mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-20 14:20:32 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			364 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Verilog
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Verilog
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 | |
|  *                2019  Eddie Hung    <eddie@fpgeh.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| module \$__SHREG_ (input C, input D, input E, output Q);
 | |
|   parameter DEPTH = 0;
 | |
|   parameter [DEPTH-1:0] INIT = 0;
 | |
|   parameter CLKPOL = 1;
 | |
|   parameter ENPOL = 2;
 | |
| 
 | |
|   \$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
 | |
| endmodule
 | |
| 
 | |
| module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
 | |
|   parameter DEPTH = 0;
 | |
|   parameter [DEPTH-1:0] INIT = 0;
 | |
|   parameter CLKPOL = 1;
 | |
|   parameter ENPOL = 2;
 | |
| 
 | |
|   // shregmap's INIT parameter shifts out LSB first;
 | |
|   // however Xilinx expects MSB first
 | |
|   function [DEPTH-1:0] brev;
 | |
|     input [DEPTH-1:0] din;
 | |
|     integer i;
 | |
|     begin
 | |
|       for (i = 0; i < DEPTH; i=i+1)
 | |
|         brev[i] = din[DEPTH-1-i];
 | |
|     end
 | |
|   endfunction
 | |
|   localparam [DEPTH-1:0] INIT_R = brev(INIT);
 | |
| 
 | |
|   parameter _TECHMAP_CONSTMSK_L_ = 0;
 | |
| 
 | |
|   wire CE;
 | |
|   generate
 | |
|     if (ENPOL == 0)
 | |
|       assign CE = ~E;
 | |
|     else if (ENPOL == 1)
 | |
|       assign CE = E;
 | |
|     else
 | |
|       assign CE = 1'b1;
 | |
|     if (DEPTH == 1) begin
 | |
|       if (CLKPOL)
 | |
|           FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
 | |
|       else
 | |
|           FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
 | |
|     end else
 | |
|     if (DEPTH <= 16) begin
 | |
|       SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
 | |
|     end else
 | |
|     if (DEPTH > 17 && DEPTH <= 32) begin
 | |
|       SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
 | |
|     end else
 | |
|     if (DEPTH > 33 && DEPTH <= 64) begin
 | |
|       wire T0, T1, T2;
 | |
|       SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
 | |
|       \$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
 | |
|       if (&_TECHMAP_CONSTMSK_L_)
 | |
|         assign Q = T2;
 | |
|       else
 | |
|         MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
 | |
|     end else
 | |
|     if (DEPTH > 65 && DEPTH <= 96) begin
 | |
|       wire T0, T1, T2, T3, T4, T5, T6;
 | |
|       SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
 | |
|       SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
 | |
|       \$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
 | |
|       if (&_TECHMAP_CONSTMSK_L_)
 | |
|         assign Q = T4;
 | |
|       else
 | |
|         \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(1'bx), .S0(L[5]), .S1(L[6]), .O(Q));
 | |
|     end else
 | |
|     if (DEPTH > 97 && DEPTH < 128) begin
 | |
|       wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
 | |
|       SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
 | |
|       SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
 | |
|       SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
 | |
|       \$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
 | |
|       if (&_TECHMAP_CONSTMSK_L_)
 | |
|         assign Q = T6;
 | |
|       else
 | |
|         \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
 | |
|     end
 | |
|     else if (DEPTH == 128) begin
 | |
|       wire T0, T1, T2, T3, T4, T5, T6;
 | |
|       SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
 | |
|       SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
 | |
|       SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
 | |
|       SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
 | |
|       if (&_TECHMAP_CONSTMSK_L_)
 | |
|         assign Q = T6;
 | |
|       else
 | |
|         \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q));
 | |
|     end
 | |
|     // For fixed length, if just 1 over a convenient value, decompose
 | |
|     else if (DEPTH <= 129 && &_TECHMAP_CONSTMSK_L_) begin
 | |
|       wire T;
 | |
|       \$__XILINX_SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-1:1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl      (.C(C), .D(D), .L({32{1'b1}}), .E(E), .Q(T));
 | |
|       \$__XILINX_SHREG_ #(.DEPTH(1),       .INIT(INIT[0]),         .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(T), .L(L), .E(E), .Q(Q));
 | |
|     end
 | |
