mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 11:42:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1617 lines
		
	
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1617 lines
		
	
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | ||
|  *  yosys -- Yosys Open SYnthesis Suite
 | ||
|  *
 | ||
|  *  Copyright (C) 2018  whitequark <whitequark@whitequark.org>
 | ||
|  *
 | ||
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | ||
|  *  purpose with or without fee is hereby granted, provided that the above
 | ||
|  *  copyright notice and this permission notice appear in all copies.
 | ||
|  *
 | ||
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | ||
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | ||
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | ||
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | ||
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | ||
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | ||
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | ||
|  *
 | ||
|  */
 | ||
| 
 | ||
| // [[CITE]] FlowMap algorithm
 | ||
| // Jason Cong; Yuzheng Ding, "An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs,"
 | ||
| // Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, Vol. 13, pp. 1-12, Jan. 1994.
 | ||
| // doi: 10.1109/43.273754
 | ||
| 
 | ||
| // [[CITE]] FlowMap-r algorithm
 | ||
| // Jason Cong; Yuzheng Ding, "On Area/Depth Tradeoff in LUT-Based FPGA Technology Mapping,"
 | ||
| // Very Large Scale Integration Systems, IEEE Transactions on, Vol. 2, June 1994.
 | ||
| // doi: 10.1109/92.28574
 | ||
| 
 | ||
| // Required reading material:
 | ||
| //
 | ||
| // Min-cut max-flow theorem:
 | ||
| //   https://www.coursera.org/lecture/algorithms-part2/maxflow-mincut-theorem-beb9G
 | ||
| // FlowMap paper:
 | ||
| //   http://cadlab.cs.ucla.edu/~cong/papers/iccad92.pdf   (short version)
 | ||
| //   https://limsk.ece.gatech.edu/book/papers/flowmap.pdf (long version)
 | ||
| // FlowMap-r paper:
 | ||
| //   http://cadlab.cs.ucla.edu/~cong/papers/dac93.pdf     (short version)
 | ||
| //   https://sci-hub.tw/10.1109/92.285741                 (long version)
 | ||
| 
 | ||
| // Notes on correspondence between paper and implementation:
 | ||
| //
 | ||
| // 1. In the FlowMap paper, the nodes are logic elements (analogous to Yosys cells) and edges are wires. However, in our implementation,
 | ||
| // we use an inverted approach: the nodes are Yosys wire bits, and the edges are derived from (but aren't represented by) Yosys cells.
 | ||
| // This may seem counterintuitive. Three observations may help understanding this. First, for a cell with a 1-bit Y output that is
 | ||
| // the sole driver of its output net (which is the typical case), these representations are equivalent, because there is an exact
 | ||
| // correspondence between cells and output wires. Second, in the paper, primary inputs (analogous to Yosys cell or module ports) are
 | ||
| // nodes, and in Yosys, inputs are wires; our approach allows a direct mapping from both primary inputs and 1-output logic elements to
 | ||
| // flow graph nodes. Third, Yosys cells may have multiple outputs or multi-bit outputs, and by using Yosys wire bits as flow graph nodes,
 | ||
| // such cells are supported without any additional effort; any Yosys cell with n output wire bits ends up being split into n flow graph
 | ||
| // nodes.
 | ||
| //
 | ||
| // 2. The FlowMap paper introduces three networks: Nt, Nt', and Nt''. The network Nt is directly represented by a subgraph of RTLIL graph,
 | ||
| // which is parsed into an equivalent but easier to traverse representation in FlowmapWorker. The network Nt' is built explicitly
 | ||
| // from a subgraph of Nt, and uses a similar representation in FlowGraph. The network Nt'' is implicit in FlowGraph, which is possible
 | ||
| // because of the following observation: each Nt' node corresponds to an Nt'' edge of capacity 1, and each Nt' edge corresponds to
 | ||
| // an Nt'' edge of capacity ∞. Therefore, we only need to explicitly record flow for Nt' edges and through Nt' nodes.
 | ||
| //
 | ||
| // 3. The FlowMap paper ambiguously states: "Moreover, we can find such a cut (X′′, X̅′′) by performing a depth first search starting at
 | ||
| // the source s, and including in X′′ all the nodes which are reachable from s." This actually refers to a specific kind of search,
 | ||
| // min-cut computation. Min-cut computation involves computing the set of nodes reachable from s by an undirected path with no full
 | ||
| // (i.e. zero capacity) forward edges or empty (i.e. no flow) backward edges. In addition, the depth first search is required to compute
 | ||
| // a max-volume max-flow min-cut specifically, because a max-flow min-cut is not, in general, unique.
 | ||
| 
 | ||
| // Notes on implementation:
 | ||
| //
 | ||
| // 1. To compute depth optimal packing, an intermediate representation is used, where each cell with n output bits is split into n graph
 | ||
| // nodes. Each such graph node is represented directly with the wire bit (RTLIL::SigBit instance) that corresponds to the output bit
 | ||
| // it is created from. Fan-in and fan-out are represented explicitly by edge lists derived from the RTLIL graph. This IR never changes
 | ||
| // after it has been computed.
 | ||
| //
 | ||
| // In terms of data, this IR is comprised of `inputs`, `outputs`, `nodes`, `edges_fw` and `edges_bw` fields.
 | ||
| //
 | ||
| // We call this IR "gate IR".
 | ||
| //
 | ||
| // 2. To compute area optimal packing, another intermediate representation is used, which consists of some K-feasible cone for every node
 | ||
| // that exists in the gate IR. Immediately after depth optimal packing with FlowMap, each such cone occupies the lowest possible depth,
 | ||
| // but this is not true in general, and transformations of this IR may change the cones, although each transformation has to keep each
 | ||
| // cone K-feasible. In this IR, LUT fan-in and fan-out are represented explicitly by edge lists; if a K-feasible cone chosen for node A
 | ||
| // includes nodes B and C, there are edges between all predecessors of A, B and C in the gate IR and node A in this IR. Moreover, in
 | ||
| // this IR, cones may be *realized* or *derealized*. Only realized cones will end up mapped to actual LUTs in the output of this pass.
 | ||
| //
 | ||
| // Intuitively, this IR contains (some, ideally but not necessarily optimal) LUT representation for each input cell. By starting at outputs
 | ||
| // and traversing the graph of this IR backwards, each K-feasible cone is converted to an actual LUT at the end of the pass. This is
 | ||
| // the same as iterating through each realized LUT.
 | ||
| //
 | ||
| // The following are the invariants of this IR:
 | ||
| //   a) Each gate IR node corresponds to a K-feasible cut.
 | ||
| //   b) Each realized LUT is reachable through backward edges from some output.
 | ||
| //   c) The LUT fan-in is exactly the fan-in of its constituent gates minus the fan-out of its constituent gates.
 | ||
| // The invariants are kept even for derealized LUTs, since the whole point of this IR is ease of packing, unpacking, and repacking LUTs.
 | ||
| //
 | ||
| // In terms of data, this IR is comprised of `lut_nodes` (the set of all realized LUTs), `lut_gates` (the map from a LUT to its
 | ||
| // constituent gates), `lut_edges_fw` and `lut_edges_bw` fields. The `inputs` and `outputs` fields are shared with the gate IR.
 | ||
| //
 | ||
| // We call this IR "LUT IR".
