
|   * are roots of "input trees".
 | |
|   *
 | |
|   * OPERATING PRINCIPLE
 | |
|   *
 | |
|   * This pass traverses mux trees, learning port activations and making
 | |
|   * assumptions about them as it goes. When valid, ports are replaced
 | |
|   * with constants, or removed if they can never be activated.
 | |
|   * When valid, muxes are replaced with shorts from port to output,
 | |
|   * or removed if their outputs are found to be no longer observable.
 | |
|   *
 | |
|   * Input trees can be recursed into if limits_t::recursions_left allows.
 | |
|   * Otherwise, the input tree is queued for a re-run with a fresh knowledge_t.
 | |
|   * At any point, if glob_evals_left goes to 0, the pass terminates.
 | |
|   *
 | |
|   * Unlike share, this pass doesn't use SAT to learn things about logic
 | |
|   * driving the mux control signals, and traverses mux regions from users
 | |
|   * to drivers.
 | |
|   */
 | |
| 
 | |
| struct OptMuxtreeWorker
 | |
| {
 | |
| 	RTLIL::Design *design;
 | |
| 	RTLIL::Module *module;
 | |
| 	SigMap assign_map;
 | |
| 	int removed_count;
 | |
| 	int glob_evals_left = 10000000;
 | |
| 
 | |
| 	struct bitinfo_t {
 | |
| 		// Is bit directly used by non-mux cells or ports?
 | |
| 		bool seen_non_mux;
 | |
| 		pool<int> mux_users;
 | |
| 		pool<int> mux_drivers;
 | |
| 	};
 | |
| 
 | |
| 	idict<SigBit> bit2num;
 | |
| 	vector<bitinfo_t> bit2info;
 | |
| 
 | |
| 	struct portinfo_t {
 | |
| 		int ctrl_sig = -1; // No associated control signal by default
 | |
| 		pool<int> input_sigs = {};
 | |
| 		pool<int> input_muxes = {};
 | |
| 		bool const_activated = false;
 | |
| 		bool const_deactivated = false;
 | |
| 		// Is the port reachable from inputs of a mux tree?
 | |
| 		bool observable = false;
 | |
| 	};
 | |
| 
 | |
| 	struct muxinfo_t {
 | |
| 		RTLIL::Cell *cell;
 | |
| 		vector<portinfo_t> ports;
 | |
| 	};
 | |
| 
 | |
| 	vector<muxinfo_t> mux2info;
 | |
| 	vector<bool> root_muxes;
 | |
| 	vector<bool> root_enable_muxes;
 | |
| 	pool<int> root_mux_rerun;
 | |
| 
 | |
| 	portinfo_t used_port_bit(RTLIL::SigSpec& sig, int mux_idx) {
 | |
| 		portinfo_t portinfo = {};
 | |
| 		for (int bit_idx : sig2bits(sig)) {
 | |
| 			bit2info[bit_idx].mux_users.insert(mux_idx);
 | |
| 			portinfo.input_sigs.insert(bit_idx);
 | |
| 		}
 | |
| 		return portinfo;
 | |
| 	}
 | |
| 
 | |
| 	void track_mux(Cell* cell) {
 | |
| 		// Populate bit2info[]:
 | |
| 		//	.seen_non_mux
 | |
| 		//	.mux_users
 | |
| 		//	.mux_drivers
 | |
| 		// Populate mux2info[].ports[]:
 | |
| 		//	.ctrl_sig
 | |
| 		//	.input_sigs
 | |
| 		//	.const_activated
 | |
| 		//	.const_deactivated
 | |
| 		RTLIL::SigSpec sig_a = cell->getPort(ID::A);
 | |
| 		RTLIL::SigSpec sig_b = cell->getPort(ID::B);
 | |
| 		RTLIL::SigSpec sig_s = cell->getPort(ID::S);
 | |
| 		RTLIL::SigSpec sig_y = cell->getPort(ID::Y);
 | |
| 
 | |
| 		muxinfo_t muxinfo;
 | |
| 		muxinfo.cell = cell;
 | |
| 		int this_mux_idx = GetSize(mux2info);
 | |
| 
 | |
| 		// Analyze port B
 | |
| 		// In case of $pmux, port B is multiple slices, concatenated, one per bit of port S
 | |
| 		for (int i = 0; i < GetSize(sig_s); i++) {
 | |
| 			RTLIL::SigSpec sig = sig_b.extract(i*GetSize(sig_a), GetSize(sig_a));
