3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-07 09:55:20 +00:00
yosys/backends/firrtl/firrtl.cc
Martin Povišer c0b1a7daa4 Drop stray 'cellaigs.h' include from backend passes
This include seems to have been copied over from the JSON backend where
AIG models are sometimes inserted into the JSON output, but these other
backends don't do anything with AIG.
2023-07-10 12:45:03 +02:00

1270 lines
42 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
#include "kernel/mem.h"
#include <algorithm>
#include <string>
#include <vector>
#include <cmath>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
pool<string> used_names;
dict<IdString, string> namecache;
int autoid_counter;
typedef unsigned FDirection;
static const FDirection FD_NODIRECTION = 0x0;
static const FDirection FD_IN = 0x1;
static const FDirection FD_OUT = 0x2;
static const FDirection FD_INOUT = 0x3;
static const int FIRRTL_MAX_DSH_WIDTH_ERROR = 20; // For historic reasons, this is actually one greater than the maximum allowed shift width
std::string getFileinfo(const RTLIL::AttrObject *design_entity)
{
std::string src(design_entity->get_src_attribute());
std::string fileinfo_str = src.empty() ? "" : "@[" + src + "]";
return fileinfo_str;
}
// Get a port direction with respect to a specific module.
FDirection getPortFDirection(IdString id, Module *module)
{
Wire *wire = module->wires_.at(id);
FDirection direction = FD_NODIRECTION;
if (wire && wire->port_id)
{
if (wire->port_input)
direction |= FD_IN;
if (wire->port_output)
direction |= FD_OUT;
}
return direction;
}
string next_id()
{
string new_id;
while (1) {
new_id = stringf("_%d", autoid_counter++);
if (used_names.count(new_id) == 0) break;
}
used_names.insert(new_id);
return new_id;
}
const char *make_id(IdString id)
{
if (namecache.count(id) != 0)
return namecache.at(id).c_str();
string new_id = log_id(id);
for (int i = 0; i < GetSize(new_id); i++)
{
char &ch = new_id[i];
if ('a' <= ch && ch <= 'z') continue;
if ('A' <= ch && ch <= 'Z') continue;
if ('0' <= ch && ch <= '9' && i != 0) continue;
if ('_' == ch) continue;
ch = '_';
}
while (used_names.count(new_id) != 0)
new_id += '_';
namecache[id] = new_id;
used_names.insert(new_id);
return namecache.at(id).c_str();
}
std::string dump_const_string(const RTLIL::Const &data)
{
std::string res_str;
std::string str = data.decode_string();
for (size_t i = 0; i < str.size(); i++)
{
if (str[i] == '\n')
res_str += "\\n";
else if (str[i] == '\t')
res_str += "\\t";
else if (str[i] < 32)
res_str += stringf("\\%03o", str[i]);
else if (str[i] == '"')
res_str += "\\\"";
else if (str[i] == '\\')
res_str += "\\\\";
else
res_str += str[i];
}
return res_str;
}
std::string dump_const(const RTLIL::Const &data)
{
std::string res_str;
// // For debugging purposes to find out how Yosys encodes flags.
// res_str += stringf("flags_%x --> ", data.flags);
// Real-valued parameter.
if (data.flags & RTLIL::CONST_FLAG_REAL)
{
// Yosys stores real values as strings, so we call the string dumping code.
res_str += dump_const_string(data);
}
// String parameter.
else if (data.flags & RTLIL::CONST_FLAG_STRING)
{
res_str += "\"";
res_str += dump_const_string(data);
res_str += "\"";
}
// Numeric (non-real) parameter.
else
{
int width = data.bits.size();
// If a standard 32-bit int, then emit standard int value like "56" or
// "-56". Firrtl supports negative-valued int literals.
//
// SignedInt
// : ( '+' | '-' ) PosInt
// ;
if (width <= 32)
{
int32_t int_val = 0;
for (int i = 0; i < width; i++)
{
switch (data.bits[i])
{
case State::S0: break;
case State::S1: int_val |= (1 << i); break;
default:
log_error("Unexpected int value\n");
break;
}
}
res_str += stringf("%d", int_val);
}
else
{
// If value is larger than 32 bits, then emit a binary representation of
// the number as integers are not large enough to contain the result.
// There is a caveat to this approach though:
//
// Note that parameter may be defined as having a fixed width as follows:
//
// parameter signed [26:0] test_signed;
// parameter [26:0] test_unsigned;
// parameter signed [40:0] test_signed_large;
//
// However, if you assign a value on the RHS without specifying the
// precision, then yosys considers the value you used as an int and
// assigns it a width of 32 bits regardless of the type of the parameter.
//
// defparam <inst_name> .test_signed = 49; (width = 32, though should be 27 based on definition)
// defparam <inst_name> .test_unsigned = 40'd35; (width = 40, though should be 27 based on definition)
// defparam <inst_name> .test_signed_large = 40'd12; (width = 40)
//
// We therefore may lose the precision of the original verilog literal if
// it was written without its bitwidth specifier.