 | ||
| 
 | ||
| #include "kernel/yosys.h"
 | ||
| #include "kernel/sigtools.h"
 | ||
| #include "kernel/modtools.h"
 | ||
| #include "kernel/consteval.h"
 | ||
| 
 | ||
| USING_YOSYS_NAMESPACE
 | ||
| PRIVATE_NAMESPACE_BEGIN
 | ||
| 
 | ||
| struct GraphStyle
 | ||
| {
 | ||
| 	string label;
 | ||
| 	string color, fillcolor;
 | ||
| 
 | ||
| 	GraphStyle(string label = "", string color = "black", string fillcolor = "") :
 | ||
| 		label(label), color(color), fillcolor(fillcolor) {}
 | ||
| };
 | ||
| 
 | ||
| static string dot_escape(string value)
 | ||
| {
 | ||
| 	std::string escaped;
 | ||
| 	for (char c : value) {
 | ||
| 		if (c == '\n')
 | ||
| 		{
 | ||
| 			escaped += "\\n";
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 		if (c == '\\' || c == '"')
 | ||
| 			escaped += "\\";
 | ||
| 		escaped += c;
 | ||
| 	}
 | ||
| 	return escaped;
 | ||
| }
 | ||
| 
 | ||
| static void dump_dot_graph(string filename,
 | ||
|                            pool<RTLIL::SigBit> nodes, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges,
 | ||
|                            pool<RTLIL::SigBit> inputs, pool<RTLIL::SigBit> outputs,
 | ||
|                            std::function<GraphStyle(RTLIL::SigBit)> node_style =
 | ||
|                                    [](RTLIL::SigBit) { return GraphStyle{}; },
 | ||
|                            std::function<GraphStyle(RTLIL::SigBit, RTLIL::SigBit)> edge_style =
 | ||
|                                    [](RTLIL::SigBit, RTLIL::SigBit) { return GraphStyle{}; },
 | ||
|                            string name = "")
 | ||
| {
 | ||
| 	FILE *f = fopen(filename.c_str(), "w");
 | ||
| 	fprintf(f, "digraph \"%s\" {\n", name.c_str());
 | ||
| 	fprintf(f, "  rankdir=\"TB\";\n");
 | ||
| 
 | ||
| 	dict<RTLIL::SigBit, int> ids;
 | ||
| 	for (auto node : nodes)
 | ||
| 	{
 | ||
| 		ids[node] = ids.size();
 | ||
| 
 | ||
| 		string shape = "ellipse";
 | ||
| 		if (inputs[node])
 | ||
| 			shape = "box";
 | ||
| 		if (outputs[node])
 | ||
| 			shape = "octagon";
 | ||
| 		auto prop = node_style(node);
 | ||
| 		string style = "";
 | ||
| 		if (!prop.fillcolor.empty())
 | ||
| 			style = "filled";
 | ||
| 		fprintf(f, "  n%d [ shape=%s, fontname=\"Monospace\", label=\"%s\", color=\"%s\", fillcolor=\"%s\", style=\"%s\" ];\n",
 | ||
| 		        ids[node], shape.c_str(), dot_escape(prop.label.c_str()).c_str(), prop.color.c_str(), prop.fillcolor.c_str(), style.c_str());
 | ||
| 	}
 | ||
| 
 | ||
| 	fprintf(f, "  { rank=\"source\"; ");
 | ||
| 	for (auto input : inputs)
 | ||
| 		if (nodes[input])
 | ||
| 			fprintf(f, "n%d; ", ids[input]);
 | ||
| 	fprintf(f, "}\n");
 | ||
| 
 | ||
| 	fprintf(f, "  { rank=\"sink\"; ");
 | ||
| 	for (auto output : outputs)
 | ||
| 		if (nodes[output])
 | ||
| 			fprintf(f, "n%d; ", ids[output]);
 | ||
| 	fprintf(f, "}\n");
 | ||
| 
 | ||
| 	for (auto edge : edges)
 | ||
| 	{
 | ||
| 		auto source = edge.first;
 | ||
| 		for (auto sink : edge.second) {
 | ||
| 			if (nodes[source] && nodes[sink])
 | ||
| 			{
 | ||
| 				auto prop = edge_style(source, sink);
 | ||
| 				fprintf(f, "  n%d -> n%d [ label=\"%s\", color=\"%s\", fillcolor=\"%s\" ];\n",
 | ||
| 				        ids[source], ids[sink], dot_escape(prop.label.c_str()).c_str(), prop.color.c_str(), prop.fillcolor.c_str());
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	fprintf(f, "}\n");
 | ||
| 	fclose(f);
 | ||
| }
 | ||
| 
 | ||
| struct FlowGraph
 | ||
| {
 | ||
| 	const RTLIL::SigBit source;
 | ||
| 	RTLIL::SigBit sink;
 | ||
| 	pool<RTLIL::SigBit> nodes = {source};
 | ||
| 	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges_fw, edges_bw;
 | ||
| 
 | ||
| 	const int MAX_NODE_FLOW = 1;
 | ||
| 	dict<RTLIL::SigBit, int> node_flow;
 | ||
| 	dict<pair<RTLIL::SigBit, RTLIL::SigBit>, int> edge_flow;
 | ||
| 
 | ||
| 	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> collapsed;
 | ||
| 
 | ||
| 	void dump_dot_graph(string filename)
 | ||
| 	{
 | ||
| 		auto node_style = [&](RTLIL::SigBit node) {
 | ||
| 			string label = (node == source) ? "(source)" : log_signal(node);
 | ||
| 			for (auto collapsed_node : collapsed[node])
 | ||
| 				label += stringf(" %s", log_signal(collapsed_node));
 | ||
| 			int flow = node_flow[node];
 | ||
| 			if (node != source && node != sink)
 | ||
| 				label += stringf("\n%d/%d", flow, MAX_NODE_FLOW);
 | ||
| 			else
 | ||
| 				label += stringf("\n%d/∞", flow);
 | ||
| 			return GraphStyle{label, flow < MAX_NODE_FLOW ? "green" : "black"};
 | ||
| 		};
 | ||
| 		auto edge_style = [&](RTLIL::SigBit source, RTLIL::SigBit sink) {
 | ||
| 			int flow = edge_flow[{source, sink}];
 | ||
| 			return GraphStyle{stringf("%d/∞", flow), flow > 0 ? "blue" : "black"};
 | ||
| 		};
 | ||
| 		::dump_dot_graph(filename, nodes, edges_fw, {source}, {sink}, node_style, edge_style);
 | ||
| 	}
 | ||
| 
 | ||
| 	// Here, we are working on the Nt'' network, but our representation is the Nt' network.
 | ||
| 	// The difference between these is that where in Nt' we have a subgraph:
 | ||
| 	//
 | ||
| 	//   v1 -> v2 -> v3
 | ||
| 	//
 | ||
| 	// in Nt'' we have a corresponding subgraph:
 | ||
| 	//
 | ||
| 	//   v'1b -∞-> v'2t -f-> v'2b -∞-> v'3t
 | ||
| 	//
 | ||
| 	// To address this, we split each node v into two nodes, v't and v'b. This representation is virtual,
 | ||
| 	// in the sense that nodes v't and v'b are overlaid on top of the original node v, and only exist
 | ||
| 	// in paths and worklists.
 | ||
| 
 | ||
| 	struct NodePrime
 | ||
| 	{
 | ||
| 		RTLIL::SigBit node;
 | ||
| 		bool is_bottom;
 | ||
| 
 | ||
| 		NodePrime(RTLIL::SigBit node, bool is_bottom) :
 | ||
| 			node(node), is_bottom(is_bottom) {}
 | ||
| 
 | ||
| 		bool operator==(const NodePrime &other) const
 | ||
| 		{
 | ||
| 			return node == other.node && is_bottom == other.is_bottom;
 | ||
| 		}
 | ||
| 		bool operator!=(const NodePrime &other) const
 | ||
| 		{
 | ||
| 			return !(*this == other);
 | ||
| 		}
 | ||
| 		[[nodiscard]] Hasher hash_into(Hasher h) const
 | ||
| 		{
 | ||
| 			std::pair<RTLIL::SigBit, int> p = {node, is_bottom};
 | ||
| 			h.eat(p);
 | ||
| 			return h;
 | ||
| 		}
 | ||
| 
 | ||
| 		static NodePrime top(RTLIL::SigBit node)
 | ||
| 		{
 | ||
| 			return NodePrime(node, /*is_bottom=*/false);
 | ||
| 		}
 | ||
| 
 | ||
| 		static NodePrime bottom(RTLIL::SigBit node)
 | ||
| 		{
 | ||
| 			return NodePrime(node, /*is_bottom=*/true);
 | ||
| 		}
 | ||
| 
 | ||
| 		NodePrime as_top() const
 | ||
| 		{
 | ||
| 			log_assert(is_bottom);
 | ||
| 			return top(node);
 | ||
| 		}
 | ||
| 
 | ||
| 		NodePrime as_bottom() const
 | ||
| 		{
 | ||
| 			log_assert(!is_bottom);
 | ||
| 			return bottom(node);
 | ||
| 		}
 | ||
| 	};
 | ||
| 
 | ||
| 	bool find_augmenting_path(bool commit)
 | ||
| 	{
 | ||
| 		NodePrime source_prime = {source, true};
 | ||
| 		NodePrime sink_prime = {sink, false};
 | ||
| 		vector<NodePrime> path = {source_prime};
 | ||
| 		pool<NodePrime> visited = {};
 | ||
| 		bool found;
 | ||
| 		do {
 | ||
| 			found = false;
 | ||
| 
 | ||
| 			auto node_prime = path.back();
 | ||
| 			visited.insert(node_prime);
 | ||
| 
 | ||
| 			if (!node_prime.is_bottom) // vt
 | ||
| 			{
 | ||
| 				if (!visited[node_prime.as_bottom()] && node_flow[node_prime.node] < MAX_NODE_FLOW)
 | ||
| 				{
 | ||
| 					path.push_back(node_prime.as_bottom());
 | ||
| 					found = true;
 | ||
| 				}
 | ||
| 				else
 | ||
| 				{
 | ||
| 					for (auto node_pred : edges_bw[node_prime.node])
 | ||
| 					{
 | ||
| 						if (!visited[NodePrime::bottom(node_pred)] && edge_flow[{node_pred, node_prime.node}] > 0)
 | ||
| 						{
 | ||
| 							path.push_back(NodePrime::bottom(node_pred));
 | ||
| 							found = true;
 | ||
| 							break;
 | ||
| 						}
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 			else // vb
 | ||
| 			{
 | ||
| 				if (!visited[node_prime.as_top()] && node_flow[node_prime.node] > 0)
 | ||
| 				{
 | ||
| 					path.push_back(node_prime.as_top());
 | ||
| 					found = true;
 | ||
| 				}
 | ||
| 				else
 | ||
| 				{
 | ||
| 					for (auto node_succ : edges_fw[node_prime.node])
 | ||
| 					{
 | ||
| 						if (!visited[NodePrime::top(node_succ)] /* && edge_flow[...] < ∞ */)
 | ||
| 						{
 | ||
| 							path.push_back(NodePrime::top(node_succ));
 | ||
| 							found = true;
 | ||
| 							break;
 | ||
| 						}
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			if (!found && path.size() > 1)
 | ||
| 			{
 | ||
| 				path.pop_back();
 | ||
| 				found = true;
 | ||
| 			}
 | ||
| 		} while(path.back() != sink_prime && found);
 | ||
| 
 | ||
| 		if (commit && path.back() == sink_prime)
 | ||
| 		{
 | ||
| 			auto prev_prime = path.front();
 | ||
| 			for (auto node_prime : path)
 | ||
| 			{
 | ||
| 				if (node_prime == source_prime)
 | ||
| 					continue;
 | ||
| 
 | ||
| 				log_assert(prev_prime.is_bottom ^ node_prime.is_bottom);
 | ||
| 				if (prev_prime.node == node_prime.node)
 | ||
| 				{
 | ||
| 					auto node = node_prime.node;
 | ||
| 					if (!prev_prime.is_bottom && node_prime.is_bottom)
 | ||
| 					{
 | ||
| 						log_assert(node_flow[node] == 0);
 | ||
| 						node_flow[node]++;
 | ||
| 					}
 | ||
| 					else
 | ||
| 					{
 | ||
| 						log_assert(node_flow[node] != 0);
 | ||
| 						node_flow[node]--;
 | ||
| 					}
 | ||
| 				}
 | ||
| 				else
 | ||
| 				{
 | ||
| 					if (prev_prime.is_bottom && !node_prime.is_bottom)
 | ||
| 					{
 | ||
| 						log_assert(true /* edge_flow[...] < ∞ */);
 | ||
| 						edge_flow[{prev_prime.node, node_prime.node}]++;
 | ||
| 					}
 | ||
| 					else
 | ||
| 					{
 | ||
| 						log_assert((edge_flow[{node_prime.node, prev_prime.node}] > 0));
 | ||
| 						edge_flow[{node_prime.node, prev_prime.node}]--;
 | ||
| 					}
 | ||
| 				}
 | ||
| 				prev_prime = node_prime;
 | ||
| 			}
 | ||
| 
 | ||
| 			node_flow[source]++;
 | ||
| 			node_flow[sink]++;
 | ||
| 		}
 | ||
| 		return path.back() == sink_prime;
 | ||
| 	}
 | ||
| 
 | ||
| 	int maximum_flow(int order)
 | ||
| 	{
 | ||
| 		int flow = 0;
 | ||
| 		while (flow < order && find_augmenting_path(/*commit=*/true))
 | ||
| 			flow++;
 | ||
| 		return flow + find_augmenting_path(/*commit=*/false);
 | ||
| 	}
 | ||
| 
 | ||
| 	pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> edge_cut()
 | ||
| 	{
 | ||
| 		pool<RTLIL::SigBit> x = {source}, xi; // X and X̅ in the paper
 | ||
| 
 | ||
| 		NodePrime source_prime = {source, true};
 | ||
| 		pool<NodePrime> visited;
 | ||
| 		vector<NodePrime> worklist = {source_prime};
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto node_prime = worklist.back();
 | ||
| 			worklist.pop_back();
 | ||
| 			if (visited[node_prime])
 | ||
| 				continue;
 | ||
| 			visited.insert(node_prime);
 | ||
| 
 | ||
| 			if (!node_prime.is_bottom)
 | ||
| 				x.insert(node_prime.node);
 | ||
| 
 | ||
| 			// Mincut is constructed by traversing a graph in an undirected way along forward edges that aren't full, or backward edges
 | ||
| 			// that aren't empty.
