mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 11:42:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			743 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			743 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| #include "kernel/sigtools.h"
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| #define COST_DMUX   90
 | |
| #define COST_MUX2  100
 | |
| #define COST_MUX4  220
 | |
| #define COST_MUX8  460
 | |
| #define COST_MUX16 940
 | |
| 
 | |
| struct MuxcoverWorker
 | |
| {
 | |
| 	Module *module;
 | |
| 	SigMap sigmap;
 | |
| 
 | |
| 	struct newmux_t
 | |
| 	{
 | |
| 		int cost;
 | |
| 		vector<SigBit> inputs, selects;
 | |
| 		newmux_t() : cost(0) {}
 | |
| 	};
 | |
| 
 | |
| 	struct tree_t
 | |
| 	{
 | |
| 		SigBit root;
 | |
| 		dict<SigBit, Cell*> muxes;
 | |
| 		dict<SigBit, newmux_t> newmuxes;
 | |
| 	};
 | |
| 
 | |
| 	vector<tree_t> tree_list;
 | |
| 
 | |
| 	dict<tuple<SigBit, SigBit, SigBit>, tuple<SigBit, pool<SigBit>, bool>> decode_mux_cache;
 | |
| 	dict<SigBit, tuple<SigBit, SigBit, SigBit>> decode_mux_reverse_cache;
 | |
| 	int decode_mux_counter;
 | |
| 
 | |
| 	bool use_mux4;
 | |
| 	bool use_mux8;
 | |
| 	bool use_mux16;
 | |
| 	bool nodecode;
 | |
| 	bool nopartial;
 | |
| 
 | |
| 	int cost_dmux;
 | |
| 	int cost_mux2;
 | |
| 	int cost_mux4;
 | |
| 	int cost_mux8;
 | |
| 	int cost_mux16;
 | |
| 
 | |
| 	MuxcoverWorker(Module *module) : module(module), sigmap(module)
 | |
| 	{
 | |
| 		use_mux4 = false;
 | |
| 		use_mux8 = false;
 | |
| 		use_mux16 = false;
 | |
| 		nodecode = false;
 | |
| 		nopartial = false;
 | |
| 		cost_dmux = COST_DMUX;
 | |
| 		cost_mux2 = COST_MUX2;
 | |
| 		cost_mux4 = COST_MUX4;
 | |
| 		cost_mux8 = COST_MUX8;
 | |
| 		cost_mux16 = COST_MUX16;
 | |
| 		decode_mux_counter = 0;
 | |
| 	}
 | |
| 
 | |
| 	bool xcmp(std::initializer_list<SigBit> list)
 | |
| 	{
 | |
| 		auto cursor = list.begin(), end = list.end();
 | |
| 		log_assert(cursor != end);
 | |
| 		SigBit tmp = *(cursor++);
 | |
| 		while (cursor != end) {
 | |
| 			SigBit bit = *(cursor++);
 | |
| 			if (bit == State::Sx)
 | |
| 				continue;
 | |
| 			if (tmp == State::Sx)
 | |
| 				tmp = bit;
 | |
| 			if (bit != tmp)
 | |
| 				return false;
 | |
| 		}
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	void treeify()
 | |
| 	{
 | |
| 		pool<SigBit> roots;
 | |
| 		pool<SigBit> used_once;
 | |
| 		dict<SigBit, Cell*> sig_to_mux;
 | |
| 
 | |
| 		for (auto wire : module->wires()) {
 | |
| 			if (!wire->port_output)
 | |
| 				continue;
 | |
| 			for (auto bit : sigmap(wire))
 | |
| 				roots.insert(bit);
 | |
| 		}
 | |
| 
 | |
| 		for (auto cell : module->cells()) {
 | |
| 			for (auto conn : cell->connections()) {
 | |
| 				if (!cell->input(conn.first))
 | |
| 					continue;
 | |
| 				for (auto bit : sigmap(conn.second)) {
 | |
| 					if (used_once.count(bit) || cell->type != ID($_MUX_) || conn.first == ID::S)
 | |
| 						roots.insert(bit);
 | |
| 					used_once.insert(bit);
 | |
| 				}
 | |
| 			}
 | |
| 			if (cell->type == ID($_MUX_))
 | |
| 				sig_to_mux[sigmap(cell->getPort(ID::Y))] = cell;
 | |
| 		}
 | |
| 
 | |
| 		log("  Treeifying %d MUXes:\n", GetSize(sig_to_mux));