|     // For variable length, if just 1 over a convenient value, then bump up one more
 | |
|     else if (DEPTH < 129 && ~&_TECHMAP_CONSTMSK_L_)
 | |
|       \$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
 | |
|     else begin
 | |
|       localparam depth0 = 128;
 | |
|       localparam num_srl128 = DEPTH / depth0;
 | |
|       localparam depthN = DEPTH % depth0;
 | |
|       wire [num_srl128 + (depthN > 0 ? 1 : 0) - 1:0] T;
 | |
|       wire [num_srl128 + (depthN > 0 ? 1 : 0) :0] S;
 | |
|       assign S[0] = D;
 | |
|       genvar i;
 | |
|       for (i = 0; i < num_srl128; i++)
 | |
|         \$__XILINX_SHREG_ #(.DEPTH(depth0), .INIT(INIT[DEPTH-1-i*depth0-:depth0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl      (.C(C), .D(S[i]),          .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[i]), .SO(S[i+1]));
 | |
| 
 | |
|       if (depthN > 0)
 | |
|         \$__XILINX_SHREG_ #(.DEPTH(depthN), .INIT(INIT[depthN-1:0]),               .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(S[num_srl128]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[num_srl128]));
 | |
| 
 | |
|       if (&_TECHMAP_CONSTMSK_L_)
 | |
|         assign Q = T[num_srl128 + (depthN > 0 ? 1 : 0) - 1];
 | |
|       else
 | |
|         assign Q = T[L[DEPTH-1:$clog2(depth0)]];
 | |
|     end
 | |
|   endgenerate
 | |
| endmodule
 | |
| 
 | |
| `ifdef MIN_MUX_INPUTS
 | |
| module \$__XILINX_SHIFTX (A, B, Y);
 | |
|   parameter A_SIGNED = 0;
 | |
|   parameter B_SIGNED = 0;
 | |
|   parameter A_WIDTH = 1;
 | |
|   parameter B_WIDTH = 1;
 | |
|   parameter Y_WIDTH = 1;
 | |
| 
 | |
|   (* force_downto *)
 | |
|   input [A_WIDTH-1:0] A;
 | |
|   (* force_downto *)
 | |
|   input [B_WIDTH-1:0] B;
 | |
|   (* force_downto *)
 | |
|   output [Y_WIDTH-1:0] Y;
 | |
| 
 | |
|   parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0;
 | |
|   parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0;
 | |
|   parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
 | |
|   parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
 | |
| 
 | |
|   function integer A_WIDTH_trimmed;
 | |
|     input integer start;
 | |
|   begin
 | |
|     A_WIDTH_trimmed = start;
 | |
|     while (A_WIDTH_trimmed > 0 && _TECHMAP_CONSTMSK_A_[A_WIDTH_trimmed-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH_trimmed-1] === 1'bx)
 | |
|       A_WIDTH_trimmed = A_WIDTH_trimmed - 1;
 | |
|   end
 | |
|   endfunction
 | |
| 
 | |
|   generate
 | |
|     genvar i, j;
 | |
|     // Bit-blast
 | |
|     if (Y_WIDTH > 1) begin
 | |
|       for (i = 0; i < Y_WIDTH; i++)
 | |
|         \$__XILINX_SHIFTX  #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i]));
 | |
|     end
 | |
|     // If the LSB of B is constant zero (and Y_WIDTH is 1) then
 | |
|     //   we can optimise by removing every other entry from A
 | |
|     //   and popping the constant zero from B
 | |
|     else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin
 | |
|       wire [(A_WIDTH+1)/2-1:0] A_i;
 | |
|       for (i = 0; i < (A_WIDTH+1)/2; i++)
 | |
|         assign A_i[i] = A[i*2];
 | |
|       \$__XILINX_SHIFTX  #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y));
 | |
|     end
 | |
|     // Trim off any leading 1'bx -es in A
 | |
|     else if (_TECHMAP_CONSTMSK_A_[A_WIDTH-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH-1] === 1'bx) begin
 | |
|       localparam A_WIDTH_new = A_WIDTH_trimmed(A_WIDTH-1);
 | |
|       if (A_WIDTH_new == 0)
 | |
|         assign Y = 1'bx;
 | |
|       else
 | |
|         \$__XILINX_SHIFTX  #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B), .Y(Y));
 | |
|     end
 | |
|     else if (A_WIDTH < `MIN_MUX_INPUTS) begin
 | |
|       wire _TECHMAP_FAIL_ = 1;
 | |
|     end
 | |
|     else if (A_WIDTH == 2) begin
 | |
|       MUXF7 fpga_hard_mux (.I0(A[0]), .I1(A[1]), .S(B[0]), .O(Y));
 | |
|     end
 | |
|     else if (A_WIDTH <= 4) begin
 | |
|       wire [4-1:0] Ax;
 | |
|       if (A_WIDTH == 4)
 | |
|         assign Ax = A;
 | |
|       else
 | |
|         // Rather than extend with 1'bx which gets flattened to 1'b0
 | |
|         // causing the "don't care" status to get lost, extend with
 | |
|         // the same driver of F7B.I0 so that we can optimise F7B away
 | |
|         // later
 | |
|         assign Ax = {A[1], A};
 | |
|       \$__XILINX_MUXF78 fpga_hard_mux (.I0(Ax[0]), .I1(Ax[2]), .I2(Ax[1]), .I3(Ax[3]), .S0(B[1]), .S1(B[0]), .O(Y));
 | |
|     end
 | |
|     // Note that the following decompositions are 'backwards' in that
 | |
|     // the LSBs are placed on the hard resources, and the soft resources
 | |
|     // are used for MSBs.