 | ||
| 			if (!node_prime.is_bottom) // top
 | ||
| 			{
 | ||
| 				if (node_flow[node_prime.node] < MAX_NODE_FLOW)
 | ||
| 					worklist.push_back(node_prime.as_bottom());
 | ||
| 				for (auto node_pred : edges_bw[node_prime.node])
 | ||
| 					if (edge_flow[{node_pred, node_prime.node}] > 0)
 | ||
| 						worklist.push_back(NodePrime::bottom(node_pred));
 | ||
| 			}
 | ||
| 			else // bottom
 | ||
| 			{
 | ||
| 				if (node_flow[node_prime.node] > 0)
 | ||
| 					worklist.push_back(node_prime.as_top());
 | ||
| 				for (auto node_succ : edges_fw[node_prime.node])
 | ||
| 					if (true /* edge_flow[...] < ∞ */)
 | ||
| 						worklist.push_back(NodePrime::top(node_succ));
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		for (auto node : nodes)
 | ||
| 			if (!x[node])
 | ||
| 				xi.insert(node);
 | ||
| 
 | ||
| 		for (auto collapsed_node : collapsed[sink])
 | ||
| 			xi.insert(collapsed_node);
 | ||
| 
 | ||
| 		log_assert(x[source] && !xi[source]);
 | ||
| 		log_assert(!x[sink] && xi[sink]);
 | ||
| 		return {x, xi};
 | ||
| 	}
 | ||
| };
 | ||
| 
 | ||
| struct FlowmapWorker
 | ||
| {
 | ||
| 	int order;
 | ||
| 	int r_alpha, r_beta, r_gamma;
 | ||
| 	bool debug, debug_relax;
 | ||
| 
 | ||
| 	RTLIL::Module *module;
 | ||
| 	SigMap sigmap;
 | ||
| 	ModIndex index;
 | ||
| 
 | ||
| 	dict<RTLIL::SigBit, ModIndex::PortInfo> node_origins;
 | ||
| 
 | ||
| 	// Gate IR
 | ||
| 	pool<RTLIL::SigBit> nodes, inputs, outputs;
 | ||
| 	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges_fw, edges_bw;
 | ||
| 	dict<RTLIL::SigBit, int> labels;
 | ||
| 
 | ||
| 	// LUT IR
 | ||
| 	pool<RTLIL::SigBit> lut_nodes;
 | ||
| 	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_gates;
 | ||
| 	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_edges_fw, lut_edges_bw;
 | ||
| 	dict<RTLIL::SigBit, int> lut_depths, lut_altitudes, lut_slacks;
 | ||
| 
 | ||
| 	int gate_count = 0, lut_count = 0, packed_count = 0;
 | ||
| 	int gate_area = 0, lut_area = 0;
 | ||
| 
 | ||
| 	enum class GraphMode {
 | ||
| 		Label,
 | ||
| 		Cut,
 | ||
| 		Slack,
 | ||
| 	};
 | ||
| 
 | ||
| 	void dump_dot_graph(string filename, GraphMode mode,
 | ||
| 	                    pool<RTLIL::SigBit> subgraph_nodes = {}, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> subgraph_edges = {},
 | ||
| 	                    dict<RTLIL::SigBit, pool<RTLIL::SigBit>> collapsed = {},
 | ||
| 	                    pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> cut = {})
 | ||
| 	{
 | ||
| 		if (subgraph_nodes.empty())
 | ||
| 			subgraph_nodes = nodes;
 | ||
| 		if (subgraph_edges.empty())
 | ||
| 			subgraph_edges = edges_fw;
 | ||
| 
 | ||
| 		auto node_style = [&](RTLIL::SigBit node) {
 | ||
| 			string label = log_signal(node);
 | ||
| 			for (auto collapsed_node : collapsed[node])
 | ||
| 				if (collapsed_node != node)
 | ||
| 					label += stringf(" %s", log_signal(collapsed_node));
 | ||
| 			switch (mode)
 | ||
| 			{
 | ||
| 				case GraphMode::Label:
 | ||
| 					if (labels[node] == -1)
 | ||
| 					{
 | ||
| 						label += "\nl=?";
 | ||
| 						return GraphStyle{label};
 | ||
| 					}
 | ||
| 					else
 | ||
| 					{
 | ||
| 						label += stringf("\nl=%d", labels[node]);
 | ||
| 						string fillcolor = stringf("/set311/%d", 1 + labels[node] % 11);
 | ||
| 						return GraphStyle{label, "", fillcolor};
 | ||
| 					}
 | ||
| 
 | ||
| 				case GraphMode::Cut:
 | ||
| 					if (cut.first[node])
 | ||
| 						return GraphStyle{label, "blue"};
 | ||
| 					if (cut.second[node])
 | ||
| 						return GraphStyle{label, "red"};
 | ||
| 					return GraphStyle{label};
 | ||
| 
 | ||
| 				case GraphMode::Slack:
 | ||
| 					label += stringf("\nd=%d a=%d\ns=%d", lut_depths[node], lut_altitudes[node], lut_slacks[node]);
 | ||
| 					return GraphStyle{label, lut_slacks[node] == 0 ? "red" : "black"};
 | ||
| 			}
 | ||
| 			return GraphStyle{label};
 | ||
| 		};
 | ||
| 		auto edge_style = [&](RTLIL::SigBit, RTLIL::SigBit) {
 | ||
| 			return GraphStyle{};
 | ||
| 		};
 | ||
| 		::dump_dot_graph(filename, subgraph_nodes, subgraph_edges, inputs, outputs, node_style, edge_style, module->name.str());
 | ||
| 	}
 | ||
| 
 | ||
| 	void dump_dot_lut_graph(string filename, GraphMode mode)
 | ||
| 	{
 | ||
| 		pool<RTLIL::SigBit> lut_and_input_nodes;
 | ||
| 		lut_and_input_nodes.insert(lut_nodes.begin(), lut_nodes.end());
 | ||
| 		lut_and_input_nodes.insert(inputs.begin(), inputs.end());
 | ||
| 		dump_dot_graph(filename, mode, lut_and_input_nodes, lut_edges_fw, lut_gates);
 | ||
| 	}
 | ||
| 
 | ||
| 	pool<RTLIL::SigBit> find_subgraph(RTLIL::SigBit sink)
 | ||
| 	{
 | ||
| 		pool<RTLIL::SigBit> subgraph;
 | ||
| 		pool<RTLIL::SigBit> worklist = {sink};
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto node = worklist.pop();
 | ||
| 			subgraph.insert(node);
 | ||
| 			for (auto source : edges_bw[node])
 | ||
| 			{
 | ||
| 				if (!subgraph[source])
 | ||
| 					worklist.insert(source);
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return subgraph;
 | ||
| 	}
 | ||
| 
 | ||
| 	FlowGraph build_flow_graph(RTLIL::SigBit sink, int p)
 | ||
| 	{
 | ||
| 		FlowGraph flow_graph;
 | ||
| 		flow_graph.sink = sink;
 | ||
| 
 | ||
| 		pool<RTLIL::SigBit> worklist = {sink}, visited;
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto node = worklist.pop();
 | ||
| 			visited.insert(node);
 | ||
| 
 | ||
| 			auto collapsed_node = labels[node] == p ? sink : node;
 | ||
| 			if (node != collapsed_node)
 | ||
| 				flow_graph.collapsed[collapsed_node].insert(node);
 | ||
| 			flow_graph.nodes.insert(collapsed_node);
 | ||
| 
 | ||
| 			for (auto node_pred : edges_bw[node])
 | ||
| 			{
 | ||
| 				auto collapsed_node_pred = labels[node_pred] == p ? sink : node_pred;
 | ||
| 				if (node_pred != collapsed_node_pred)
 | ||
| 					flow_graph.collapsed[collapsed_node_pred].insert(node_pred);
 | ||
| 				if (collapsed_node != collapsed_node_pred)
 | ||
| 				{
 | ||
| 					flow_graph.edges_bw[collapsed_node].insert(collapsed_node_pred);
 | ||
| 					flow_graph.edges_fw[collapsed_node_pred].insert(collapsed_node);
 | ||
| 				}
 | ||
| 				if (inputs[node_pred])
 | ||
| 				{
 | ||
| 					flow_graph.edges_bw[collapsed_node_pred].insert(flow_graph.source);
 | ||
| 					flow_graph.edges_fw[flow_graph.source].insert(collapsed_node_pred);
 | ||
| 				}
 | ||
| 
 | ||
| 				if (!visited[node_pred])
 | ||
| 					worklist.insert(node_pred);
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return flow_graph;
 | ||
| 	}
 | ||
| 
 | ||
| 	void discover_nodes(pool<IdString> cell_types)
 | ||
| 	{
 | ||
| 		for (auto cell : module->selected_cells())
 | ||
| 		{
 | ||
| 			if (!cell_types[cell->type])
 | ||
| 				continue;
 | ||
| 
 | ||
| 			if (!cell->known())
 | ||
| 				log_error("Cell %s (%s.%s) is unknown.\n", cell->type.c_str(), log_id(module), log_id(cell));
 | ||
| 
 | ||