 | |
| 
 | |
| 		roots.sort();
 | |
| 		for (auto rootsig : roots)
 | |
| 		{
 | |
| 			tree_t tree;
 | |
| 			tree.root = rootsig;
 | |
| 
 | |
| 			pool<SigBit> wavefront;
 | |
| 			wavefront.insert(rootsig);
 | |
| 
 | |
| 			while (!wavefront.empty()) {
 | |
| 				SigBit bit = wavefront.pop();
 | |
| 				if (sig_to_mux.count(bit) && (bit == rootsig || !roots.count(bit))) {
 | |
| 					Cell *c = sig_to_mux.at(bit);
 | |
| 					tree.muxes[bit] = c;
 | |
| 					wavefront.insert(sigmap(c->getPort(ID::A)));
 | |
| 					wavefront.insert(sigmap(c->getPort(ID::B)));
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (!tree.muxes.empty()) {
 | |
| 				log("    Found tree with %d MUXes at root %s.\n", GetSize(tree.muxes), log_signal(tree.root));
 | |
| 				tree_list.push_back(tree);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		log("    Finished treeification: Found %d trees.\n", GetSize(tree_list));
 | |
| 	}
 | |
| 
 | |
| 	bool follow_muxtree(SigBit &ret_bit, tree_t &tree, SigBit bit, const char *path, bool first_layer = true)
 | |
| 	{
 | |
| 		if (*path) {
 | |
| 			if (tree.muxes.count(bit) == 0) {
 | |
| 				if (first_layer || nopartial)
 | |
| 					return false;
 | |
| 				while (path[0] && path[1])
 | |
| 					path++;
 | |
| 				if (path[0] == 'S')
 | |
| 					ret_bit = State::Sx;
 | |
| 				else
 | |
| 					ret_bit = bit;
 | |
| 				return true;
 | |
| 			}
 | |
| 			char port_name[3] = {'\\', *path, 0};
 | |
| 			return follow_muxtree(ret_bit, tree, sigmap(tree.muxes.at(bit)->getPort(port_name)), path+1, false);
 | |
| 		} else {
 | |
| 			ret_bit = bit;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	int prepare_decode_mux(SigBit &A, SigBit B, SigBit sel, SigBit bit)
 | |
| 	{
 | |
| 		if (A == B || A == State::Sx || B == State::Sx || sel == State::Sx)
 | |
| 			return 0;
 | |
| 
 | |
| 		tuple<SigBit, SigBit, SigBit> key(A, B, sel);
 | |
| 		if (decode_mux_cache.count(key) == 0) {
 | |
| 			auto &entry = decode_mux_cache[key];
 | |
| 			std::get<0>(entry) = module->addWire(NEW_ID);
 | |
| 			std::get<2>(entry) = false;
 | |
| 			decode_mux_reverse_cache[std::get<0>(entry)] = key;
 | |
| 		}
 | |
| 
 | |
| 		auto &entry = decode_mux_cache[key];
 | |
| 		A = std::get<0>(entry);
 | |
| 		std::get<1>(entry).insert(bit);
 | |
| 
 | |
| 		if (std::get<2>(entry))
 | |
| 			return 0;
 | |
| 
 | |
| 		return cost_dmux / GetSize(std::get<1>(entry));
 | |
| 	}
 | |
| 
 | |
| 	void implement_decode_mux(SigBit ctrl_bit)
 | |
| 	{
 | |
| 		if (decode_mux_reverse_cache.count(ctrl_bit) == 0)
 | |
| 			return;
 | |
| 
 | |
| 		auto &key = decode_mux_reverse_cache.at(ctrl_bit);
 | |
| 		auto &entry = decode_mux_cache[key];
 | |
| 
 | |
| 		if (std::get<2>(entry))
 | |
| 			return;
 | |
| 
 | |
| 		implement_decode_mux(std::get<0>(key));
 | |
| 		implement_decode_mux(std::get<1>(key));
 | |
| 
 | |
| 		if (std::get<0>(key) == State::Sx) {
 | |
| 			module->addBufGate(NEW_ID, std::get<1>(key), ctrl_bit);
 | |
| 		} else if (std::get<1>(key) == State::Sx) {
 | |
| 			module->addBufGate(NEW_ID, std::get<0>(key), ctrl_bit);
 | |
| 		} else {
 | |