// Emit binary prefix for string.
res_str += "\"b";
// Emit bits.
for (int i = width - 1; i >= 0; i--)
{
log_assert(i < width);
switch (data.bits[i])
{
case State::S0: res_str += "0"; break;
case State::S1: res_str += "1"; break;
case State::Sx: res_str += "x"; break;
case State::Sz: res_str += "z"; break;
case State::Sa: res_str += "-"; break;
case State::Sm: res_str += "m"; break;
}
}
res_str += "\"";
}
}
return res_str;
}
std::string extmodule_name(RTLIL::Cell *cell, RTLIL::Module *mod_instance)
{
// Since we are creating a custom extmodule for every cell that instantiates
// this blackbox, we need to create a custom name for it. We just use the
// name of the blackbox itself followed by the name of the cell.
const std::string cell_name = std::string(make_id(cell->name));
const std::string blackbox_name = std::string(make_id(mod_instance->name));
const std::string extmodule_name = blackbox_name + "_" + cell_name;
return extmodule_name;
}
/**
* Emits a parameterized extmodule. Instance parameters are obtained from
* ''cell'' as it represents the instantiation of the blackbox defined by
* ''mod_instance'' and therefore contains all its instance parameters.
*/
void emit_extmodule(RTLIL::Cell *cell, RTLIL::Module *mod_instance, std::ostream &f)
{
const std::string indent = " ";
const std::string blackbox_name = std::string(make_id(mod_instance->name));
const std::string exported_name = extmodule_name(cell, mod_instance);
// We use the cell's fileinfo for this extmodule as its parameters come from
// the cell and not from the module itself (the module contains default
// parameters, not the instance-specific ones we're using to emit the
// extmodule).
const std::string extmoduleFileinfo = getFileinfo(cell);
// Emit extmodule header.
f << stringf(" extmodule %s: %s\n", exported_name.c_str(), extmoduleFileinfo.c_str());
// Emit extmodule ports.
for (auto wire : mod_instance->wires())
{
const auto wireName = make_id(wire->name);
const std::string wireFileinfo = getFileinfo(wire);
if (wire->port_input && wire->port_output)
{
log_error("Module port %s.%s is inout!\n", log_id(mod_instance), log_id(wire));
}
const std::string portDecl = stringf("%s%s %s: UInt<%d> %s\n",
indent.c_str(),
wire->port_input ? "input" : "output",
wireName,
wire->width,
wireFileinfo.c_str()
);
f << portDecl;
}
// Emit extmodule "defname" field. This is the name of the verilog blackbox
// that is used when verilog is emitted, so we use the name of mod_instance
// here.
f << stringf("%sdefname = %s\n", indent.c_str(), blackbox_name.c_str());
// Emit extmodule generic parameters.
for (const auto &p : cell->parameters)
{
const RTLIL::IdString p_id = p.first;
const RTLIL::Const p_value = p.second;
std::string param_name(p_id.c_str());
const std::string param_value = dump_const(p_value);
// Remove backslashes from parameters as these come from the internal RTLIL
// naming scheme, but should not exist in the emitted firrtl blackboxes.
// When firrtl is converted to verilog and given to downstream synthesis
// tools, these tools expect to find blackbox names and parameters as they
// were originally defined, i.e. without the extra RTLIL naming conventions.
param_name.erase(
std::remove(param_name.begin(), param_name.end(), '\\'),
param_name.end()
);
f << stringf("%sparameter %s = %s\n", indent.c_str(), param_name.c_str(), param_value.c_str());
}
f << "\n";
}
/**
* Emits extmodules for every instantiated blackbox in the design.
*
* RTLIL stores instance parameters at the cell's instantiation location.
* However, firrtl does not support module parameterization (everything is
* already elaborated). Firrtl instead supports external modules (extmodule),
* i.e. blackboxes that are defined by verilog and which have no body in
* firrtl itself other than the declaration of the blackboxes ports and
* parameters.
*
* Furthermore, firrtl does not support parameterization (even of extmodules)
* at a module's instantiation location and users must instead declare
* different extmodules with different instance parameters in the extmodule
* definition itself.
*
* This function goes through the design to identify all RTLIL blackboxes
* and emit parameterized extmodules with a unique name for each of them. The
* name that's given to the extmodule is
*
* <blackbox_name>_<instance_name>
*
* Beware that it is therefore necessary for users to replace "parameterized"
* instances in the RTLIL sense with these custom extmodules for the firrtl to
* be valid.
*/
void emit_elaborated_extmodules(RTLIL::Design *design, std::ostream &f)
{
for (auto module : design->modules())
{
for (auto cell : module->cells())
{
// Is this cell a module instance?
bool cellIsModuleInstance = cell->type[0] != '$';
if (cellIsModuleInstance)
{
// Find the module corresponding to this instance.