| 			pool<RTLIL::SigBit> fanout;
 | ||
| 			for (auto conn : cell->connections())
 | ||
| 			{
 | ||
| 				if (!cell->output(conn.first)) continue;
 | ||
| 				int offset = -1;
 | ||
| 				for (auto bit : conn.second)
 | ||
| 				{
 | ||
| 					offset++;
 | ||
| 					if (!bit.wire) continue;
 | ||
| 					auto mapped_bit = sigmap(bit);
 | ||
| 					if (nodes[mapped_bit])
 | ||
| 						log_error("Multiple drivers found for wire %s.\n", log_signal(mapped_bit));
 | ||
| 					nodes.insert(mapped_bit);
 | ||
| 					node_origins[mapped_bit] = ModIndex::PortInfo(cell, conn.first, offset);
 | ||
| 					fanout.insert(mapped_bit);
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			int fanin = 0;
 | ||
| 			for (auto conn : cell->connections())
 | ||
| 			{
 | ||
| 				if (!cell->input(conn.first)) continue;
 | ||
| 				for (auto bit : sigmap(conn.second))
 | ||
| 				{
 | ||
| 					if (!bit.wire) continue;
 | ||
| 					for (auto fanout_bit : fanout)
 | ||
| 					{
 | ||
| 						edges_fw[bit].insert(fanout_bit);
 | ||
| 						edges_bw[fanout_bit].insert(bit);
 | ||
| 					}
 | ||
| 					fanin++;
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			if (fanin > order)
 | ||
| 				log_error("Cell %s (%s.%s) with fan-in %d cannot be mapped to a %d-LUT.\n",
 | ||
| 				          cell->type.c_str(), log_id(module), log_id(cell), fanin, order);
 | ||
| 
 | ||
| 			gate_count++;
 | ||
| 			gate_area += 1 << fanin;
 | ||
| 		}
 | ||
| 
 | ||
| 		for (auto edge : edges_fw)
 | ||
| 		{
 | ||
| 			if (!nodes[edge.first])
 | ||
| 			{
 | ||
| 				inputs.insert(edge.first);
 | ||
| 				nodes.insert(edge.first);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		for (auto node : nodes)
 | ||
| 		{
 | ||
| 			auto node_info = index.query(node);
 | ||
| 			if (node_info->is_output && !inputs[node])
 | ||
| 				outputs.insert(node);
 | ||
| 			for (auto port : node_info->ports)
 | ||
| 				if (!cell_types[port.cell->type] && !inputs[node])
 | ||
| 					outputs.insert(node);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (debug)
 | ||
| 		{
 | ||
| 			dump_dot_graph("flowmap-initial.dot", GraphMode::Label);
 | ||
| 			log("Dumped initial graph to `flowmap-initial.dot`.\n");
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	void label_nodes()
 | ||
| 	{
 | ||
| 		for (auto node : nodes)
 | ||
| 			labels[node] = -1;
 | ||
| 		for (auto input : inputs)
 | ||
| 		{
 | ||
| 			if (input.wire->attributes.count(ID($flowmap_level)))
 | ||
| 				labels[input] = input.wire->attributes[ID($flowmap_level)].as_int();
 | ||
| 			else
 | ||
| 				labels[input] = 0;
 | ||
| 		}
 | ||
| 
 | ||
| 		pool<RTLIL::SigBit> worklist = nodes;
 | ||
| 		int debug_num = 0;
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto sink = worklist.pop();
 | ||
| 			if (labels[sink] != -1)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			bool inputs_have_labels = true;
 | ||
| 			for (auto sink_input : edges_bw[sink])
 | ||
| 			{
 | ||
| 				if (labels[sink_input] == -1)
 | ||
| 				{
 | ||
| 					inputs_have_labels = false;
 | ||
| 					break;
 | ||
| 				}
 | ||
| 			}
 | ||
| 			if (!inputs_have_labels)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			if (debug)
 | ||
| 			{
 | ||
| 				debug_num++;
 | ||
| 				log("Examining subgraph %d rooted in %s.\n", debug_num, log_signal(sink));
 | ||
| 			}
 | ||
| 
 | ||
| 			pool<RTLIL::SigBit> subgraph = find_subgraph(sink);
 | ||
| 
 | ||
| 			int p = 1;
 | ||
| 			for (auto subgraph_node : subgraph)
 | ||
| 				p = max(p, labels[subgraph_node]);
 | ||
| 
 | ||
| 			FlowGraph flow_graph = build_flow_graph(sink, p);
 | ||
| 			int flow = flow_graph.maximum_flow(order);
 | ||
| 			pool<RTLIL::SigBit> x, xi;
 | ||
| 			if (flow <= order)
 | ||
| 			{
 | ||
| 				labels[sink] = p;
 | ||
| 				auto cut = flow_graph.edge_cut();
 | ||
| 				x = cut.first;
 | ||
| 				xi = cut.second;
 | ||
| 			}
 | ||
| 			else
 | ||
| 			{
 | ||
| 				labels[sink] = p + 1;
 | ||
| 				x = subgraph;
 | ||
| 				x.erase(sink);
 | ||
| 				xi.insert(sink);
 | ||
| 			}
 | ||
| 			lut_gates[sink] = xi;
 | ||
| 
 | ||
| 			pool<RTLIL::SigBit> k;
 | ||
| 			for (auto xi_node : xi)
 | ||
| 			{
 | ||
| 				for (auto xi_node_pred : edges_bw[xi_node])
 | ||
| 					if (x[xi_node_pred])
 | ||
| 						k.insert(xi_node_pred);
 | ||
| 			}
 | ||
| 			log_assert((int)k.size() <= order);
 | ||
| 			lut_edges_bw[sink] = k;
 | ||
| 			for (auto k_node : k)
 | ||
| 				lut_edges_fw[k_node].insert(sink);
 | ||
| 
 | ||
| 			if (debug)
 | ||
| 			{
 | ||
| 				log("  Maximum flow: %d. Assigned label %d.\n", flow, labels[sink]);
 | ||
| 				dump_dot_graph(stringf("flowmap-%d-sub.dot", debug_num), GraphMode::Cut, subgraph, {}, {}, {x, xi});
 | ||
| 				log("  Dumped subgraph to `flowmap-%d-sub.dot`.\n", debug_num);
 | ||
| 				flow_graph.dump_dot_graph(stringf("flowmap-%d-flow.dot", debug_num));
 | ||
| 				log("  Dumped flow graph to `flowmap-%d-flow.dot`.\n", debug_num);
 | ||
| 				log("    LUT inputs:");
 | ||
| 				for (auto k_node : k)
 | ||
| 					log(" %s", log_signal(k_node));
 | ||
| 				log(".\n");
 | ||
| 				log("    LUT packed gates:");
 | ||
| 				for (auto xi_node : xi)
 | ||
| 					log(" %s", log_signal(xi_node));
 | ||
| 				log(".\n");
 | ||
| 			}
 | ||
| 
 | ||
| 			for (auto sink_succ : edges_fw[sink])
 | ||
| 				worklist.insert(sink_succ);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (debug)
 | ||
| 		{
 | ||
| 			dump_dot_graph("flowmap-labeled.dot", GraphMode::Label);
 | ||
| 			log("Dumped labeled graph to `flowmap-labeled.dot`.\n");
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	int map_luts()
 | ||
| 	{
 | ||
| 		pool<RTLIL::SigBit> worklist = outputs;
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto lut_node = worklist.pop();
 | ||
| 			lut_nodes.insert(lut_node);
 | ||
| 			for (auto input_node : lut_edges_bw[lut_node])
 | ||
| 				if (!lut_nodes[input_node] && !inputs[input_node])
 | ||
| 					worklist.insert(input_node);
 | ||
| 		}
 | ||
| 
 | ||
| 		int depth = 0;
 | ||
| 		for (auto label : labels)
 | ||
| 			depth = max(depth, label.second);
 | ||
| 		log("Mapped to %d LUTs with maximum depth %d.\n", GetSize(lut_nodes), depth);
 | ||
| 
 | ||
| 		if (debug)
 | ||
| 		{
 | ||
| 			dump_dot_lut_graph("flowmap-mapped.dot", GraphMode::Label);
 | ||
| 			log("Dumped mapped graph to `flowmap-mapped.dot`.\n");
 | ||
| 		}
 | ||
| 
 | ||
| 		return depth;
 | ||
| 	}
 | ||
| 
 | ||
| 	void realize_derealize_lut(RTLIL::SigBit lut, pool<RTLIL::SigBit> *changed = nullptr)
 | ||
| 	{
 | ||
| 		pool<RTLIL::SigBit> worklist = {lut};
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto lut = worklist.pop();
 | ||
| 			if (inputs[lut])
 | ||
| 				continue;
 | ||
| 
 | ||
| 			bool realized_successors = false;
 | ||
| 			for (auto lut_succ : lut_edges_fw[lut])
 | ||
| 				if (lut_nodes[lut_succ])
 | ||
| 					realized_successors = true;