| 			module->addMuxGate(NEW_ID, std::get<0>(key), std::get<1>(key), std::get<2>(key), ctrl_bit);
 | |
| 			decode_mux_counter++;
 | |
| 		}
 | |
| 		std::get<2>(entry) = true;
 | |
| 	}
 | |
| 
 | |
| 	void find_best_covers(tree_t &tree, const vector<SigBit> &bits)
 | |
| 	{
 | |
| 		for (auto bit : bits)
 | |
| 			find_best_cover(tree, bit);
 | |
| 	}
 | |
| 
 | |
| 	int sum_best_covers(tree_t &tree, const vector<SigBit> &bits)
 | |
| 	{
 | |
| 		int sum = 0;
 | |
| 		for (auto bit : pool<SigBit>(bits.begin(), bits.end())) {
 | |
| 			int cost = tree.newmuxes.at(bit).cost;
 | |
| 			log_debug("        Best cost for %s: %d\n", log_signal(bit), cost);
 | |
| 			sum += cost;
 | |
| 		}
 | |
| 		return sum;
 | |
| 	}
 | |
| 
 | |
| 	int find_best_cover(tree_t &tree, SigBit bit)
 | |
| 	{
 | |
| 		if (tree.newmuxes.count(bit)) {
 | |
| 			return tree.newmuxes.at(bit).cost;
 | |
| 		}
 | |
| 
 | |
| 		SigBit A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P;
 | |
| 		SigBit S1, S2, S3, S4, S5, S6, S7, S8;
 | |
| 		SigBit T1, T2, T3, T4;
 | |
| 		SigBit U1, U2;
 | |
| 		SigBit V1;
 | |
| 
 | |
| 		newmux_t best_mux;
 | |
| 		bool ok = true;
 | |
| 
 | |
| 		// 2-Input MUX
 | |
| 
 | |
| 		ok = ok && follow_muxtree(A, tree, bit, "A");
 | |
| 		ok = ok && follow_muxtree(B, tree, bit, "B");
 | |
| 
 | |
| 		ok = ok && follow_muxtree(S1, tree, bit, "S");
 | |
| 
 | |
| 		if (ok)
 | |
| 		{
 | |
| 			newmux_t mux;
 | |
| 
 | |
| 			mux.inputs.push_back(A);
 | |
| 			mux.inputs.push_back(B);
 | |
| 			mux.selects.push_back(S1);
 | |
| 
 | |
| 			find_best_covers(tree, mux.inputs);
 | |
| 			log_debug("        Decode cost for mux2 at %s: %d\n", log_signal(bit), mux.cost);
 | |
| 
 | |
| 			mux.cost += cost_mux2;
 | |
| 			mux.cost += sum_best_covers(tree, mux.inputs);
 | |
| 
 | |
| 			log_debug("      Cost of mux2 at %s: %d\n", log_signal(bit), mux.cost);
 | |
| 
 | |
| 			best_mux = mux;
 | |
| 		}
 | |
| 
 | |
| 		// 4-Input MUX
 | |
| 
 | |
| 		if (use_mux4)
 | |
| 		{
 | |
| 			ok = ok && follow_muxtree(A, tree, bit, "AA");
 | |
| 			ok = ok && follow_muxtree(B, tree, bit, "AB");
 | |
| 			ok = ok && follow_muxtree(C, tree, bit, "BA");
 | |
| 			ok = ok && follow_muxtree(D, tree, bit, "BB");
 | |
| 
 | |
| 			ok = ok && follow_muxtree(S1, tree, bit, "AS");
 | |
| 			ok = ok && follow_muxtree(S2, tree, bit, "BS");
 | |
| 
 | |
| 			if (nodecode)
 | |
| 				ok = ok && xcmp({S1, S2});
 | |
| 
 | |
| 			ok = ok && follow_muxtree(T1, tree, bit, "S");
 | |
| 
 | |
| 			if (ok)
 | |
| 			{
 | |
| 				newmux_t mux;
 | |
| 
 | |
| 				mux.inputs.push_back(A);
 | |
| 				mux.inputs.push_back(B);
 | |
| 				mux.inputs.push_back(C);
 | |
| 				mux.inputs.push_back(D);
 | |
| 
 | |
| 				mux.cost += prepare_decode_mux(S1, S2, T1, bit);
 | |
| 
 | |
| 				mux.selects.push_back(S1);
 | |
| 				mux.selects.push_back(T1);
 | |
| 
 | |
| 				find_best_covers(tree, mux.inputs);
 | |
| 				log_debug("        Decode cost for mux4 at %s: %d\n", log_signal(bit), mux.cost);
 | |
| 
 | |
| 				mux.cost += cost_mux4;
 | |
| 				mux.cost += sum_best_covers(tree, mux.inputs);
 | |
| 
 | |
| 				log_debug("      Cost of mux4 at %s: %d\n", log_signal(bit), mux.cost);