auto modInstance = design->module(cell->type);
// Ensure that we actually have a module instance
if (modInstance == nullptr) {
log_error("Unknown cell type %s\n", cell->type.c_str());
return;
}
bool modIsBlackbox = modInstance->get_blackbox_attribute();
if (modIsBlackbox)
{
emit_extmodule(cell, modInstance, f);
}
}
}
}
}
struct FirrtlWorker
{
Module *module;
std::ostream &f;
dict<SigBit, pair<string, int>> reverse_wire_map;
string unconn_id;
RTLIL::Design *design;
std::string indent;
void register_reverse_wire_map(string id, SigSpec sig)
{
for (int i = 0; i < GetSize(sig); i++)
reverse_wire_map[sig[i]] = make_pair(id, i);
}
FirrtlWorker(Module *module, std::ostream &f, RTLIL::Design *theDesign) : module(module), f(f), design(theDesign), indent(" ")
{
}
static string make_expr(const SigSpec &sig)
{
string expr;
for (auto chunk : sig.chunks())
{
string new_expr;
if (chunk.wire == nullptr)
{
std::vector<RTLIL::State> bits = chunk.data;
new_expr = stringf("UInt<%d>(\"h", GetSize(bits));
while (GetSize(bits) % 4 != 0)
bits.push_back(State::S0);
for (int i = GetSize(bits)-4; i >= 0; i -= 4)
{
int val = 0;
if (bits[i+0] == State::S1) val += 1;
if (bits[i+1] == State::S1) val += 2;
if (bits[i+2] == State::S1) val += 4;
if (bits[i+3] == State::S1) val += 8;
new_expr.push_back(val < 10 ? '0' + val : 'a' + val - 10);
}
new_expr += "\")";
}
else if (chunk.offset == 0 && chunk.width == chunk.wire->width)
{
new_expr = make_id(chunk.wire->name);
}
else
{
string wire_id = make_id(chunk.wire->name);
new_expr = stringf("bits(%s, %d, %d)", wire_id.c_str(), chunk.offset + chunk.width - 1, chunk.offset);
}
if (expr.empty())
expr = new_expr;
else
expr = "cat(" + new_expr + ", " + expr + ")";
}
return expr;
}
std::string fid(RTLIL::IdString internal_id)
{
return make_id(internal_id);
}
std::string cellname(RTLIL::Cell *cell)
{
return fid(cell->name).c_str();
}
void process_instance(RTLIL::Cell *cell, vector<string> &wire_exprs)
{
std::string cell_type = fid(cell->type);
std::string instanceOf;
// If this is a parameterized module, its parent module is encoded in the cell type
if (cell->type.begins_with("$paramod"))
{
log_assert(cell->has_attribute(ID::hdlname));
instanceOf = cell->get_string_attribute(ID::hdlname);
}
else
{
instanceOf = cell_type;
}
std::string cell_name = cellname(cell);
std::string cell_name_comment;
if (cell_name != fid(cell->name))
cell_name_comment = " /* " + fid(cell->name) + " */ ";
else
cell_name_comment = "";
// Find the module corresponding to this instance.
auto instModule = design->module(cell->type);
// If there is no instance for this, just return.
if (instModule == NULL)
{
log_warning("No instance for %s.%s\n", cell_type.c_str(), cell_name.c_str());
return;
}
// If the instance is that of a blackbox, use the modified extmodule name
// that contains per-instance parameterizations. These instances were
// emitted earlier in the firrtl backend.
const std::string instanceName = instModule->get_blackbox_attribute() ?
extmodule_name(cell, instModule) :
instanceOf;
std::string cellFileinfo = getFileinfo(cell);
wire_exprs.push_back(stringf("%s" "inst %s%s of %s %s", indent.c_str(), cell_name.c_str(), cell_name_comment.c_str(), instanceName.c_str(), cellFileinfo.c_str()));
for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) {
if (it->second.size() > 0) {
const SigSpec &secondSig = it->second;
const std::string firstName = cell_name + "." + make_id(it->first);
const std::string secondExpr = make_expr(secondSig);
// Find the direction for this port.
FDirection dir = getPortFDirection(it->first, instModule);
std::string sourceExpr, sinkExpr;
const SigSpec *sinkSig = nullptr;
switch (dir) {
case FD_INOUT:
log_warning("Instance port connection %s.%s is INOUT; treating as OUT\n", cell_type.c_str(), log_signal(it->second));
YS_FALLTHROUGH
case FD_OUT:
sourceExpr = firstName;
sinkExpr = secondExpr;
sinkSig = &secondSig;
break;
case FD_NODIRECTION:
log_warning("Instance port connection %s.%s is NODIRECTION; treating as IN\n", cell_type.c_str(), log_signal(it->second));
YS_FALLTHROUGH
case FD_IN:
sourceExpr = secondExpr;
sinkExpr = firstName;
break;
default:
log_error("Instance port %s.%s unrecognized connection direction 0x%x !\n", cell_type.c_str(), log_signal(it->second), dir);
break;
}
// Check for subfield assignment.
std::string bitsString = "bits(";
if (sinkExpr.compare(0, bitsString.length(), bitsString) == 0) {
if (sinkSig == nullptr)
log_error("Unknown subfield %s.%s\n", cell_type.c_str(), sinkExpr.c_str());
// Don't generate the assignment here.
// Add the source and sink to the "reverse_wire_map" and we'll output the assignment
// as part of the coalesced subfield assignments for this wire.
register_reverse_wire_map(sourceExpr, *sinkSig);
} else {
wire_exprs.push_back(stringf("\n%s%s <= %s %s", indent.c_str(), sinkExpr.c_str(), sourceExpr.c_str(), cellFileinfo.c_str()));
}
}
}
wire_exprs.push_back(stringf("\n"));
}
// Given an expression for a shift amount, and a maximum width,
// generate the FIRRTL expression for equivalent dynamic shift taking into account FIRRTL shift semantics.
std::string gen_dshl(const string b_expr, const int b_width)
{
string result = b_expr;
if (b_width >= FIRRTL_MAX_DSH_WIDTH_ERROR) {
int max_shift_width_bits = FIRRTL_MAX_DSH_WIDTH_ERROR - 1;
string max_shift_string = stringf("UInt<%d>(%d)", max_shift_width_bits, (1<<max_shift_width_bits) - 1);
// Deal with the difference in semantics between FIRRTL and verilog
result = stringf("mux(gt(%s, %s), %s, bits(%s, %d, 0))", b_expr.c_str(), max_shift_string.c_str(), max_shift_string.c_str(), b_expr.c_str(), max_shift_width_bits - 1);
}
return result;
}
void emit_module()
{
std::string moduleFileinfo = getFileinfo(module);
f << stringf(" module %s: %s\n", make_id(module->name), moduleFileinfo.c_str());
vector<string> port_decls, wire_decls, mem_exprs, cell_exprs, wire_exprs;
std::vector<Mem> memories = Mem::get_all_memories(module);
for (auto &mem : memories)
mem.narrow();
for (auto wire : module->wires())
{
const auto wireName = make_id(wire->name);
std::string wireFileinfo = getFileinfo(wire);
// If a wire has initial data, issue a warning since FIRRTL doesn't currently support it.