 | |
| 			RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1));
 | |
| 			portinfo_t portinfo = used_port_bit(sig, this_mux_idx);
 | |
| 			portinfo.ctrl_sig = sig2bits(ctrl_sig, false).front();
 | |
| 			portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool();
 | |
| 			portinfo.const_deactivated = ctrl_sig.is_fully_const() && !ctrl_sig.as_bool();
 | |
| 			muxinfo.ports.push_back(portinfo);
 | |
| 		}
 | |
| 
 | |
| 		// Analyze port A
 | |
| 		muxinfo.ports.push_back(used_port_bit(sig_a, this_mux_idx));
 | |
| 
 | |
| 		for (int idx : sig2bits(sig_y))
 | |
| 			bit2info[idx].mux_drivers.insert(this_mux_idx);
 | |
| 
 | |
| 		for (int idx : sig2bits(sig_s))
 | |
| 			bit2info[idx].seen_non_mux = true;
 | |
| 
 | |
| 		mux2info.push_back(muxinfo);
 | |
| 	}
 | |
| 
 | |
| 	void see_non_mux_cell(Cell* cell) {
 | |
| 		for (auto &it : cell->connections()) {
 | |
| 			for (int idx : sig2bits(it.second))
 | |
| 				bit2info[idx].seen_non_mux = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void see_non_mux_wires() {
 | |
| 		for (auto wire : module->wires()) {
 | |
| 			if (wire->port_output || wire->get_bool_attribute(ID::keep))
 | |
| 				for (int idx : sig2bits(RTLIL::SigSpec(wire)))
 | |
| 					bit2info[idx].seen_non_mux = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Populate mux2info[].ports[]:
 | |
| 	//	.input_muxes
 | |
| 	void fixup_input_muxes() {
 | |
| 		// bit2info knows the mux users and mux drivers of bits
 | |
| 		// use this to tell mux2info ports about what muxes are driven by it
 | |
| 		for (int i = 0; i < GetSize(bit2info); i++)
 | |
| 		for (int j : bit2info[i].mux_users)
 | |
| 		for (auto &p : mux2info[j].ports) {
 | |
| 			if (p.input_sigs.count(i))
 | |
| 				for (int k : bit2info[i].mux_drivers)
 | |
| 					p.input_muxes.insert(k);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void populate_roots() {
 | |
| 		// mux_to_users[i] means "set of muxes using output of mux i"
 | |
| 		dict<int, pool<int>> mux_to_users;
 | |
| 		// Pure root muxes (outputs seen by non-muxes)
 | |
| 		root_enable_muxes.resize(GetSize(mux2info));
 | |
| 		// All root muxes (outputs seen by non-muxes or multiple muxes)
 | |
| 		root_muxes.resize(GetSize(mux2info));
 | |
| 
 | |
| 		for (auto &bi : bit2info) {
 | |
| 			for (int i : bi.mux_drivers)
 | |
| 				for (int j : bi.mux_users)
 | |
| 					mux_to_users[i].insert(j);
 | |
| 			if (!bi.seen_non_mux)
 | |
| 				continue;
 | |
| 			for (int mux_idx : bi.mux_drivers) {
 | |
| 				root_muxes.at(mux_idx) = true;
 | |
| 				root_enable_muxes.at(mux_idx) = true;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (auto &[driving_mux, user_muxes] : mux_to_users)
 | |
| 			if (GetSize(user_muxes) > 1)
 | |
| 				root_muxes.at(driving_mux) = true;
 | |
| 	}
 | |
| 
 | |
| 	OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) :
 | |
| 			design(design), module(module), assign_map(module), removed_count(0)
 | |
| 	{
 | |
| 		log("Running muxtree optimizer on module %s..\n", module->name);
 | |
| 
 | |
| 		log("  Creating internal representation of mux trees.\n");
 | |
| 
 | |
| 		for (auto cell : module->cells())
 | |
| 		{
 | |
| 			if (cell->type.in(ID($mux), ID($pmux)))