 | ||
| 
 | ||
| 			if (realized_successors && !lut_nodes[lut])
 | ||
| 				lut_nodes.insert(lut);
 | ||
| 			else if (!realized_successors && lut_nodes[lut])
 | ||
| 				lut_nodes.erase(lut);
 | ||
| 			else
 | ||
| 				continue;
 | ||
| 
 | ||
| 			for (auto lut_pred : lut_edges_bw[lut])
 | ||
| 				worklist.insert(lut_pred);
 | ||
| 
 | ||
| 			if (changed)
 | ||
| 				changed->insert(lut);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	void add_lut_edge(RTLIL::SigBit pred, RTLIL::SigBit succ, pool<RTLIL::SigBit> *changed = nullptr)
 | ||
| 	{
 | ||
| 		log_assert(!lut_edges_fw[pred][succ] && !lut_edges_bw[succ][pred]);
 | ||
| 		log_assert((int)lut_edges_bw[succ].size() < order);
 | ||
| 
 | ||
| 		lut_edges_fw[pred].insert(succ);
 | ||
| 		lut_edges_bw[succ].insert(pred);
 | ||
| 		realize_derealize_lut(pred, changed);
 | ||
| 
 | ||
| 		if (changed)
 | ||
| 		{
 | ||
| 			changed->insert(pred);
 | ||
| 			changed->insert(succ);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	void remove_lut_edge(RTLIL::SigBit pred, RTLIL::SigBit succ, pool<RTLIL::SigBit> *changed = nullptr)
 | ||
| 	{
 | ||
| 		log_assert(lut_edges_fw[pred][succ] && lut_edges_bw[succ][pred]);
 | ||
| 
 | ||
| 		lut_edges_fw[pred].erase(succ);
 | ||
| 		lut_edges_bw[succ].erase(pred);
 | ||
| 		realize_derealize_lut(pred, changed);
 | ||
| 
 | ||
| 		if (changed)
 | ||
| 		{
 | ||
| 			if (lut_nodes[pred])
 | ||
| 				changed->insert(pred);
 | ||
| 			changed->insert(succ);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> cut_lut_at_gate(RTLIL::SigBit lut, RTLIL::SigBit lut_gate)
 | ||
| 	{
 | ||
| 		pool<RTLIL::SigBit> gate_inputs = lut_edges_bw[lut];
 | ||
| 		pool<RTLIL::SigBit> other_inputs;
 | ||
| 		pool<RTLIL::SigBit> worklist = {lut};
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto node = worklist.pop();
 | ||
| 			for (auto node_pred : edges_bw[node])
 | ||
| 			{
 | ||
| 				if (node_pred == lut_gate)
 | ||
| 					continue;
 | ||
| 				if (lut_gates[lut][node_pred])
 | ||
| 					worklist.insert(node_pred);
 | ||
| 				else
 | ||
| 				{
 | ||
| 					gate_inputs.erase(node_pred);
 | ||
| 					other_inputs.insert(node_pred);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return {gate_inputs, other_inputs};
 | ||
| 	}
 | ||
| 
 | ||
| 	void compute_lut_distances(dict<RTLIL::SigBit, int> &lut_distances, bool forward,
 | ||
| 	                          pool<RTLIL::SigBit> initial = {}, pool<RTLIL::SigBit> *changed = nullptr)
 | ||
| 	{
 | ||
| 		pool<RTLIL::SigBit> terminals = forward ? inputs : outputs;
 | ||
| 		auto &lut_edges_next = forward ? lut_edges_fw : lut_edges_bw;
 | ||
| 		auto &lut_edges_prev = forward ? lut_edges_bw : lut_edges_fw;
 | ||
| 
 | ||
| 		if (initial.empty())
 | ||
| 			initial = terminals;
 | ||
| 		for (auto node : initial)
 | ||
| 			lut_distances.erase(node);
 | ||
| 
 | ||
| 		pool<RTLIL::SigBit> worklist = initial;
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto lut = worklist.pop();
 | ||
| 			int lut_distance = 0;
 | ||
| 			if (forward && inputs[lut])
 | ||
| 				lut_distance = labels[lut]; // to support (* $flowmap_level=n *)
 | ||
| 			for (auto lut_prev : lut_edges_prev[lut])
 | ||
| 				if ((lut_nodes[lut_prev] || inputs[lut_prev]) && lut_distances.count(lut_prev))
 | ||
| 					lut_distance = max(lut_distance, lut_distances[lut_prev] + 1);
 | ||
| 			if (!lut_distances.count(lut) || lut_distances[lut] != lut_distance)
 | ||
| 			{
 | ||
| 				lut_distances[lut] = lut_distance;
 | ||
| 				if (changed != nullptr && !inputs[lut])
 | ||
| 					changed->insert(lut);
 | ||
| 				for (auto lut_next : lut_edges_next[lut])
 | ||
| 					if (lut_nodes[lut_next] || inputs[lut_next])
 | ||
| 						worklist.insert(lut_next);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	void check_lut_distances(const dict<RTLIL::SigBit, int> &lut_distances, bool forward)
 | ||
| 	{
 | ||
| 		dict<RTLIL::SigBit, int> gold_lut_distances;
 | ||
| 		compute_lut_distances(gold_lut_distances, forward);
 | ||
| 		for (auto lut_distance : lut_distances)
 | ||
| 			if (lut_nodes[lut_distance.first])
 | ||
| 				log_assert(lut_distance.second == gold_lut_distances[lut_distance.first]);
 | ||
| 	}
 | ||
| 
 | ||
| 	// LUT depth is the length of the longest path from any input in LUT fan-in to LUT.
 | ||
| 	// LUT altitude (for lack of a better term) is the length of the longest path from LUT to any output in LUT fan-out.
 | ||
| 	void update_lut_depths_altitudes(pool<RTLIL::SigBit> worklist = {}, pool<RTLIL::SigBit> *changed = nullptr)
 | ||
| 	{
 | ||
| 		compute_lut_distances(lut_depths, /*forward=*/true, worklist, changed);
 | ||
| 		compute_lut_distances(lut_altitudes, /*forward=*/false, worklist, changed);
 | ||
| 		if (debug_relax && !worklist.empty()) {
 | ||
| 			check_lut_distances(lut_depths, /*forward=*/true);
 | ||
| 			check_lut_distances(lut_altitudes, /*forward=*/false);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// LUT critical output set is the set of outputs whose depth will increase (equivalently, slack will decrease) if the depth of
 | ||
| 	// the LUT increases. (This is referred to as RPOv for LUTv in the paper.)
 | ||
| 	void compute_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
 | ||
| 	                                  pool<RTLIL::SigBit> worklist = {})
 | ||
| 	{
 | ||
| 		if (worklist.empty())
 | ||
| 			worklist = lut_nodes;
 | ||
| 
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			bool updated_some = false;
 | ||
| 			for (auto lut : worklist)
 | ||
| 			{
 | ||
| 				if (outputs[lut])
 | ||
| 					lut_critical_outputs[lut] = {lut};
 | ||
| 				else
 | ||
| 				{
 | ||
| 					bool all_succ_computed = true;
 | ||
| 					lut_critical_outputs[lut] = {};
 | ||
| 					for (auto lut_succ : lut_edges_fw[lut])
 | ||
| 					{
 | ||
| 						if (lut_nodes[lut_succ] && lut_depths[lut_succ] == lut_depths[lut] + 1)
 | ||
| 						{
 | ||
| 							if (lut_critical_outputs.count(lut_succ))
 | ||
| 								lut_critical_outputs[lut].insert(lut_critical_outputs[lut_succ].begin(), lut_critical_outputs[lut_succ].end());
 | ||
| 							else
 | ||
| 							{
 | ||
| 								all_succ_computed = false;
 | ||
| 								break;
 | ||
| 							}
 | ||
| 						}
 | ||
| 					}
 | ||
| 					if (!all_succ_computed)
 | ||
| 					{
 | ||
| 						lut_critical_outputs.erase(lut);
 | ||
| 						continue;
 | ||
| 					}
 | ||
| 				}
 | ||
| 				worklist.erase(lut);
 | ||
| 				updated_some = true;
 | ||
| 			}
 | ||
| 			log_assert(updated_some);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// Invalidating LUT critical output sets is tricky, because increasing the depth of a LUT may take other, adjacent LUTs off the critical
 | ||
| 	// path to the output. Conservatively, if we increase depth of some LUT, every LUT in its input cone needs to have its critical output
 | ||
| 	// set invalidated, too.