 | |
|     // This has the effect of more effectively utilising the hard mux;
 | |
|     // take for example a 5:1 multiplexer, currently this would map as:
 | |
|     //
 | |
|     //     A[0] \___  __                             A[0] \__  __
 | |
|     //     A[4] /   \|  \       whereas the more     A[1] /  \|  \
 | |
|     //     A[1] _____|   |      obvious mapping      A[2] \___|   |
 | |
|     //     A[2] _____|   |--    of MSBs to hard      A[3] /   |   |__
 | |
|     //     A[3]______|   |      resources would      A[4] ____|   |
 | |
|     //               |__/       lead to:             1'bx ____|   |
 | |
|     //                ||                                      |__/
 | |
|     //                ||                                       ||
 | |
|     //              B[1:0]                                   B[1:2]
 | |
|     //
 | |
|     // Expectation would be that the 'forward' mapping (right) is more
 | |
|     // area efficient (consider a 9:1 multiplexer using 2x4:1 multiplexers
 | |
|     // on its I0 and I1 inputs, and A[8] and 1'bx on its I2 and I3 inputs)
 | |
|     // but that the 'backwards' mapping (left) is more delay efficient
 | |
|     // since smaller LUTs are faster than wider ones.
 | |
|     else if (A_WIDTH <= 8) begin
 | |
|       wire [8-1:0] Ax = {{{8-A_WIDTH}{1'bx}}, A};
 | |
|       wire T0 = B[2] ? Ax[4] : Ax[0];
 | |
|       wire T1 = B[2] ? Ax[5] : Ax[1];
 | |
|       wire T2 = B[2] ? Ax[6] : Ax[2];
 | |
|       wire T3 = B[2] ? Ax[7] : Ax[3];
 | |
|       \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
 | |
|     end
 | |
|     else if (A_WIDTH <= 16) begin
 | |
|       wire [16-1:0] Ax = {{{16-A_WIDTH}{1'bx}}, A};
 | |
|       wire T0 = B[2] ? B[3] ? Ax[12] : Ax[4]
 | |
|                      : B[3] ? Ax[ 8] : Ax[0];
 | |
|       wire T1 = B[2] ? B[3] ? Ax[13] : Ax[5]
 | |
|                      : B[3] ? Ax[ 9] : Ax[1];
 | |
|       wire T2 = B[2] ? B[3] ? Ax[14] : Ax[6]
 | |
|                      : B[3] ? Ax[10] : Ax[2];
 | |
|       wire T3 = B[2] ? B[3] ? Ax[15] : Ax[7]
 | |
|                      : B[3] ? Ax[11] : Ax[3];
 | |
|       \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y));
 | |
|     end
 | |
|     else begin
 | |
|       localparam num_mux16 = (A_WIDTH+15) / 16;
 | |
|       localparam clog2_num_mux16 = $clog2(num_mux16);
 | |
|       wire [num_mux16-1:0] T;
 | |
|       wire [num_mux16*16-1:0] Ax = {{(num_mux16*16-A_WIDTH){1'bx}}, A};
 | |
|       for (i = 0; i < num_mux16; i++)
 | |
|         \$__XILINX_SHIFTX  #(
 | |
|           .A_SIGNED(A_SIGNED),
 | |
|           .B_SIGNED(B_SIGNED),
 | |
|           .A_WIDTH(16),
 | |
|           .B_WIDTH(4),
 | |
|           .Y_WIDTH(Y_WIDTH)
 | |
|         ) fpga_mux (
 | |
|           .A(Ax[i*16+:16]),
 | |
|           .B(B[3:0]),
 | |
|           .Y(T[i])
 | |
|         );
 | |
|       \$__XILINX_SHIFTX  #(
 | |
|           .A_SIGNED(A_SIGNED),
 | |
|           .B_SIGNED(B_SIGNED),
 | |
|           .A_WIDTH(num_mux16),
 | |
|           .B_WIDTH(clog2_num_mux16),
 | |
|           .Y_WIDTH(Y_WIDTH)
 | |
|       ) _TECHMAP_REPLACE_ (
 | |
|           .A(T),
 | |
|           .B(B[B_WIDTH-1-:clog2_num_mux16]),
 | |
|           .Y(Y));
 | |
|     end
 | |
|   endgenerate
 | |
| endmodule
 | |
| 
 | |
| (* techmap_celltype = "$__XILINX_SHIFTX" *)
 | |
| module _90__XILINX_SHIFTX (A, B, Y);
 | |
|   parameter A_SIGNED = 0;
 | |