 | |
| 				track_mux(cell);
 | |
| 			else
 | |
| 				see_non_mux_cell(cell);
 | |
| 		}
 | |
| 		see_non_mux_wires();
 | |
| 
 | |
| 		if (mux2info.empty()) {
 | |
| 			log("  No muxes found in this module.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		fixup_input_muxes();
 | |
| 
 | |
| 		log("  Evaluating internal representation of mux trees.\n");
 | |
| 
 | |
| 		populate_roots();
 | |
| 
 | |
| 		for (int mux_idx = 0; mux_idx < GetSize(root_muxes); mux_idx++)
 | |
| 			if (root_muxes.at(mux_idx)) {
 | |
| 				log_debug("    Root of a mux tree: %s%s\n", log_id(mux2info[mux_idx].cell), root_enable_muxes.at(mux_idx) ? " (pure)" : "");
 | |
| 				root_mux_rerun.erase(mux_idx);
 | |
| 				eval_root_mux(mux_idx);
 | |
| 				if (glob_evals_left == 0) {
 | |
| 					log("  Giving up (too many iterations)\n");
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		while (!root_mux_rerun.empty()) {
 | |
| 			int mux_idx = *root_mux_rerun.begin();
 | |
| 			log_debug("    Root of a mux tree: %s (rerun as non-pure)\n", log_id(mux2info[mux_idx].cell));
 | |
| 			log_assert(root_enable_muxes.at(mux_idx));
 | |
| 			root_mux_rerun.erase(mux_idx);
 | |
| 			eval_root_mux(mux_idx);
 | |
| 			if (glob_evals_left == 0) {
 | |
| 				log("  Giving up (too many iterations)\n");
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		log("  Analyzing evaluation results.\n");
 | |
| 		log_assert(glob_evals_left > 0);
 | |
| 
 | |
| 		for (auto &mi : mux2info)
 | |
| 		{
 | |
| 			vector<int> live_ports;
 | |
| 			for (int port_idx = 0; port_idx < GetSize(mi.ports); port_idx++) {
 | |
| 				portinfo_t &pi = mi.ports[port_idx];
 | |
| 				if (pi.observable) {
 | |
| 					live_ports.push_back(port_idx);
 | |
| 				} else {
 | |
| 					log("    dead port %d/%d on %s %s.\n", port_idx+1, GetSize(mi.ports),
 | |
| 							mi.cell->type.c_str(), mi.cell->name.c_str());
 | |
| 					removed_count++;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (GetSize(live_ports) == GetSize(mi.ports))
 | |
| 				continue;
 | |
| 
 | |
| 			if (live_ports.empty()) {
 | |
| 				module->remove(mi.cell);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			RTLIL::SigSpec sig_a = mi.cell->getPort(ID::A);
 | |
| 			RTLIL::SigSpec sig_b = mi.cell->getPort(ID::B);
 | |
| 			RTLIL::SigSpec sig_s = mi.cell->getPort(ID::S);
 | |
| 			RTLIL::SigSpec sig_y = mi.cell->getPort(ID::Y);
 | |
| 
 | |
| 			RTLIL::SigSpec sig_ports = sig_b;
 | |
| 			sig_ports.append(sig_a);
 | |
| 
 | |
| 			if (GetSize(live_ports) == 1)
 | |
| 			{
 | |
| 				RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[0]*GetSize(sig_a), GetSize(sig_a));
 | |
| 				module->connect(RTLIL::SigSig(sig_y, sig_in));
 | |
| 				module->remove(mi.cell);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				RTLIL::SigSpec new_sig_a, new_sig_b, new_sig_s;
 | |
| 
 | |
| 				for (int i = 0; i < GetSize(live_ports); i++) {
 | |
| 					RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[i]*GetSize(sig_a), GetSize(sig_a));
 | |
| 					if (i == GetSize(live_ports)-1) {
 | |
| 						new_sig_a = sig_in;
 | |
| 					} else {
 | |
| 						new_sig_b.append(sig_in);
 | |
| 						new_sig_s.append(sig_s.extract(live_ports[i], 1));