 | |
| 
 | |
| 				if (best_mux.cost >= mux.cost)
 | |
| 					best_mux = mux;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// 8-Input MUX
 | |
| 
 | |
| 		if (use_mux8)
 | |
| 		{
 | |
| 			ok = ok && follow_muxtree(A, tree, bit, "AAA");
 | |
| 			ok = ok && follow_muxtree(B, tree, bit, "AAB");
 | |
| 			ok = ok && follow_muxtree(C, tree, bit, "ABA");
 | |
| 			ok = ok && follow_muxtree(D, tree, bit, "ABB");
 | |
| 			ok = ok && follow_muxtree(E, tree, bit, "BAA");
 | |
| 			ok = ok && follow_muxtree(F, tree, bit, "BAB");
 | |
| 			ok = ok && follow_muxtree(G, tree, bit, "BBA");
 | |
| 			ok = ok && follow_muxtree(H, tree, bit, "BBB");
 | |
| 
 | |
| 			ok = ok && follow_muxtree(S1, tree, bit, "AAS");
 | |
| 			ok = ok && follow_muxtree(S2, tree, bit, "ABS");
 | |
| 			ok = ok && follow_muxtree(S3, tree, bit, "BAS");
 | |
| 			ok = ok && follow_muxtree(S4, tree, bit, "BBS");
 | |
| 
 | |
| 			if (nodecode)
 | |
| 				ok = ok && xcmp({S1, S2, S3, S4});
 | |
| 
 | |
| 			ok = ok && follow_muxtree(T1, tree, bit, "AS");
 | |
| 			ok = ok && follow_muxtree(T2, tree, bit, "BS");
 | |
| 
 | |
| 			if (nodecode)
 | |
| 				ok = ok && xcmp({T1, T2});
 | |
| 
 | |
| 			ok = ok && follow_muxtree(U1, tree, bit, "S");
 | |
| 
 | |
| 			if (ok)
 | |
| 			{
 | |
| 				newmux_t mux;
 | |
| 
 | |
| 				mux.inputs.push_back(A);
 | |
| 				mux.inputs.push_back(B);
 | |
| 				mux.inputs.push_back(C);
 | |
| 				mux.inputs.push_back(D);
 | |
| 				mux.inputs.push_back(E);
 | |
| 				mux.inputs.push_back(F);
 | |
| 				mux.inputs.push_back(G);
 | |
| 				mux.inputs.push_back(H);
 | |
| 
 | |
| 				mux.cost += prepare_decode_mux(S1, S2, T1, bit);
 | |
| 				mux.cost += prepare_decode_mux(S3, S4, T2, bit);
 | |
| 				mux.cost += prepare_decode_mux(S1, S3, U1, bit);
 | |
| 
 | |
| 				mux.cost += prepare_decode_mux(T1, T2, U1, bit);
 | |
| 
 | |
| 				mux.selects.push_back(S1);
 | |
| 				mux.selects.push_back(T1);
 | |
| 				mux.selects.push_back(U1);
 | |
| 
 | |
| 				find_best_covers(tree, mux.inputs);
 | |
| 				log_debug("        Decode cost for mux8 at %s: %d\n", log_signal(bit), mux.cost);
 | |
| 
 | |
| 				mux.cost += cost_mux8;
 | |
| 				mux.cost += sum_best_covers(tree, mux.inputs);
 | |
| 
 | |
| 				log_debug("      Cost of mux8 at %s: %d\n", log_signal(bit), mux.cost);
 | |
| 
 | |
| 				if (best_mux.cost >= mux.cost)
 | |
| 					best_mux = mux;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// 16-Input MUX
 | |
| 
 | |
| 		if (use_mux16)
 | |
| 		{
 | |
| 			ok = ok && follow_muxtree(A, tree, bit, "AAAA");
 | |
| 			ok = ok && follow_muxtree(B, tree, bit, "AAAB");
 | |
| 			ok = ok && follow_muxtree(C, tree, bit, "AABA");
 | |
| 			ok = ok && follow_muxtree(D, tree, bit, "AABB");
 | |
| 			ok = ok && follow_muxtree(E, tree, bit, "ABAA");
 | |
| 			ok = ok && follow_muxtree(F, tree, bit, "ABAB");
 | |
| 			ok = ok && follow_muxtree(G, tree, bit, "ABBA");
 | |
| 			ok = ok && follow_muxtree(H, tree, bit, "ABBB");
 | |
| 			ok = ok && follow_muxtree(I, tree, bit, "BAAA");
 | |
| 			ok = ok && follow_muxtree(J, tree, bit, "BAAB");
 | |
| 			ok = ok && follow_muxtree(K, tree, bit, "BABA");