if (wire->attributes.count(ID::init)) {
log_warning("Initial value (%s) for (%s.%s) not supported\n",
wire->attributes.at(ID::init).as_string().c_str(),
log_id(module), log_id(wire));
}
if (wire->port_id)
{
if (wire->port_input && wire->port_output)
log_error("Module port %s.%s is inout!\n", log_id(module), log_id(wire));
port_decls.push_back(stringf("%s%s %s: UInt<%d> %s\n", indent.c_str(), wire->port_input ? "input" : "output",
wireName, wire->width, wireFileinfo.c_str()));
}
else
{
wire_decls.push_back(stringf("%swire %s: UInt<%d> %s\n", indent.c_str(), wireName, wire->width, wireFileinfo.c_str()));
}
}
for (auto cell : module->cells())
{
Const ndef(0, 0);
// Is this cell is a module instance?
if (module->design->module(cell->type))
{
process_instance(cell, wire_exprs);
continue;
}
// Not a module instance. Set up cell properties
bool extract_y_bits = false; // Assume no extraction of final bits will be required.
int a_width = cell->parameters.at(ID::A_WIDTH, ndef).as_int(); // The width of "A"
int b_width = cell->parameters.at(ID::B_WIDTH, ndef).as_int(); // The width of "A"
const int y_width = cell->parameters.at(ID::Y_WIDTH, ndef).as_int(); // The width of the result
const bool a_signed = cell->parameters.at(ID::A_SIGNED, ndef).as_bool();
const bool b_signed = cell->parameters.at(ID::B_SIGNED, ndef).as_bool();
bool firrtl_is_signed = a_signed; // The result is signed (subsequent code may change this).
int firrtl_width = 0;
string primop;
bool always_uint = false;
string y_id = make_id(cell->name);
std::string cellFileinfo = getFileinfo(cell);
if (cell->type.in(ID($not), ID($logic_not), ID($_NOT_), ID($neg), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_bool), ID($reduce_xnor)))
{
string a_expr = make_expr(cell->getPort(ID::A));
wire_decls.push_back(stringf("%swire %s: UInt<%d> %s\n", indent.c_str(), y_id.c_str(), y_width, cellFileinfo.c_str()));
if (a_signed) {
a_expr = "asSInt(" + a_expr + ")";
}
// Don't use the results of logical operations (a single bit) to control padding
if (!(cell->type.in(ID($eq), ID($eqx), ID($gt), ID($ge), ID($lt), ID($le), ID($ne), ID($nex), ID($reduce_bool), ID($logic_not)) && y_width == 1) ) {
a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width);
}
// Assume the FIRRTL width is a single bit.
firrtl_width = 1;
if (cell->type.in(ID($not), ID($_NOT_))) primop = "not";
else if (cell->type == ID($neg)) {
primop = "neg";
firrtl_is_signed = true; // Result of "neg" is signed (an SInt).
firrtl_width = a_width;
} else if (cell->type == ID($logic_not)) {
primop = "eq";
a_expr = stringf("%s, UInt(0)", a_expr.c_str());
}
else if (cell->type == ID($reduce_and)) primop = "andr";
else if (cell->type == ID($reduce_or)) primop = "orr";
else if (cell->type == ID($reduce_xor)) primop = "xorr";
else if (cell->type == ID($reduce_xnor)) {
primop = "not";
a_expr = stringf("xorr(%s)", a_expr.c_str());
}
else if (cell->type == ID($reduce_bool)) {
primop = "neq";
// Use the sign of the a_expr and its width as the type (UInt/SInt) and width of the comparand.
a_expr = stringf("%s, %cInt<%d>(0)", a_expr.c_str(), a_signed ? 'S' : 'U', a_width);
}
string expr = stringf("%s(%s)", primop.c_str(), a_expr.c_str());
if ((firrtl_is_signed && !always_uint))
expr = stringf("asUInt(%s)", expr.c_str());
cell_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), y_id.c_str(), expr.c_str(), cellFileinfo.c_str()));
register_reverse_wire_map(y_id, cell->getPort(ID::Y));
continue;
}
if (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($xor), ID($_XOR_), ID($xnor), ID($and), ID($_AND_), ID($or), ID($_OR_), ID($eq), ID($eqx),
ID($gt), ID($ge), ID($lt), ID($le), ID($ne), ID($nex), ID($shr), ID($sshr), ID($sshl), ID($shl),
ID($logic_and), ID($logic_or), ID($pow)))
{
string a_expr = make_expr(cell->getPort(ID::A));
string b_expr = make_expr(cell->getPort(ID::B));
std::string cellFileinfo = getFileinfo(cell);
wire_decls.push_back(stringf("%swire %s: UInt<%d> %s\n", indent.c_str(), y_id.c_str(), y_width, cellFileinfo.c_str()));
if (a_signed) {
a_expr = "asSInt(" + a_expr + ")";
// Expand the "A" operand to the result width
if (a_width < y_width) {
a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width);
a_width = y_width;
}
}
// Shift amount is always unsigned, and needn't be padded to result width,
// otherwise, we need to cast the b_expr appropriately
if (b_signed && !cell->type.in(ID($shr), ID($sshr), ID($shl), ID($sshl), ID($pow))) {
b_expr = "asSInt(" + b_expr + ")";
// Expand the "B" operand to the result width
if (b_width < y_width) {
b_expr = stringf("pad(%s, %d)", b_expr.c_str(), y_width);
b_width = y_width;
}
}
// For the arithmetic ops, expand operand widths to result widths befor performing the operation.