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				mi.cell->setPort(ID::A, new_sig_a);
 | |
| 				mi.cell->setPort(ID::B, new_sig_b);
 | |
| 				mi.cell->setPort(ID::S, new_sig_s);
 | |
| 				if (GetSize(new_sig_s) == 1) {
 | |
| 					mi.cell->type = ID($mux);
 | |
| 					mi.cell->parameters.erase(ID::S_WIDTH);
 | |
| 				} else {
 | |
| 					mi.cell->parameters[ID::S_WIDTH] = RTLIL::Const(GetSize(new_sig_s));
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vector<int> sig2bits(RTLIL::SigSpec sig, bool skip_non_wires = true)
 | |
| 	{
 | |
| 		vector<int> results;
 | |
| 		assign_map.apply(sig);
 | |
| 		for (auto &bit : sig)
 | |
| 			if (bit.wire != NULL) {
 | |
| 				if (bit2num.count(bit) == 0) {
 | |
| 					bitinfo_t info;
 | |
| 					info.seen_non_mux = false;
 | |
| 					bit2num.expect(bit, GetSize(bit2info));
 | |
| 					bit2info.push_back(info);
 | |
| 				}
 | |
| 				results.push_back(bit2num.at(bit));
 | |
| 			} else if (!skip_non_wires)
 | |
| 				results.push_back(-1);
 | |
| 		return results;
 | |
| 	}
 | |
| 
 | |
| 	struct knowledge_t
 | |
| 	{
 | |
| 		// Known inactive signals
 | |
| 		// The payload is a reference counter used to manage the list
 | |
| 		// When it is non-zero, the signal in known to be inactive
 | |
| 		// When it reaches zero, the map element is removed
 | |
| 		std::unordered_map<int, int> known_inactive;
 | |
| 
 | |
| 		// database of known active signals
 | |
| 		std::unordered_map<int, int> known_active;
 | |
| 
 | |
| 		// this is just used to keep track of visited muxes in order to prohibit
 | |
| 		// endless recursion in mux loops
 | |
| 		std::unordered_set<int> visited_muxes;
 | |
| 	};
 | |
| 
 | |
| 	static void activate_port(knowledge_t &knowledge, int port_idx, const muxinfo_t &muxinfo) {
 | |
| 		// First, mark all other ports inactive
 | |
| 		for (int i = 0; i < GetSize(muxinfo.ports); i++) {
 | |
| 			if (i == port_idx)
 | |
| 				continue;
 | |
| 			if (muxinfo.ports[i].ctrl_sig >= 0)
 | |
| 				++knowledge.known_inactive[muxinfo.ports[i].ctrl_sig];
 | |
| 		}
 | |
| 		// Mark port active unless it's the last one
 | |
| 		if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated)
 | |
| 			++knowledge.known_active[muxinfo.ports[port_idx].ctrl_sig];
 | |
| 	}
 | |
| 
 | |
| 	static void deactivate_port(knowledge_t &knowledge, int port_idx, const muxinfo_t &muxinfo) {
 | |
| 		auto unlearn = [](std::unordered_map<int, int>& knowns, int i) {
 | |
| 			auto it = knowns.find(i);
 | |
| 			if (it != knowns.end())
 | |
| 				if (--it->second == 0)
 | |
| 					knowns.erase(it);
 | |
| 		};
 | |
| 
 | |
| 		if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated)
 | |
| 			unlearn(knowledge.known_active, muxinfo.ports[port_idx].ctrl_sig);
 | |
| 
 | |
| 		// Undo inactivity assumptions for other ports
 | |
| 		for (int i = 0; i < GetSize(muxinfo.ports); i++) {
 | |
| 			if (i == port_idx)
 | |
| 				continue;
 | |
| 			if (muxinfo.ports[i].ctrl_sig >= 0)
 | |
| 				unlearn(knowledge.known_inactive, muxinfo.ports[i].ctrl_sig);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	struct limits_t {
 | |
| 		// Are we allowed to replace inputs with constants?