 | |
| 			ok = ok && follow_muxtree(L, tree, bit, "BABB");
 | |
| 			ok = ok && follow_muxtree(M, tree, bit, "BBAA");
 | |
| 			ok = ok && follow_muxtree(N, tree, bit, "BBAB");
 | |
| 			ok = ok && follow_muxtree(O, tree, bit, "BBBA");
 | |
| 			ok = ok && follow_muxtree(P, tree, bit, "BBBB");
 | |
| 
 | |
| 			ok = ok && follow_muxtree(S1, tree, bit, "AAAS");
 | |
| 			ok = ok && follow_muxtree(S2, tree, bit, "AABS");
 | |
| 			ok = ok && follow_muxtree(S3, tree, bit, "ABAS");
 | |
| 			ok = ok && follow_muxtree(S4, tree, bit, "ABBS");
 | |
| 			ok = ok && follow_muxtree(S5, tree, bit, "BAAS");
 | |
| 			ok = ok && follow_muxtree(S6, tree, bit, "BABS");
 | |
| 			ok = ok && follow_muxtree(S7, tree, bit, "BBAS");
 | |
| 			ok = ok && follow_muxtree(S8, tree, bit, "BBBS");
 | |
| 
 | |
| 			if (nodecode)
 | |
| 				ok = ok && xcmp({S1, S2, S3, S4, S5, S6, S7, S8});
 | |
| 
 | |
| 			ok = ok && follow_muxtree(T1, tree, bit, "AAS");
 | |
| 			ok = ok && follow_muxtree(T2, tree, bit, "ABS");
 | |
| 			ok = ok && follow_muxtree(T3, tree, bit, "BAS");
 | |
| 			ok = ok && follow_muxtree(T4, tree, bit, "BBS");
 | |
| 
 | |
| 			if (nodecode)
 | |
| 				ok = ok && xcmp({T1, T2, T3, T4});
 | |
| 
 | |
| 			ok = ok && follow_muxtree(U1, tree, bit, "AS");
 | |
| 			ok = ok && follow_muxtree(U2, tree, bit, "BS");
 | |
| 
 | |
| 			if (nodecode)
 | |
| 				ok = ok && xcmp({U1, U2});
 | |
| 
 | |
| 			ok = ok && follow_muxtree(V1, tree, bit, "S");
 | |
| 
 | |
| 			if (ok)
 | |
| 			{
 | |
| 				newmux_t mux;
 | |
| 
 | |
| 				mux.inputs.push_back(A);
 | |
| 				mux.inputs.push_back(B);
 | |
| 				mux.inputs.push_back(C);
 | |
| 				mux.inputs.push_back(D);
 | |
| 				mux.inputs.push_back(E);
 | |
| 				mux.inputs.push_back(F);
 | |
| 				mux.inputs.push_back(G);
 | |
| 				mux.inputs.push_back(H);
 | |
| 				mux.inputs.push_back(I);
 | |
| 				mux.inputs.push_back(J);
 | |
| 				mux.inputs.push_back(K);
 | |
| 				mux.inputs.push_back(L);
 | |
| 				mux.inputs.push_back(M);
 | |
| 				mux.inputs.push_back(N);
 | |
| 				mux.inputs.push_back(O);
 | |
| 				mux.inputs.push_back(P);
 | |
| 
 | |
| 				mux.cost += prepare_decode_mux(S1, S2, T1, bit);
 | |
| 				mux.cost += prepare_decode_mux(S3, S4, T2, bit);
 | |
| 				mux.cost += prepare_decode_mux(S5, S6, T3, bit);
 | |
| 				mux.cost += prepare_decode_mux(S7, S8, T4, bit);
 | |
| 				mux.cost += prepare_decode_mux(S1, S3, U1, bit);
 | |
| 				mux.cost += prepare_decode_mux(S5, S7, U2, bit);
 | |
| 				mux.cost += prepare_decode_mux(S1, S5, V1, bit);
 | |
| 
 | |
| 				mux.cost += prepare_decode_mux(T1, T2, U1, bit);
 | |
| 				mux.cost += prepare_decode_mux(T3, T4, U2, bit);
 | |
| 				mux.cost += prepare_decode_mux(T1, T3, V1, bit);
 | |
| 
 | |
| 				mux.cost += prepare_decode_mux(U1, U2, V1, bit);
 | |
| 
 | |
| 				mux.selects.push_back(S1);
 | |
| 				mux.selects.push_back(T1);
 | |
| 				mux.selects.push_back(U1);
 | |
| 				mux.selects.push_back(V1);
 | |
| 
 | |
| 				find_best_covers(tree, mux.inputs);
 | |
| 				log_debug("        Decode cost for mux16 at %s: %d\n", log_signal(bit), mux.cost);
 | |
| 
 | |
| 				mux.cost += cost_mux16;
 | |