 | ||
| 	pool<RTLIL::SigBit> invalidate_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
 | ||
| 	                                                    pool<RTLIL::SigBit> worklist)
 | ||
| 	{
 | ||
| 		pool<RTLIL::SigBit> changed;
 | ||
| 		while (!worklist.empty())
 | ||
| 		{
 | ||
| 			auto lut = worklist.pop();
 | ||
| 			changed.insert(lut);
 | ||
| 			lut_critical_outputs.erase(lut);
 | ||
| 			for (auto lut_pred : lut_edges_bw[lut])
 | ||
| 			{
 | ||
| 				if (lut_nodes[lut_pred] && !changed[lut_pred])
 | ||
| 				{
 | ||
| 					changed.insert(lut_pred);
 | ||
| 					worklist.insert(lut_pred);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return changed;
 | ||
| 	}
 | ||
| 
 | ||
| 	void check_lut_critical_outputs(const dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
 | ||
| 	{
 | ||
| 		dict<RTLIL::SigBit, pool<RTLIL::SigBit>> gold_lut_critical_outputs;
 | ||
| 		compute_lut_critical_outputs(gold_lut_critical_outputs);
 | ||
| 		for (auto lut_critical_output : lut_critical_outputs)
 | ||
| 			if (lut_nodes[lut_critical_output.first])
 | ||
| 				log_assert(lut_critical_output.second == gold_lut_critical_outputs[lut_critical_output.first]);
 | ||
| 	}
 | ||
| 
 | ||
| 	void update_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
 | ||
| 	                                 pool<RTLIL::SigBit> worklist = {})
 | ||
| 	{
 | ||
| 		if (!worklist.empty())
 | ||
| 		{
 | ||
| 			pool<RTLIL::SigBit> invalidated = invalidate_lut_critical_outputs(lut_critical_outputs, worklist);
 | ||
| 			compute_lut_critical_outputs(lut_critical_outputs, invalidated);
 | ||
| 			check_lut_critical_outputs(lut_critical_outputs);
 | ||
| 		}
 | ||
| 		else
 | ||
| 			compute_lut_critical_outputs(lut_critical_outputs);
 | ||
| 	}
 | ||
| 
 | ||
| 	void update_breaking_node_potentials(dict<RTLIL::SigBit, dict<RTLIL::SigBit, int>> &potentials,
 | ||
| 	                                     const dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
 | ||
| 	{
 | ||
| 		for (auto lut : lut_nodes)
 | ||
| 		{
 | ||
| 			if (potentials.count(lut))
 | ||
| 				continue;
 | ||
| 			if (lut_gates[lut].size() == 1 || lut_slacks[lut] == 0)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			if (debug_relax)
 | ||
| 				log("  Computing potentials for LUT %s.\n", log_signal(lut));
 | ||
| 
 | ||
| 			for (auto lut_gate : lut_gates[lut])
 | ||
| 			{
 | ||
| 				if (lut == lut_gate)
 | ||
| 					continue;
 | ||
| 
 | ||
| 				if (debug_relax)
 | ||
| 					log("    Considering breaking node %s.\n", log_signal(lut_gate));
 | ||
| 
 | ||
| 				int r_ex, r_im, r_slk;
 | ||
| 
 | ||
| 				auto cut_inputs = cut_lut_at_gate(lut, lut_gate);
 | ||
| 				pool<RTLIL::SigBit> gate_inputs = cut_inputs.first, other_inputs = cut_inputs.second;
 | ||
| 				if (gate_inputs.empty() && (int)other_inputs.size() >= order)
 | ||
| 				{
 | ||
| 					if (debug_relax)
 | ||
| 						log("      Breaking would result in a (k+1)-LUT.\n");
 | ||
| 					continue;
 | ||
| 				}
 | ||
| 
 | ||
| 				pool<RTLIL::SigBit> elim_fanin_luts;
 | ||
| 				for (auto gate_input : gate_inputs)
 | ||
| 				{
 | ||
| 					if (lut_edges_fw[gate_input].size() == 1)
 | ||
| 					{
 | ||
| 						log_assert(lut_edges_fw[gate_input][lut]);
 | ||
| 						elim_fanin_luts.insert(gate_input);
 | ||
| 					}
 | ||
| 				}
 | ||
| 				if (debug_relax)
 | ||
| 				{
 | ||
| 					if (!lut_nodes[lut_gate])
 | ||
| 						log("      Breaking requires a new LUT.\n");
 | ||
| 					if (!gate_inputs.empty())
 | ||
| 					{
 | ||
| 						log("      Breaking eliminates LUT inputs");
 | ||
| 						for (auto gate_input : gate_inputs)
 | ||
| 							log(" %s", log_signal(gate_input));
 | ||
| 						log(".\n");
 | ||
| 					}
 | ||
| 					if (!elim_fanin_luts.empty())
 | ||
| 					{
 | ||
| 						log("      Breaking eliminates fan-in LUTs");
 | ||
| 						for (auto elim_fanin_lut : elim_fanin_luts)
 | ||
| 							log(" %s", log_signal(elim_fanin_lut));
 | ||
| 						log(".\n");
 | ||
| 					}
 | ||
| 				}
 | ||
| 				r_ex = (lut_nodes[lut_gate] ? 0 : -1) + elim_fanin_luts.size();
 | ||
| 
 | ||
| 				pool<pair<RTLIL::SigBit, RTLIL::SigBit>> maybe_mergeable_luts;
 | ||
| 
 | ||
| 				// Try to merge LUTv with one of its successors.
 | ||
| 				RTLIL::SigBit last_lut_succ;
 | ||
| 				int fanout = 0;
 | ||
| 				for (auto lut_succ : lut_edges_fw[lut])
 | ||
| 				{
 | ||
| 					if (lut_nodes[lut_succ])
 | ||
| 					{
 | ||
| 						fanout++;
 | ||
| 						last_lut_succ = lut_succ;
 | ||
| 					}
 | ||
| 				}
 | ||
| 				if (fanout == 1)
 | ||
| 					maybe_mergeable_luts.insert({lut, last_lut_succ});
 | ||
| 
 | ||
| 				// Try to merge LUTv with one of its predecessors.
 | ||
| 				for (auto lut_pred : other_inputs)
 | ||
| 				{
 | ||
| 					int fanout = 0;
 | ||
| 					for (auto lut_pred_succ : lut_edges_fw[lut_pred])
 | ||
| 						if (lut_nodes[lut_pred_succ] || lut_pred_succ == lut_gate)
 | ||
| 							fanout++;
 | ||
| 					if (fanout == 1)
 | ||
| 						maybe_mergeable_luts.insert({lut_pred, lut});
 | ||
| 				}
 | ||
| 
 | ||
| 				// Try to merge LUTw with one of its predecessors.
 | ||
| 				for (auto lut_gate_pred : lut_edges_bw[lut_gate])
 | ||
| 				{
 | ||
| 					int fanout = 0;
 | ||
| 					for (auto lut_gate_pred_succ : lut_edges_fw[lut_gate_pred])
 | ||
| 						if (lut_nodes[lut_gate_pred_succ] || lut_gate_pred_succ == lut_gate)
 | ||
| 							fanout++;
 | ||
| 					if (fanout == 1)
 | ||
| 						maybe_mergeable_luts.insert({lut_gate_pred, lut_gate});
 | ||
| 				}
 | ||
| 
 | ||
| 				r_im = 0;
 | ||
| 				for (auto maybe_mergeable_pair : maybe_mergeable_luts)
 | ||
| 				{
 | ||
| 					log_assert(lut_edges_fw[maybe_mergeable_pair.first][maybe_mergeable_pair.second]);
 | ||
| 					pool<RTLIL::SigBit> unique_inputs;
 | ||
| 					for (auto fst_lut_pred : lut_edges_bw[maybe_mergeable_pair.first])
 | ||
| 						if (lut_nodes[fst_lut_pred])
 | ||
| 							unique_inputs.insert(fst_lut_pred);
 | ||
| 					for (auto snd_lut_pred : lut_edges_bw[maybe_mergeable_pair.second])
 | ||
| 						if (lut_nodes[snd_lut_pred])
 | ||
| 							unique_inputs.insert(snd_lut_pred);
 | ||
| 					unique_inputs.erase(maybe_mergeable_pair.first);
 | ||
| 					if ((int)unique_inputs.size() <= order)
 | ||
| 					{
 | ||
| 						if (debug_relax)
 | ||
| 							log("      Breaking may allow merging %s and %s.\n",
 | ||
| 							    log_signal(maybe_mergeable_pair.first), log_signal(maybe_mergeable_pair.second));
 | ||
| 						r_im++;
 | ||
| 					}
 | ||
| 				}
 | ||
| 
 | ||
| 				int lut_gate_depth;
 | ||
| 				if (lut_nodes[lut_gate])
 | ||
| 					lut_gate_depth = lut_depths[lut_gate];
 | ||
| 				else
 | ||
| 				{
 | ||
| 					lut_gate_depth = 0;
 | ||
| 					for (auto lut_gate_pred : lut_edges_bw[lut_gate])