 | |
| 		// True if knowledge doesn't contain assumptions
 | |
| 		bool do_replace_known = true;
 | |
| 		// Are we allowed to mark ports as observable?
 | |
| 		// True if we're recursing from a pure root mux
 | |
| 		bool do_mark_ports_observable = true;
 | |
| 		// How many more subtree recursions into input trees can we take?
 | |
| 		// Then shalt thou count to three, no more, no less. Three shall be the number thou shalt count, and the number of the counting shall be three.
 | |
| 		int recursions_left = 3;
 | |
| 		limits_t subtree() const {
 | |
| 			limits_t ret = *this;
 | |
| 			log_assert(ret.recursions_left > 0);
 | |
| 			ret.recursions_left--;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	};
 | |
| 	void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx, limits_t limits)
 | |
| 	{
 | |
| 		if (glob_evals_left == 0)
 | |
| 			return;
 | |
| 
 | |
| 		muxinfo_t &muxinfo = mux2info[mux_idx];
 | |
| 
 | |
| 		if (limits.do_mark_ports_observable)
 | |
| 			muxinfo.ports[port_idx].observable = true;
 | |
| 
 | |
| 		// For the purposes of recursion, we assume the port is active,
 | |
| 		// meaning all other ports are inactive
 | |
| 		activate_port(knowledge, port_idx, muxinfo);
 | |
| 
 | |
| 		vector<int> input_mux_queue;
 | |
| 		for (int m : muxinfo.ports[port_idx].input_muxes) {
 | |
| 			if (knowledge.visited_muxes.count(m))
 | |
| 				continue;
 | |
| 			knowledge.visited_muxes.insert(m);
 | |
| 			input_mux_queue.push_back(m);
 | |
| 		}
 | |
| 		for (int m : input_mux_queue) {
 | |
| 			if (root_enable_muxes.at(m))
 | |
| 				continue;
 | |
| 			else if (root_muxes.at(m)) {
 | |
| 				// This leaf node of the current tree
 | |
| 				// is the root of an input tree of the current tree
 | |
| 				if (limits.recursions_left == 0) {
 | |
| 					// Ran out of subtree depth, re-eval this input tree in the next re-run
 | |
| 					root_mux_rerun.insert(m);
 | |
| 					root_enable_muxes.at(m) = true;
 | |
| 					log_debug("      Removing pure flag from root mux %s.\n", log_id(mux2info[m].cell));
 | |
| 				} else {
 | |
| 					auto new_limits = limits.subtree();
 | |
| 					// Since our knowledge includes assumption,
 | |
| 					// we can't generally allow replacing in an input tree based on it
 | |
| 					new_limits.do_replace_known = false;
 | |
| 					eval_mux(knowledge, m, new_limits);
 | |
| 				}
 | |
| 			} else {
 | |
| 				// This non-root input mux has only this mux as a user,
 | |
| 				// so here we are allowed to pass along do_replace_known
 | |
| 				eval_mux(knowledge, m, limits);
 | |
| 			}
 | |
| 			if (glob_evals_left == 0)
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		// Allow revisiting input muxes, since evaluating other ports should
 | |
| 		// revisit these input muxes with different activation assumptions
 | |
| 		for (int m : input_mux_queue)
 | |
| 			knowledge.visited_muxes.erase(m);
 | |
| 
 | |
| 		// Undo our assumptions that the port is active
 | |
| 		deactivate_port(knowledge, port_idx, muxinfo);
 | |
| 	}
 | |
| 
 | |
| 	void replace_known(knowledge_t &knowledge, muxinfo_t &muxinfo, IdString portname)
 | |
| 	{
 | |
| 		SigSpec sig = muxinfo.cell->getPort(portname);
 | |
| 		bool did_something = false;
 | |
| 
 | |
| 		int width_if_b = 0;
 | |
| 		idict<int> ctrl_bits;
 | |
| 		if (portname == ID::B)
 | |
| 			width_if_b = GetSize(muxinfo.cell->getPort(ID::A));
 | |
| 		for (int bit : sig2bits(muxinfo.cell->getPort(ID::S), false))
 | |
| 			ctrl_bits(bit);
 | |
| 