| 				mux.cost += sum_best_covers(tree, mux.inputs);
 | |
| 
 | |
| 				log_debug("      Cost of mux16 at %s: %d\n", log_signal(bit), mux.cost);
 | |
| 
 | |
| 				if (best_mux.cost >= mux.cost)
 | |
| 					best_mux = mux;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		tree.newmuxes[bit] = best_mux;
 | |
| 		return best_mux.cost;
 | |
| 	}
 | |
| 
 | |
| 	void implement_best_cover(tree_t &tree, SigBit bit, int count_muxes_by_type[4])
 | |
| 	{
 | |
| 		newmux_t mux = tree.newmuxes.at(bit);
 | |
| 
 | |
| 		for (auto inbit : mux.inputs)
 | |
| 			implement_best_cover(tree, inbit, count_muxes_by_type);
 | |
| 
 | |
| 		for (auto selbit : mux.selects)
 | |
| 			implement_decode_mux(selbit);
 | |
| 
 | |
| 		if (GetSize(mux.inputs) == 0)
 | |
| 			return;
 | |
| 
 | |
| 		if (GetSize(mux.inputs) == 2) {
 | |
| 			count_muxes_by_type[0]++;
 | |
| 			Cell *cell = module->addCell(NEW_ID, ID($_MUX_));
 | |
| 			cell->setPort(ID::A, mux.inputs[0]);
 | |
| 			cell->setPort(ID::B, mux.inputs[1]);
 | |
| 			cell->setPort(ID::S, mux.selects[0]);
 | |
| 			cell->setPort(ID::Y, bit);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (GetSize(mux.inputs) == 4) {
 | |
| 			count_muxes_by_type[1]++;
 | |
| 			Cell *cell = module->addCell(NEW_ID, ID($_MUX4_));
 | |
| 			cell->setPort(ID::A, mux.inputs[0]);
 | |
| 			cell->setPort(ID::B, mux.inputs[1]);
 | |
| 			cell->setPort(ID::C, mux.inputs[2]);
 | |
| 			cell->setPort(ID::D, mux.inputs[3]);
 | |
| 			cell->setPort(ID::S, mux.selects[0]);
 | |
| 			cell->setPort(ID::T, mux.selects[1]);
 | |
| 			cell->setPort(ID::Y, bit);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (GetSize(mux.inputs) == 8) {
 | |
| 			count_muxes_by_type[2]++;
 | |
| 			Cell *cell = module->addCell(NEW_ID, ID($_MUX8_));
 | |
| 			cell->setPort(ID::A, mux.inputs[0]);
 | |
| 			cell->setPort(ID::B, mux.inputs[1]);
 | |
| 			cell->setPort(ID::C, mux.inputs[2]);
 | |
| 			cell->setPort(ID::D, mux.inputs[3]);
 | |
| 			cell->setPort(ID::E, mux.inputs[4]);
 | |
| 			cell->setPort(ID::F, mux.inputs[5]);
 | |
| 			cell->setPort(ID::G, mux.inputs[6]);
 | |
| 			cell->setPort(ID::H, mux.inputs[7]);
 | |
| 			cell->setPort(ID::S, mux.selects[0]);
 | |
| 			cell->setPort(ID::T, mux.selects[1]);
 | |
| 			cell->setPort(ID::U, mux.selects[2]);
 | |
| 			cell->setPort(ID::Y, bit);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (GetSize(mux.inputs) == 16) {
 | |
| 			count_muxes_by_type[3]++;
 | |
| 			Cell *cell = module->addCell(NEW_ID, ID($_MUX16_));
 | |
| 			cell->setPort(ID::A, mux.inputs[0]);
 | |
| 			cell->setPort(ID::B, mux.inputs[1]);
 | |
| 			cell->setPort(ID::C, mux.inputs[2]);
 | |
| 			cell->setPort(ID::D, mux.inputs[3]);
 | |
| 			cell->setPort(ID::E, mux.inputs[4]);
 | |
| 			cell->setPort(ID::F, mux.inputs[5]);
 | |
| 			cell->setPort(ID::G, mux.inputs[6]);
 | |
| 			cell->setPort(ID::H, mux.inputs[7]);
 | |
| 			cell->setPort(ID::I, mux.inputs[8]);
 | |
| 			cell->setPort(ID::J, mux.inputs[9]);
 | |
| 			cell->setPort(ID::K, mux.inputs[10]);
 | |
| 			cell->setPort(ID::L, mux.inputs[11]);
 | |
| 			cell->setPort(ID::M, mux.inputs[12]);
 | |
| 			cell->setPort(ID::N, mux.inputs[13]);