 | ||
| 						lut_gate_depth = max(lut_gate_depth, lut_depths[lut_gate_pred] + 1);
 | ||
| 				}
 | ||
| 				if (lut_depths[lut] >= lut_gate_depth + 1)
 | ||
| 					r_slk = 0;
 | ||
| 				else
 | ||
| 				{
 | ||
| 					int depth_delta = lut_gate_depth + 1 - lut_depths[lut];
 | ||
| 					if (depth_delta > lut_slacks[lut])
 | ||
| 					{
 | ||
| 						if (debug_relax)
 | ||
| 							log("      Breaking would increase depth by %d, which is more than available slack.\n", depth_delta);
 | ||
| 						continue;
 | ||
| 					}
 | ||
| 
 | ||
| 					if (debug_relax)
 | ||
| 					{
 | ||
| 						log("      Breaking increases depth of LUT by %d.\n", depth_delta);
 | ||
| 						if (lut_critical_outputs.at(lut).size())
 | ||
| 						{
 | ||
| 							log("      Breaking decreases slack of outputs");
 | ||
| 							for (auto lut_critical_output : lut_critical_outputs.at(lut))
 | ||
| 							{
 | ||
| 								log(" %s", log_signal(lut_critical_output));
 | ||
| 								log_assert(lut_slacks[lut_critical_output] > 0);
 | ||
| 							}
 | ||
| 							log(".\n");
 | ||
| 						}
 | ||
| 					}
 | ||
| 					r_slk = lut_critical_outputs.at(lut).size() * depth_delta;
 | ||
| 				}
 | ||
| 
 | ||
| 				int p = 100 * (r_alpha * r_ex + r_beta * r_im + r_gamma) / (r_slk + 1);
 | ||
| 				if (debug_relax)
 | ||
| 					log("    Potential for breaking node %s: %d (Rex=%d, Rim=%d, Rslk=%d).\n",
 | ||
| 					    log_signal(lut_gate), p, r_ex, r_im, r_slk);
 | ||
| 				potentials[lut][lut_gate] = p;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	bool relax_depth_for_bound(bool first, int depth_bound, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
 | ||
| 	{
 | ||
| 		int initial_count = GetSize(lut_nodes);
 | ||
| 
 | ||
| 		for (auto node : lut_nodes)
 | ||
| 		{
 | ||
| 			lut_slacks[node] = depth_bound - (lut_depths[node] + lut_altitudes[node]);
 | ||
| 			log_assert(lut_slacks[node] >= 0);
 | ||
| 		}
 | ||
| 		if (debug)
 | ||
| 		{
 | ||
| 			dump_dot_lut_graph(stringf("flowmap-relax-%d-initial.dot", depth_bound), GraphMode::Slack);
 | ||
| 			log("  Dumped initial slack graph to `flowmap-relax-%d-initial.dot`.\n", depth_bound);
 | ||
| 		}
 | ||
| 
 | ||
| 		dict<RTLIL::SigBit, dict<RTLIL::SigBit, int>> potentials;
 | ||
| 		for (int break_num = 1; ; break_num++)
 | ||
| 		{
 | ||
| 			update_breaking_node_potentials(potentials, lut_critical_outputs);
 | ||
| 
 | ||
| 			if (potentials.empty())
 | ||
| 			{
 | ||
| 				log("  Relaxed to %d (+%d) LUTs.\n", GetSize(lut_nodes), GetSize(lut_nodes) - initial_count);
 | ||
| 				if (!first && break_num == 1)
 | ||
| 				{
 | ||
| 					log("  Design fully relaxed.\n");
 | ||
| 					return true;
 | ||
| 				}
 | ||
| 				else
 | ||
| 				{
 | ||
| 					log("  Slack exhausted.\n");
 | ||
| 					break;
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			RTLIL::SigBit breaking_lut, breaking_gate;
 | ||
| 			int best_potential = INT_MIN;
 | ||
| 			for (auto lut_gate_potentials : potentials)
 | ||
| 			{
 | ||
| 				for (auto gate_potential : lut_gate_potentials.second)
 | ||
| 				{
 | ||
| 					if (gate_potential.second > best_potential)
 | ||
| 					{
 | ||
| 						breaking_lut = lut_gate_potentials.first;
 | ||
| 						breaking_gate = gate_potential.first;
 | ||
| 						best_potential = gate_potential.second;
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 			log("  Breaking LUT %s to %s LUT %s (potential %d).\n",
 | ||
| 			    log_signal(breaking_lut), lut_nodes[breaking_gate] ? "reuse" : "extract", log_signal(breaking_gate), best_potential);
 | ||
| 
 | ||
| 			if (debug_relax)
 | ||
| 				log("    Removing breaking gate %s from LUT.\n", log_signal(breaking_gate));
 | ||
| 			lut_gates[breaking_lut].erase(breaking_gate);
 | ||
| 
 | ||
| 			auto cut_inputs = cut_lut_at_gate(breaking_lut, breaking_gate);
 | ||
| 			pool<RTLIL::SigBit> gate_inputs = cut_inputs.first, other_inputs = cut_inputs.second;
 | ||
| 
 | ||
| 			pool<RTLIL::SigBit> worklist = lut_gates[breaking_lut];
 | ||
| 			pool<RTLIL::SigBit> elim_gates = gate_inputs;
 | ||
| 			while (!worklist.empty())
 | ||
| 			{
 | ||
| 				auto lut_gate = worklist.pop();
 | ||
| 				bool all_gate_preds_elim = true;
 | ||
| 				for (auto lut_gate_pred : edges_bw[lut_gate])
 | ||
| 					if (!elim_gates[lut_gate_pred])
 | ||
| 						all_gate_preds_elim = false;
 | ||
| 				if (all_gate_preds_elim)
 | ||
| 				{
 | ||
| 					if (debug_relax)
 | ||
| 						log("    Removing gate %s from LUT.\n", log_signal(lut_gate));
 | ||
| 					lut_gates[breaking_lut].erase(lut_gate);
 | ||
| 					for (auto lut_gate_succ : edges_fw[lut_gate])
 | ||
| 						worklist.insert(lut_gate_succ);
 | ||
| 				}
 | ||
| 			}
 | ||
| 			log_assert(!lut_gates[breaking_lut].empty());
 | ||
| 
 | ||
| 			pool<RTLIL::SigBit> directly_affected_nodes = {breaking_lut};
 | ||
| 			for (auto gate_input : gate_inputs)
 | ||
| 			{
 | ||
| 				if (debug_relax)
 | ||
| 					log("    Removing LUT edge %s -> %s.\n", log_signal(gate_input), log_signal(breaking_lut));
 | ||
| 				remove_lut_edge(gate_input, breaking_lut, &directly_affected_nodes);
 | ||
| 			}
 | ||
| 			if (debug_relax)
 | ||
| 				log("    Adding LUT edge %s -> %s.\n", log_signal(breaking_gate), log_signal(breaking_lut));
 | ||
| 			add_lut_edge(breaking_gate, breaking_lut, &directly_affected_nodes);
 | ||
| 
 | ||
| 			if (debug_relax)
 | ||
| 				log("  Updating slack and potentials.\n");
 | ||
| 
 | ||
| 			pool<RTLIL::SigBit> indirectly_affected_nodes = {};
 | ||
| 			update_lut_depths_altitudes(directly_affected_nodes, &indirectly_affected_nodes);
 | ||
| 			update_lut_critical_outputs(lut_critical_outputs, indirectly_affected_nodes);
 | ||
| 			for (auto node : indirectly_affected_nodes)
 | ||
| 			{
 | ||
| 				lut_slacks[node] = depth_bound - (lut_depths[node] + lut_altitudes[node]);
 | ||
| 				log_assert(lut_slacks[node] >= 0);
 | ||
| 				if (debug_relax)
 | ||
| 					log("    LUT %s now has depth %d and slack %d.\n", log_signal(node), lut_depths[node], lut_slacks[node]);
 | ||
| 			}
 | ||
| 
 | ||
| 			worklist = indirectly_affected_nodes;
 | ||
| 			pool<RTLIL::SigBit> visited;
 | ||
| 			while (!worklist.empty())
 | ||
| 			{
 | ||
| 				auto node = worklist.pop();
 | ||
| 				visited.insert(node);
 | ||
| 				potentials.erase(node);
 | ||
| 				// We are invalidating the entire output cone of the gate IR node, not just of the LUT IR node. This is done to also invalidate
 | ||
| 				// all LUTs that could contain one of the indirectly affected nodes as a *part* of them, as they may not be in the output cone
 | ||
| 				// of any of the LUT IR nodes, e.g. if we have a LUT IR node A and node B as predecessors of node C, where node B includes all
 | ||
| 				// gates from node A.