// This corresponds (according to iverilog) to what verilog compilers implement.
if (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($xor), ID($_XOR_), ID($xnor), ID($and), ID($_AND_), ID($or), ID($_OR_)))
{
if (a_width < y_width) {
a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width);
a_width = y_width;
}
if (b_width < y_width) {
b_expr = stringf("pad(%s, %d)", b_expr.c_str(), y_width);
b_width = y_width;
}
}
// Assume the FIRRTL width is the width of "A"
firrtl_width = a_width;
auto a_sig = cell->getPort(ID::A);
if (cell->type == ID($add)) {
primop = "add";
firrtl_is_signed = a_signed | b_signed;
firrtl_width = max(a_width, b_width);
} else if (cell->type == ID($sub)) {
primop = "sub";
firrtl_is_signed = true;
int a_widthInc = (!a_signed && b_signed) ? 2 : (a_signed && !b_signed) ? 1 : 0;
int b_widthInc = (a_signed && !b_signed) ? 2 : (!a_signed && b_signed) ? 1 : 0;
firrtl_width = max(a_width + a_widthInc, b_width + b_widthInc);
} else if (cell->type == ID($mul)) {
primop = "mul";
firrtl_is_signed = a_signed | b_signed;
firrtl_width = a_width + b_width;
} else if (cell->type == ID($div)) {
primop = "div";
firrtl_is_signed = a_signed | b_signed;
firrtl_width = a_width;
} else if (cell->type == ID($mod)) {
// "rem" = truncating modulo
primop = "rem";
firrtl_width = min(a_width, b_width);
} else if (cell->type.in(ID($and), ID($_AND_))) {
primop = "and";
always_uint = true;
firrtl_width = max(a_width, b_width);
}
else if (cell->type.in(ID($or), ID($_OR_))) {
primop = "or";
always_uint = true;
firrtl_width = max(a_width, b_width);
}
else if (cell->type.in(ID($xor), ID($_XOR_))) {
primop = "xor";
always_uint = true;
firrtl_width = max(a_width, b_width);
}
else if (cell->type == ID($xnor)) {
primop = "xnor";
always_uint = true;
firrtl_width = max(a_width, b_width);
}
else if ((cell->type == ID($eq)) || (cell->type == ID($eqx))) {
primop = "eq";
always_uint = true;
firrtl_width = 1;
}
else if ((cell->type == ID($ne)) || (cell->type == ID($nex))) {
primop = "neq";
always_uint = true;
firrtl_width = 1;
}
else if (cell->type == ID($gt)) {
primop = "gt";
always_uint = true;
firrtl_width = 1;
}
else if (cell->type == ID($ge)) {
primop = "geq";
always_uint = true;
firrtl_width = 1;
}
else if (cell->type == ID($lt)) {
primop = "lt";
always_uint = true;
firrtl_width = 1;
}
else if (cell->type == ID($le)) {
primop = "leq";
always_uint = true;
firrtl_width = 1;
}
else if ((cell->type == ID($shl)) || (cell->type == ID($sshl))) {
// FIRRTL will widen the result (y) by the amount of the shift.
// We'll need to offset this by extracting the un-widened portion as Verilog would do.
extract_y_bits = true;
// Is the shift amount constant?
auto b_sig = cell->getPort(ID::B);
if (b_sig.is_fully_const()) {
primop = "shl";
int shift_amount = b_sig.as_int();
b_expr = std::to_string(shift_amount);
firrtl_width = a_width + shift_amount;
} else {
primop = "dshl";
// Convert from FIRRTL left shift semantics.
b_expr = gen_dshl(b_expr, b_width);
firrtl_width = a_width + (1 << b_width) - 1;
}
}
else if ((cell->type == ID($shr)) || (cell->type == ID($sshr))) {
// We don't need to extract a specific range of bits.
extract_y_bits = false;
// Is the shift amount constant?
auto b_sig = cell->getPort(ID::B);
if (b_sig.is_fully_const()) {
primop = "shr";
int shift_amount = b_sig.as_int();
b_expr = std::to_string(shift_amount);
firrtl_width = max(1, a_width - shift_amount);
} else {
primop = "dshr";
firrtl_width = a_width;
}
// We'll need to do some special fixups if the source (and thus result) is signed.
if (firrtl_is_signed) {
// If this is a "logical" shift right, pretend the source is unsigned.
if (cell->type == ID($shr)) {
a_expr = "asUInt(" + a_expr + ")";
}
}
}
else if ((cell->type == ID($logic_and))) {
primop = "and";
a_expr = "neq(" + a_expr + ", UInt(0))";
b_expr = "neq(" + b_expr + ", UInt(0))";
always_uint = true;
firrtl_width = 1;
}
else if ((cell->type == ID($logic_or))) {
primop = "or";
a_expr = "neq(" + a_expr + ", UInt(0))";
b_expr = "neq(" + b_expr + ", UInt(0))";
always_uint = true;
firrtl_width = 1;
}
else if ((cell->type == ID($pow))) {
if (a_sig.is_fully_const() && a_sig.as_int() == 2) {
// We'll convert this to a shift. To simplify things, change the a_expr to "1"
// so we can use b_expr directly as a shift amount.