 | |
| 			cell->setPort(ID::O, mux.inputs[14]);
 | |
| 			cell->setPort(ID::P, mux.inputs[15]);
 | |
| 			cell->setPort(ID::S, mux.selects[0]);
 | |
| 			cell->setPort(ID::T, mux.selects[1]);
 | |
| 			cell->setPort(ID::U, mux.selects[2]);
 | |
| 			cell->setPort(ID::V, mux.selects[3]);
 | |
| 			cell->setPort(ID::Y, bit);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		log_abort();
 | |
| 	}
 | |
| 
 | |
| 	void treecover(tree_t &tree)
 | |
| 	{
 | |
| 		int count_muxes_by_type[4] = {0, 0, 0, 0};
 | |
| 		log_debug("    Searching for best cover for tree at %s.\n", log_signal(tree.root));
 | |
| 		find_best_cover(tree, tree.root);
 | |
| 		implement_best_cover(tree, tree.root, count_muxes_by_type);
 | |
| 		log("    Replaced tree at %s: %d MUX2, %d MUX4, %d MUX8, %d MUX16\n", log_signal(tree.root),
 | |
| 				count_muxes_by_type[0], count_muxes_by_type[1], count_muxes_by_type[2], count_muxes_by_type[3]);
 | |
| 		for (auto &it : tree.muxes)
 | |
| 			module->remove(it.second);
 | |
| 	}
 | |
| 
 | |
| 	void run()
 | |
| 	{
 | |
| 		log("Covering MUX trees in module %s..\n", log_id(module));
 | |
| 
 | |
| 		treeify();
 | |
| 
 | |
| 		log("  Covering trees:\n");
 | |
| 
 | |
| 		if (!nodecode) {
 | |
| 			log_debug("    Populating cache of decoder muxes.\n");
 | |
| 			for (auto &tree : tree_list) {
 | |
| 				find_best_cover(tree, tree.root);
 | |
| 				tree.newmuxes.clear();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (auto &tree : tree_list)
 | |
| 			treecover(tree);
 | |
| 
 | |
| 		if (!nodecode)
 | |
| 			log("  Added a total of %d decoder MUXes.\n", decode_mux_counter);
 | |
| 	}
 | |
| };
 | |
| 
 | |
| struct MuxcoverPass : public Pass {
 | |
| 	MuxcoverPass() : Pass("muxcover", "cover trees of MUX cells with wider MUXes") { }
 | |
| 	void help() override
 | |
| 	{
 | |
| 		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | |
| 		log("\n");
 | |
| 		log("    muxcover [options] [selection]\n");
 | |
| 		log("\n");
 | |
| 		log("Cover trees of $_MUX_ cells with $_MUX{4,8,16}_ cells\n");
 | |
| 		log("\n");
 | |
| 		log("    -mux4[=cost], -mux8[=cost], -mux16[=cost]\n");
 | |
| 		log("        Cover $_MUX_ trees using the specified types of MUXes (with optional\n");
 | |
| 		log("        integer costs). If none of these options are given, the effect is the\n");
 | |
| 		log("        same as if all of them are.\n");
 | |
| 		log("        Default costs: $_MUX4_ = %d, $_MUX8_ = %d, \n", COST_MUX4, COST_MUX8);
 | |
| 		log("                       $_MUX16_ = %d\n", COST_MUX16);
 | |
| 		log("\n");
 | |
| 		log("    -mux2=cost\n");
 | |
| 		log("        Use the specified cost for $_MUX_ cells when making covering decisions.\n");
 | |
| 		log("        Default cost: $_MUX_ = %d\n", COST_MUX2);
 | |
| 		log("\n");
 | |
| 		log("    -dmux=cost\n");
 | |
| 		log("        Use the specified cost for $_MUX_ cells used in decoders.\n");
 | |
| 		log("        Default cost: %d\n", COST_DMUX);
 | |
| 		log("\n");
 | |
| 		log("    -nodecode\n");
 | |
| 		log("        Do not insert decoder logic. This reduces the number of possible\n");
 | |