 | |
| 		int slice_idx = 0, slice_off = 0;
 | |
| 		vector<int> bits = sig2bits(sig, false);
 | |
| 		for (int i = 0; i < GetSize(bits); i++) {
 | |
| 			if (bits[i] >= 0) {
 | |
| 				if (knowledge.known_inactive.count(bits[i]) > 0) {
 | |
| 					sig[i] = State::S0;
 | |
| 					did_something = true;
 | |
| 				} else
 | |
| 				if (knowledge.known_active.count(bits[i]) > 0) {
 | |
| 					sig[i] = State::S1;
 | |
| 					did_something = true;
 | |
| 				}
 | |
| 				if (ctrl_bits.count(bits[i])) {
 | |
| 					if (!width_if_b) {
 | |
| 						// Single-bit $mux example
 | |
| 						//  mux: S ? B : A = Y
 | |
| 						// A=S
 | |
| 						//  0 ? B : 0 = 0
 | |
| 						//  1 ? B : 1 = B
 | |
| 						// rewrite to A=0
 | |
| 						//  0 ? B : 0 = 0
 | |
| 						//  1 ? B : 0 = B
 | |
| 						// which is equivalent
 | |
| 						sig[i] = State::S0;
 | |
| 					} else {
 | |
| 						// "Sliced" $pmux example
 | |
| 						// B[i]=S[j]
 | |
| 						// i == j => B[i] activated only when B[i] is high, safe to rewrite to 1
 | |
| 						// i != j => B[i] activated only when B[i] is low, safe to rewrite to 0
 | |
| 						sig[i] = ctrl_bits.at(bits[i]) == slice_idx ? State::S1 : State::S0;
 | |
| 					}
 | |
| 					did_something = true;
 | |
| 				}
 | |
| 			}
 | |
| 			if (width_if_b) {
 | |
| 				// Roll over into next slice
 | |
| 				if (++slice_off == width_if_b)
 | |
| 					slice_idx++, slice_off=0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (did_something) {
 | |
| 			log("      Replacing known input bits on port %s of cell %s: %s -> %s\n", log_id(portname),
 | |
| 					log_id(muxinfo.cell), log_signal(muxinfo.cell->getPort(portname)), log_signal(sig));
 | |
| 			muxinfo.cell->setPort(portname, sig);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void eval_mux(knowledge_t &knowledge, int mux_idx, limits_t limits)
 | |
| 	{
 | |
| 		if (glob_evals_left == 0)
 | |
| 			return;
 | |
| 		glob_evals_left--;
 | |
| 
 | |
| 		muxinfo_t &muxinfo = mux2info[mux_idx];
 | |
| 		log_debug("\t\teval %s (replace %d enable %d)\n", log_id(muxinfo.cell), limits.do_replace_known, limits.do_mark_ports_observable);
 | |
| 
 | |
| 		// set input ports to constants if we find known active or inactive signals
 | |
| 		if (limits.do_replace_known) {
 | |
| 			replace_known(knowledge, muxinfo, ID::A);
 | |
| 			replace_known(knowledge, muxinfo, ID::B);
 | |
| 		}
 | |
| 
 | |
| 		// if there is a constant activated port we just use it
 | |
| 		for (int port_idx = 0; port_idx < GetSize(muxinfo.ports); port_idx++)
 | |
| 		{
 | |
| 			portinfo_t &portinfo = muxinfo.ports[port_idx];
 | |
| 			if (portinfo.const_activated) {
 | |
| 				eval_mux_port(knowledge, mux_idx, port_idx, limits);
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Compare ports with known active control signals. if we find a match,
 | |
| 		// only this port can be active. Do not include the last port,
 | |
| 		// it's the default port without an associated control signal
 | |
| 		for (int port_idx = 0; port_idx < GetSize(muxinfo.ports)-1; port_idx++)
 | |
| 		{
 | |
| 			portinfo_t &portinfo = muxinfo.ports[port_idx];
 | |
| 			if (portinfo.const_deactivated)
 | |
| 				continue;
 | |
| 			if (knowledge.known_active.count(portinfo.ctrl_sig) > 0) {
 | |
| 				eval_mux_port(knowledge, mux_idx, port_idx, limits);
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// eval all ports that could be activated (control signal is not in
 | |
| 		// known_inactive or const_deactivated).