// Only support 2 ** N (i.e., shift left)
// FIRRTL will widen the result (y) by the amount of the shift.
// We'll need to offset this by extracting the un-widened portion as Verilog would do.
a_expr = firrtl_is_signed ? "SInt(1)" : "UInt(1)";
extract_y_bits = true;
// Is the shift amount constant?
auto b_sig = cell->getPort(ID::B);
if (b_sig.is_fully_const()) {
primop = "shl";
int shiftAmount = b_sig.as_int();
if (shiftAmount < 0) {
log_error("Negative power exponent - %d: %s.%s\n", shiftAmount, log_id(module), log_id(cell));
}
b_expr = std::to_string(shiftAmount);
firrtl_width = a_width + shiftAmount;
} else {
primop = "dshl";
// Convert from FIRRTL left shift semantics.
b_expr = gen_dshl(b_expr, b_width);
firrtl_width = a_width + (1 << b_width) - 1;
}
} else {
log_error("Non power 2: %s.%s\n", log_id(module), log_id(cell));
}
}
auto it = cell->parameters.find(ID::B_SIGNED);
if (it == cell->parameters.end() || !it->second.as_bool()) {
b_expr = "asUInt(" + b_expr + ")";
}
string expr;
// Deal with $xnor == ~^ (not xor)
if (primop == "xnor") {
expr = stringf("not(xor(%s, %s))", a_expr.c_str(), b_expr.c_str());
} else {
expr = stringf("%s(%s, %s)", primop.c_str(), a_expr.c_str(), b_expr.c_str());
}
// Deal with FIRRTL's "shift widens" semantics, or the need to widen the FIRRTL result.
// If the operation is signed, the FIRRTL width will be 1 one bit larger.
if (extract_y_bits) {
expr = stringf("bits(%s, %d, 0)", expr.c_str(), y_width - 1);
} else if (firrtl_is_signed && (firrtl_width + 1) < y_width) {
expr = stringf("pad(%s, %d)", expr.c_str(), y_width);
}
if ((firrtl_is_signed && !always_uint))
expr = stringf("asUInt(%s)", expr.c_str());
cell_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), y_id.c_str(), expr.c_str(), cellFileinfo.c_str()));
register_reverse_wire_map(y_id, cell->getPort(ID::Y));
continue;
}
if (cell->type.in(ID($mux), ID($_MUX_)))
{
auto it = cell->parameters.find(ID::WIDTH);
int width = it == cell->parameters.end()? 1 : it->second.as_int();
string a_expr = make_expr(cell->getPort(ID::A));
string b_expr = make_expr(cell->getPort(ID::B));
string s_expr = make_expr(cell->getPort(ID::S));
wire_decls.push_back(stringf("%swire %s: UInt<%d> %s\n", indent.c_str(), y_id.c_str(), width, cellFileinfo.c_str()));
string expr = stringf("mux(%s, %s, %s)", s_expr.c_str(), b_expr.c_str(), a_expr.c_str());
cell_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), y_id.c_str(), expr.c_str(), cellFileinfo.c_str()));
register_reverse_wire_map(y_id, cell->getPort(ID::Y));
continue;
}
if (cell->is_mem_cell())
{
// Will be handled below, as part of a Mem.
continue;
}
if (cell->type.in(ID($dff)))
{
bool clkpol = cell->parameters.at(ID::CLK_POLARITY).as_bool();
if (clkpol == false)
log_error("Negative edge clock on FF %s.%s.\n", log_id(module), log_id(cell));
int width = cell->parameters.at(ID::WIDTH).as_int();
string expr = make_expr(cell->getPort(ID::D));
string clk_expr = "asClock(" + make_expr(cell->getPort(ID::CLK)) + ")";
wire_decls.push_back(stringf("%sreg %s: UInt<%d>, %s %s\n", indent.c_str(), y_id.c_str(), width, clk_expr.c_str(), cellFileinfo.c_str()));
cell_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), y_id.c_str(), expr.c_str(), cellFileinfo.c_str()));
register_reverse_wire_map(y_id, cell->getPort(ID::Q));
continue;
}
if (cell->type == ID($shiftx)) {
// assign y = a[b +: y_width];
// We'll extract the correct bits as part of the primop.
string a_expr = make_expr(cell->getPort(ID::A));
// Get the initial bit selector
string b_expr = make_expr(cell->getPort(ID::B));
wire_decls.push_back(stringf("%swire %s: UInt<%d>\n", indent.c_str(), y_id.c_str(), y_width));
if (cell->getParam(ID::B_SIGNED).as_bool()) {
// Use validif to constrain the selection (test the sign bit)
auto b_string = b_expr.c_str();
int b_sign = cell->parameters.at(ID::B_WIDTH).as_int() - 1;
b_expr = stringf("validif(not(bits(%s, %d, %d)), %s)", b_string, b_sign, b_sign, b_string);
}
string expr = stringf("dshr(%s, %s)", a_expr.c_str(), b_expr.c_str());
cell_exprs.push_back(stringf("%s%s <= %s\n", indent.c_str(), y_id.c_str(), expr.c_str()));
register_reverse_wire_map(y_id, cell->getPort(ID::Y));
continue;
}
if (cell->type == ID($shift)) {
// assign y = a >> b;
// where b may be negative
string a_expr = make_expr(cell->getPort(ID::A));
string b_expr = make_expr(cell->getPort(ID::B));
auto b_string = b_expr.c_str();
string expr;
wire_decls.push_back(stringf("%swire %s: UInt<%d>\n", indent.c_str(), y_id.c_str(), y_width));
if (cell->getParam(ID::B_SIGNED).as_bool()) {
// We generate a left or right shift based on the sign of b.