| 		log("        substitutions, but guarantees that the resulting circuit is not\n");
 | |
| 		log("        less efficient than the original circuit.\n");
 | |
| 		log("\n");
 | |
| 		log("    -nopartial\n");
 | |
| 		log("        Do not consider mappings that use $_MUX<N>_ to select from less\n");
 | |
| 		log("        than <N> different signals.\n");
 | |
| 		log("\n");
 | |
| 	}
 | |
| 	void execute(std::vector<std::string> args, RTLIL::Design *design) override
 | |
| 	{
 | |
| 		log_header(design, "Executing MUXCOVER pass (mapping to wider MUXes).\n");
 | |
| 
 | |
| 		bool use_mux4 = false;
 | |
| 		bool use_mux8 = false;
 | |
| 		bool use_mux16 = false;
 | |
| 		bool nodecode = false;
 | |
| 		bool nopartial = false;
 | |
| 		int cost_dmux = COST_DMUX;
 | |
| 		int cost_mux2 = COST_MUX2;
 | |
| 		int cost_mux4 = COST_MUX4;
 | |
| 		int cost_mux8 = COST_MUX8;
 | |
| 		int cost_mux16 = COST_MUX16;
 | |
| 
 | |
| 		size_t argidx;
 | |
| 		for (argidx = 1; argidx < args.size(); argidx++)
 | |
| 		{
 | |
| 			const auto &arg = args[argidx];
 | |
| 			if (arg.size() >= 6 && arg.compare(0,6,"-mux2=") == 0) {
 | |
| 				cost_mux2 = atoi(arg.substr(6).c_str());
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (arg.size() >= 5 && arg.compare(0,5,"-mux4") == 0) {
 | |
| 				use_mux4 = true;
 | |
| 				if (arg.size() > 5) {
 | |
| 					if (arg[5] != '=') break;
 | |
| 					cost_mux4 = atoi(arg.substr(6).c_str());
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (arg.size() >= 5 && arg.compare(0,5,"-mux8") == 0) {
 | |
| 				use_mux8 = true;
 | |
| 				if (arg.size() > 5) {
 | |
| 					if (arg[5] != '=') break;
 | |
| 					cost_mux8 = atoi(arg.substr(6).c_str());
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (arg.size() >= 6 && arg.compare(0,6,"-mux16") == 0) {
 | |
| 				use_mux16 = true;
 | |
| 				if (arg.size() > 6) {
 | |
| 					if (arg[6] != '=') break;
 | |
| 					cost_mux16 = atoi(arg.substr(7).c_str());
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (arg.size() >= 6 && arg.compare(0,6,"-dmux=") == 0) {
 | |
| 				cost_dmux = atoi(arg.substr(6).c_str());
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (arg == "-nodecode") {
 | |
| 				nodecode = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (arg == "-nopartial") {
 | |
| 				nopartial = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		extra_args(args, argidx, design);
 | |
| 
 | |
| 		if (!use_mux4 && !use_mux8 && !use_mux16) {
 | |
| 			use_mux4 = true;
 | |
| 			use_mux8 = true;
 | |
| 			use_mux16 = true;
 | |
| 		}
 | |
| 
 | |
| 		for (auto module : design->selected_modules())
 | |
| 		{
 | |
| 			MuxcoverWorker worker(module);
 | |
| 			worker.use_mux4 = use_mux4;
 | |
| 			worker.use_mux8 = use_mux8;
 | |
| 			worker.use_mux16 = use_mux16;
 | |
| 			worker.cost_dmux = cost_dmux;
 | |
| 			worker.cost_mux2 = cost_mux2;
 | |
| 			worker.cost_mux4 = cost_mux4;
 | |
| 			worker.cost_mux8 = cost_mux8;
 | |
| 			worker.cost_mux16 = cost_mux16;
 | |
| 			worker.nodecode = nodecode;
 | |
| 			worker.nopartial = nopartial;
 | |
| 			worker.run();
 | |
| 		}
 | |
| 	}
 | |
| } MuxcoverPass;
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 |