 | |
| 		for (int port_idx = 0; port_idx < GetSize(muxinfo.ports); port_idx++)
 | |
| 		{
 | |
| 			portinfo_t &portinfo = muxinfo.ports[port_idx];
 | |
| 			if (portinfo.const_deactivated)
 | |
| 				continue;
 | |
| 			if (port_idx < GetSize(muxinfo.ports)-1)
 | |
| 				if (knowledge.known_inactive.count(portinfo.ctrl_sig) > 0)
 | |
| 					continue;
 | |
| 			eval_mux_port(knowledge, mux_idx, port_idx, limits);
 | |
| 
 | |
| 			if (glob_evals_left == 0)
 | |
| 				return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void eval_root_mux(int mux_idx)
 | |
| 	{
 | |
| 		log_assert(glob_evals_left > 0);
 | |
| 		knowledge_t knowledge;
 | |
| 		knowledge.visited_muxes.insert(mux_idx);
 | |
| 		limits_t limits = {};
 | |
| 		limits.do_mark_ports_observable = root_enable_muxes.at(mux_idx);
 | |
| 		eval_mux(knowledge, mux_idx, limits);
 | |
| 	}
 | |
| };
 | |
| 
 | |
| struct OptMuxtreePass : public Pass {
 | |
| 	OptMuxtreePass() : Pass("opt_muxtree", "eliminate dead trees in multiplexer trees") { }
 | |
| 	void help() override
 | |
| 	{
 | |
| 		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | |
| 		log("\n");
 | |
| 		log("    opt_muxtree [selection]\n");
 | |
| 		log("\n");
 | |
| 		log("This pass analyzes the control signals for the multiplexer trees in the design\n");
 | |
| 		log("and identifies inputs that can never be active. It then removes this dead\n");
 | |
| 		log("branches from the multiplexer trees.\n");
 | |
| 		log("\n");
 | |
| 		log("This pass only operates on completely selected modules without processes.\n");
 | |
| 		log("\n");
 | |
| 	}
 | |
| 	void execute(vector<std::string> args, RTLIL::Design *design) override
 | |
| 	{
 | |
| 		log_header(design, "Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n");
 | |
| 		extra_args(args, 1, design);
 | |
| 
 | |
| 		int total_count = 0;
 | |
| 		for (auto module : design->selected_whole_modules_warn()) {
 | |
| 			if (module->has_processes_warn())
 | |
| 				continue;
 | |
| 			OptMuxtreeWorker worker(design, module);
 | |
| 			total_count += worker.removed_count;
 | |
| 		}
 | |
| 		if (total_count)
 | |
| 			design->scratchpad_set_bool("opt.did_something", true);
 | |
| 		log("Removed %d multiplexer ports.\n", total_count);
 | |
| 	}
 | |
| } OptMuxtreePass;
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 |