std::string dshl = stringf("bits(dshl(%s, %s), 0, %d)", a_expr.c_str(), gen_dshl(b_expr, b_width).c_str(), y_width);
std::string dshr = stringf("dshr(%s, %s)", a_expr.c_str(), b_string);
expr = stringf("mux(%s < 0, %s, %s)",
b_string,
dshl.c_str(),
dshr.c_str()
);
} else {
expr = stringf("dshr(%s, %s)", a_expr.c_str(), b_string);
}
cell_exprs.push_back(stringf("%s%s <= %s\n", indent.c_str(), y_id.c_str(), expr.c_str()));
register_reverse_wire_map(y_id, cell->getPort(ID::Y));
continue;
}
if (cell->type == ID($pos)) {
// assign y = a;
// printCell(cell);
string a_expr = make_expr(cell->getPort(ID::A));
// Verilog appears to treat the result as signed, so if the result is wider than "A",
// we need to pad.
if (a_width < y_width) {
a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width);
}
wire_decls.push_back(stringf("%swire %s: UInt<%d>\n", indent.c_str(), y_id.c_str(), y_width));
cell_exprs.push_back(stringf("%s%s <= %s\n", indent.c_str(), y_id.c_str(), a_expr.c_str()));
register_reverse_wire_map(y_id, cell->getPort(ID::Y));
continue;
}
log_error("Cell type not supported: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell));
}
for (auto &mem : memories) {
string mem_id = make_id(mem.memid);
Const init_data = mem.get_init_data();
if (!init_data.is_fully_undef())
log_error("Memory with initialization data: %s.%s\n", log_id(module), log_id(mem.memid));
if (mem.start_offset != 0)
log_error("Memory with nonzero offset: %s.%s\n", log_id(module), log_id(mem.memid));
for (int i = 0; i < GetSize(mem.rd_ports); i++)
{
auto &port = mem.rd_ports[i];
string port_name(stringf("%s.r%d", mem_id.c_str(), i));
if (port.clk_enable)
log_error("Clocked read port %d on memory %s.%s.\n", i, log_id(module), log_id(mem.memid));
std::ostringstream rpe;
string addr_expr = make_expr(port.addr);
string ena_expr = make_expr(State::S1);
string clk_expr = make_expr(State::S0);
rpe << stringf("%s%s.addr <= %s\n", indent.c_str(), port_name.c_str(), addr_expr.c_str());
rpe << stringf("%s%s.en <= %s\n", indent.c_str(), port_name.c_str(), ena_expr.c_str());
rpe << stringf("%s%s.clk <= asClock(%s)\n", indent.c_str(), port_name.c_str(), clk_expr.c_str());
cell_exprs.push_back(rpe.str());
register_reverse_wire_map(stringf("%s.data", port_name.c_str()), port.data);
}
for (int i = 0; i < GetSize(mem.wr_ports); i++)
{
auto &port = mem.wr_ports[i];
string port_name(stringf("%s.w%d", mem_id.c_str(), i));
if (!port.clk_enable)
log_error("Unclocked write port %d on memory %s.%s.\n", i, log_id(module), log_id(mem.memid));
if (!port.clk_polarity)
log_error("Negedge write port %d on memory %s.%s.\n", i, log_id(module), log_id(mem.memid));
for (int i = 1; i < GetSize(port.en); i++)
if (port.en[0] != port.en[i])
log_error("Complex write enable on port %d on memory %s.%s.\n", i, log_id(module), log_id(mem.memid));
std::ostringstream wpe;
string data_expr = make_expr(port.data);
string addr_expr = make_expr(port.addr);
string ena_expr = make_expr(port.en[0]);
string clk_expr = make_expr(port.clk);
string mask_expr = make_expr(State::S1);
wpe << stringf("%s%s.data <= %s\n", indent.c_str(), port_name.c_str(), data_expr.c_str());
wpe << stringf("%s%s.addr <= %s\n", indent.c_str(), port_name.c_str(), addr_expr.c_str());
wpe << stringf("%s%s.en <= %s\n", indent.c_str(), port_name.c_str(), ena_expr.c_str());
wpe << stringf("%s%s.clk <= asClock(%s)\n", indent.c_str(), port_name.c_str(), clk_expr.c_str());
wpe << stringf("%s%s.mask <= %s\n", indent.c_str(), port_name.c_str(), mask_expr.c_str());
cell_exprs.push_back(wpe.str());
}
std::ostringstream me;
me << stringf(" mem %s:\n", mem_id.c_str());
me << stringf(" data-type => UInt<%d>\n", mem.width);
me << stringf(" depth => %d\n", mem.size);
for (int i = 0; i < GetSize(mem.rd_ports); i++)
me << stringf(" reader => r%d\n", i);
for (int i = 0; i < GetSize(mem.wr_ports); i++)
me << stringf(" writer => w%d\n", i);
me << stringf(" read-latency => %d\n", 0);
me << stringf(" write-latency => %d\n", 1);
me << stringf(" read-under-write => undefined\n");
mem_exprs.push_back(me.str());
}
for (auto conn : module->connections())
{
string y_id = next_id();
int y_width = GetSize(conn.first);
string expr = make_expr(conn.second);
wire_decls.push_back(stringf("%swire %s: UInt<%d>\n", indent.c_str(), y_id.c_str(), y_width));
cell_exprs.push_back(stringf("%s%s <= %s\n", indent.c_str(), y_id.c_str(), expr.c_str()));