|   parameter B_SIGNED = 0;
 | |
|   parameter A_WIDTH = 1;
 | |
|   parameter B_WIDTH = 1;
 | |
|   parameter Y_WIDTH = 1;
 | |
| 
 | |
|   (* force_downto *)
 | |
|   input [A_WIDTH-1:0] A;
 | |
|   (* force_downto *)
 | |
|   input [B_WIDTH-1:0] B;
 | |
|   (* force_downto *)
 | |
|   output [Y_WIDTH-1:0] Y;
 | |
| 
 | |
|   \$shiftx  #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
 | |
| endmodule
 | |
| 
 | |
| module \$_MUX_ (A, B, S, Y);
 | |
|   input A, B, S;
 | |
|   output Y;
 | |
|   generate
 | |
|     if (`MIN_MUX_INPUTS == 2)
 | |
|       \$__XILINX_SHIFTX  #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(2), .B_WIDTH(1), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({B,A}), .B(S), .Y(Y));
 | |
|     else
 | |
|       wire _TECHMAP_FAIL_ = 1;
 | |
|   endgenerate
 | |
| endmodule
 | |
| 
 | |
| module \$_MUX4_ (A, B, C, D, S, T, Y);
 | |
|   input A, B, C, D, S, T;
 | |
|   output Y;
 | |
|   \$__XILINX_SHIFTX  #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(4), .B_WIDTH(2), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({D,C,B,A}), .B({T,S}), .Y(Y));
 | |
| endmodule
 | |
| 
 | |
| module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y);
 | |
|   input A, B, C, D, E, F, G, H, S, T, U;
 | |
|   output Y;
 | |
|   \$__XILINX_SHIFTX  #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(8), .B_WIDTH(3), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({H,G,F,E,D,C,B,A}), .B({U,T,S}), .Y(Y));
 | |
| endmodule
 | |
| 
 | |
| module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y);
 | |
|   input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V;
 | |
|   output Y;
 | |
|   \$__XILINX_SHIFTX  #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A}), .B({V,U,T,S}), .Y(Y));
 | |
| endmodule
 | |
| `endif
 | |
| 
 | |
| module \$__XILINX_MUXF78 (O, I0, I1, I2, I3, S0, S1);
 | |
|   output O;
 | |
|   input I0, I1, I2, I3, S0, S1;
 | |
|   wire T0, T1;
 | |
|   parameter _TECHMAP_BITS_CONNMAP_ = 0;
 | |
|   parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I0_ = 0;
 | |
|   parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I1_ = 0;
 | |
|   parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I2_ = 0;
 | |
|   parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I3_ = 0;
 | |
|   parameter _TECHMAP_CONSTMSK_S0_ = 0;
 | |
|   parameter _TECHMAP_CONSTVAL_S0_ = 0;
 | |
|   parameter _TECHMAP_CONSTMSK_S1_ = 0;
 | |
|   parameter _TECHMAP_CONSTVAL_S1_ = 0;
 | |
|   if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
 | |
|     assign T0 = I1;
 | |
|   else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_)
 | |
|     assign T0 = I0;
 | |
|   else
 | |
|     MUXF7 mux7a (.I0(I0), .I1(I1), .S(S0), .O(T0));
 | |
|   if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1)
 | |
|     assign T1 = I3;
 | |
|   else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_)
 | |
|     assign T1 = I2;
 | |
|   else
 | |
|     MUXF7 mux7b (.I0(I2), .I1(I3), .S(S0), .O(T1));
 | |
|   if (_TECHMAP_CONSTMSK_S1_ && _TECHMAP_CONSTVAL_S1_ === 1'b1)
 | |
|     assign O = T1;
 | |
|   else if (_TECHMAP_CONSTMSK_S1_ || (_TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_ && _TECHMAP_CONNMAP_I1_ === _TECHMAP_CONNMAP_I2_ && _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_))
 | |
|     assign O = T0;
 | |
|   else
 | |
|     MUXF8 mux8 (.I0(T0), .I1(T1), .S(S1), .O(O));
 | |
| endmodule
 |