register_reverse_wire_map(y_id, conn.first);
}
for (auto wire : module->wires())
{
string expr;
std::string wireFileinfo = getFileinfo(wire);
if (wire->port_input)
continue;
int cursor = 0;
bool is_valid = false;
bool make_unconn_id = false;
while (cursor < wire->width)
{
int chunk_width = 1;
string new_expr;
SigBit start_bit(wire, cursor);
if (reverse_wire_map.count(start_bit))
{
pair<string, int> start_map = reverse_wire_map.at(start_bit);
while (cursor+chunk_width < wire->width)
{
SigBit stop_bit(wire, cursor+chunk_width);
if (reverse_wire_map.count(stop_bit) == 0)
break;
pair<string, int> stop_map = reverse_wire_map.at(stop_bit);
stop_map.second -= chunk_width;
if (start_map != stop_map)
break;
chunk_width++;
}
new_expr = stringf("bits(%s, %d, %d)", start_map.first.c_str(),
start_map.second + chunk_width - 1, start_map.second);
is_valid = true;
}
else
{
if (unconn_id.empty()) {
unconn_id = next_id();
make_unconn_id = true;
}
new_expr = unconn_id;
}
if (expr.empty())
expr = new_expr;
else
expr = "cat(" + new_expr + ", " + expr + ")";
cursor += chunk_width;
}
if (is_valid) {
if (make_unconn_id) {
wire_decls.push_back(stringf("%swire %s: UInt<1> %s\n", indent.c_str(), unconn_id.c_str(), wireFileinfo.c_str()));
// `invalid` is a firrtl construction for simulation so we will not
// tag it with a @[fileinfo] tag as it doesn't directly correspond to
// a specific line of verilog code.
wire_decls.push_back(stringf("%s%s is invalid\n", indent.c_str(), unconn_id.c_str()));
}
wire_exprs.push_back(stringf("%s%s <= %s %s\n", indent.c_str(), make_id(wire->name), expr.c_str(), wireFileinfo.c_str()));
} else {
if (make_unconn_id) {
unconn_id.clear();
}
// `invalid` is a firrtl construction for simulation so we will not
// tag it with a @[fileinfo] tag as it doesn't directly correspond to
// a specific line of verilog code.
wire_decls.push_back(stringf("%s%s is invalid\n", indent.c_str(), make_id(wire->name)));
}
}
for (auto str : port_decls)
f << str;
f << stringf("\n");
for (auto str : wire_decls)
f << str;
f << stringf("\n");
for (auto str : mem_exprs)
f << str;
f << stringf("\n");
for (auto str : cell_exprs)
f << str;
f << stringf("\n");
for (auto str : wire_exprs)
f << str;
f << stringf("\n");
}
void run()
{
emit_module();
}
};
struct FirrtlBackend : public Backend {
FirrtlBackend() : Backend("firrtl", "write design to a FIRRTL file") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_firrtl [options] [filename]\n");
log("\n");
log("Write a FIRRTL netlist of the current design.\n");
log("The following commands are executed by this command:\n");
log(" pmuxtree\n");
log(" bmuxmap\n");
log(" demuxmap\n");
log("\n");
}
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
{
size_t argidx = args.size(); // We aren't expecting any arguments.
// If we weren't explicitly passed a filename, use the last argument (if it isn't a flag).
if (filename == "") {
if (argidx > 0 && args[argidx - 1][0] != '-') {
// extra_args and friends need to see this argument.
argidx -= 1;
filename = args[argidx];
}
}
extra_args(f, filename, args, argidx);
if (!design->full_selection())
log_cmd_error("This command only operates on fully selected designs!\n");
log_header(design, "Executing FIRRTL backend.\n");
log_push();
Pass::call(design, "pmuxtree");
Pass::call(design, "bmuxmap");
Pass::call(design, "demuxmap");
Pass::call(design, "bwmuxmap");
namecache.clear();
autoid_counter = 0;
// Get the top module, or a reasonable facsimile - we need something for the circuit name.
Module *top = design->top_module();
Module *last = nullptr;
// Generate module and wire names.
for (auto module : design->modules()) {
make_id(module->name);
last = module;
if (top == nullptr && module->get_bool_attribute(ID::top)) {
top = module;
}
for (auto wire : module->wires())
if (wire->port_id)
make_id(wire->name);
}
if (top == nullptr)
top = last;
if (!top)
log_cmd_error("There is no top module in this design!\n");
std::string circuitFileinfo = getFileinfo(top);
*f << stringf("circuit %s: %s\n", make_id(top->name), circuitFileinfo.c_str());
emit_elaborated_extmodules(design, *f);
// Emit non-blackbox modules.
for (auto module : design->modules())
{
if (!module->get_blackbox_attribute())
{
FirrtlWorker worker(module, *f, design);
worker.run();
}
}
namecache.clear();
autoid_counter = 0;
}
} FirrtlBackend;
PRIVATE_NAMESPACE_END