 | ||
| 				for (auto node_succ : edges_fw[node])
 | ||
| 					if (!visited[node_succ])
 | ||
| 						worklist.insert(node_succ);
 | ||
| 			}
 | ||
| 
 | ||
| 			if (debug)
 | ||
| 			{
 | ||
| 				dump_dot_lut_graph(stringf("flowmap-relax-%d-break-%d.dot", depth_bound, break_num), GraphMode::Slack);
 | ||
| 				log("  Dumped slack graph after break %d to `flowmap-relax-%d-break-%d.dot`.\n",  break_num, depth_bound, break_num);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	void optimize_area(int depth, int optarea)
 | ||
| 	{
 | ||
| 		dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_critical_outputs;
 | ||
| 		update_lut_depths_altitudes();
 | ||
| 		update_lut_critical_outputs(lut_critical_outputs);
 | ||
| 
 | ||
| 		for (int depth_bound = depth; depth_bound <= depth + optarea; depth_bound++)
 | ||
| 		{
 | ||
| 			log("Relaxing with depth bound %d.\n", depth_bound);
 | ||
| 			bool fully_relaxed = relax_depth_for_bound(depth_bound == depth, depth_bound, lut_critical_outputs);
 | ||
| 
 | ||
| 			if (fully_relaxed)
 | ||
| 				break;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	void pack_cells(int minlut)
 | ||
| 	{
 | ||
| 		ConstEval ce(module);
 | ||
| 		for (auto input_node : inputs)
 | ||
| 			ce.stop(input_node);
 | ||
| 
 | ||
| 		pool<RTLIL::SigBit> mapped_nodes;
 | ||
| 		for (auto node : lut_nodes)
 | ||
| 		{
 | ||
| 			if (node_origins.count(node))
 | ||
| 			{
 | ||
| 				auto origin = node_origins[node];
 | ||
| 				if (origin.cell->getPort(origin.port).size() == 1)
 | ||
| 					log("Packing %s.%s.%s (%s).\n",
 | ||
| 					    log_id(module), log_id(origin.cell), origin.port.c_str(), log_signal(node));
 | ||
| 				else
 | ||
| 					log("Packing %s.%s.%s [%d] (%s).\n",
 | ||
| 					    log_id(module), log_id(origin.cell), origin.port.c_str(), origin.offset, log_signal(node));
 | ||
| 			}
 | ||
| 			else
 | ||
| 			{
 | ||
| 				log("Packing %s.%s.\n", log_id(module), log_signal(node));
 | ||
| 			}
 | ||
| 
 | ||
| 			for (auto gate_node : lut_gates[node])
 | ||
| 			{
 | ||
| 				log_assert(node_origins.count(gate_node));
 | ||
| 
 | ||
| 				if (gate_node == node)
 | ||
| 					continue;
 | ||
| 
 | ||
| 				auto gate_origin = node_origins[gate_node];
 | ||
| 				if (gate_origin.cell->getPort(gate_origin.port).size() == 1)
 | ||
| 					log("  Packing %s.%s.%s (%s).\n",
 | ||
| 					    log_id(module), log_id(gate_origin.cell), gate_origin.port.c_str(), log_signal(gate_node));
 | ||
| 				else
 | ||
| 					log("  Packing %s.%s.%s [%d] (%s).\n",
 | ||
| 					    log_id(module), log_id(gate_origin.cell), gate_origin.port.c_str(), gate_origin.offset, log_signal(gate_node));
 | ||
| 			}
 | ||
| 
 | ||
| 			vector<RTLIL::SigBit> input_nodes(lut_edges_bw[node].begin(), lut_edges_bw[node].end());
 | ||
| 			RTLIL::Const lut_table(State::Sx, max(1 << input_nodes.size(), 1 << minlut));
 | ||
| 			unsigned const mask = 1 << input_nodes.size();
 | ||
| 			for (unsigned i = 0; i < mask; i++)
 | ||
| 			{
 | ||
| 				ce.push();
 | ||
| 				for (size_t n = 0; n < input_nodes.size(); n++)
 | ||
| 					ce.set(input_nodes[n], ((i >> n) & 1) ? State::S1 : State::S0);
 | ||
| 
 | ||
| 				RTLIL::SigSpec value = node, undef;
 | ||
| 				if (!ce.eval(value, undef))
 | ||
| 				{
 | ||
| 					string env;
 | ||
| 					for (auto input_node : input_nodes)
 | ||
| 						env += stringf("  %s = %s\n", log_signal(input_node), log_signal(ce.values_map(input_node)));
 | ||
| 					log_error("Cannot evaluate %s because %s is not defined.\nEvaluation environment:\n%s",
 | ||
| 					          log_signal(node), log_signal(undef), env.c_str());
 | ||
| 				}
 | ||
| 
 | ||
| 				lut_table.bits()[i] = value.as_bool() ? State::S1 : State::S0;
 | ||
| 				ce.pop();
 | ||
| 			}
 | ||
| 
 | ||
| 			RTLIL::SigSpec lut_a, lut_y = node;
 | ||
| 			for (auto input_node : input_nodes)
 | ||
| 				lut_a.append(input_node);
 | ||
| 			if ((int)input_nodes.size() < minlut)
 | ||
| 				lut_a.append(RTLIL::Const(State::Sx, minlut - input_nodes.size()));
 | ||
| 
 | ||
| 			RTLIL::Cell *lut = module->addLut(NEW_ID, lut_a, lut_y, lut_table);
 | ||
| 			mapped_nodes.insert(node);
 | ||
| 			for (auto gate_node : lut_gates[node])
 | ||
| 			{
 | ||
| 				auto gate_origin = node_origins[gate_node];
 | ||
| 				lut->add_strpool_attribute(ID::src, gate_origin.cell->get_strpool_attribute(ID::src));
 | ||
| 				packed_count++;
 | ||
| 			}
 | ||
| 			lut_count++;
 | ||
| 			lut_area += lut_table.size();
 | ||
| 
 | ||
| 			if ((int)input_nodes.size() >= minlut)
 | ||
| 				log("  Packed into a %d-LUT %s.%s.\n", GetSize(input_nodes), log_id(module), log_id(lut));
 | ||
| 			else
 | ||
| 				log("  Packed into a %d-LUT %s.%s (implemented as %d-LUT).\n", GetSize(input_nodes), log_id(module), log_id(lut), minlut);
 | ||
| 		}
 | ||
| 
 | ||
| 		for (auto node : mapped_nodes)
 | ||
| 		{
 | ||
| 			auto origin = node_origins[node];
 | ||
| 			RTLIL::SigSpec driver = origin.cell->getPort(origin.port);
 | ||
| 			driver[origin.offset] = module->addWire(NEW_ID);
 | ||
| 			origin.cell->setPort(origin.port, driver);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	FlowmapWorker(int order, int minlut, pool<IdString> cell_types, int r_alpha, int r_beta, int r_gamma,
 | ||
| 	              bool relax, int optarea, bool debug, bool debug_relax,
 | ||
| 	              RTLIL::Module *module) :
 | ||
| 		order(order), r_alpha(r_alpha), r_beta(r_beta), r_gamma(r_gamma), debug(debug), debug_relax(debug_relax),
 | ||
| 		module(module), sigmap(module), index(module)
 | ||
| 	{
 | ||
| 		log("Labeling cells.\n");
 | ||
| 		discover_nodes(cell_types);
 | ||
| 		label_nodes();
 | ||
| 		int depth = map_luts();
 | ||
| 
 | ||
| 		if (relax)
 | ||
| 		{
 | ||
| 			log("\n");
 | ||
| 			log("Optimizing area.\n");
 | ||
| 			optimize_area(depth, optarea);
 | ||
| 		}
 | ||
| 
 | ||
| 		log("\n");
 | ||
| 		log("Packing cells.\n");
 | ||
| 		pack_cells(minlut);
 | ||
| 	}
 | ||
| };
 | ||
| 
 | ||
| static void split(std::vector<std::string> &tokens, const std::string &text, char sep)
 | ||
| {
 | ||
| 	size_t start = 0, end = 0;
 | ||
| 	while ((end = text.find(sep, start)) != std::string::npos) {
 | ||
| 		tokens.push_back(text.substr(start, end - start));
 | ||
| 		start = end + 1;
 | ||
| 	}
 | ||
| 	tokens.push_back(text.substr(start));
 | ||
| }
 | ||
| 
 | ||
| struct FlowmapPass : public Pass {
 | ||
| 	FlowmapPass() : Pass("flowmap", "pack LUTs with FlowMap") { }
 | ||
| 	void help() override
 | ||
| 	{
 | ||
| 		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | ||
| 		log("\n");
 | ||
| 		log("    flowmap [options] [selection]\n");
 | ||
| 		log("\n");
 | ||
| 		log("This pass uses the FlowMap technology mapping algorithm to pack logic gates\n");
 | ||
| 		log("into k-LUTs with optimal depth. It allows mapping any circuit elements that can\n");
 | ||
| 		log("be evaluated with the `eval` pass, including cells with multiple output ports\n");
 | ||
| 		log("and multi-bit input and output ports.\n");
 | ||
| 		log("\n");
 | ||
| 		log("    -maxlut k\n");
 | ||
| 		log("        perform technology mapping for a k-LUT architecture. if not specified,\n");
 | ||
| 		log("        defaults to 3.\n");
 | ||
| 		log("\n");
 | ||
| 		log("    -minlut n\n");
 | ||
| 		log("        only produce n-input or larger LUTs. if not specified, defaults to 1.\n");
 | ||
| 		log("\n");
 | ||
| 		log("    -cells <cell>[,<cell>,...]\n");
 | ||
| 		log("        map specified cells. if not specified, maps $_NOT_, $_AND_, $_OR_,\n");
 | ||
| 		log("        $_XOR_ and $_MUX_, which are the outputs of the `simplemap` pass.\n");
 | ||
| 		log("\n");
 | ||
| 		log("    -relax\n");
 | ||
| 		log("        perform depth relaxation and area minimization.\n");
 | ||
| 		log("\n");
 | ||
| 		log("    -r-alpha n, -r-beta n, -r-gamma n\n");
 | ||
| 		log("        parameters of depth relaxation heuristic potential function.\n");
 | ||
| 		log("        if not specified, alpha=8, beta=2, gamma=1.\n");
 | ||
| 		log("\n");
 | ||
| 		log("    -optarea n\n");
 | ||
| 		log("        optimize for area by trading off at most n logic levels for fewer LUTs.\n");
 | ||
| 		log("        n may be zero, to optimize for area without increasing depth.\n");
 | ||
| 		log("        implies -relax.\n");
 | ||
| 		log("\n");
 | ||
| 		log("    -debug\n");
 | ||
| 		log("        dump intermediate graphs.\n");
 | ||
| 		log("\n");
 | ||
| 		log("    -debug-relax\n");
 | ||
| 		log("        explain decisions performed during depth relaxation.\n");
 | ||
| 		log("\n");
 | ||
| 	}
 | ||
| 	void execute(std::vector<std::string> args, RTLIL::Design *design) override
 | ||
| 	{
 | ||
| 		int order = 3;
 | ||
| 		int minlut = 1;
 | ||
| 		vector<string> cells;
 | ||
| 		bool relax = false;
 | ||
| 		int r_alpha = 8, r_beta = 2, r_gamma = 1;
 | ||
| 		int optarea = 0;
 | ||
| 		bool debug = false, debug_relax = false;
 | ||
| 
 | ||
| 		size_t argidx;
 | ||
| 		for (argidx = 1; argidx < args.size(); argidx++)
 | ||
| 		{
 | ||
| 			if (args[argidx] == "-maxlut" && argidx + 1 < args.size())
 | ||
| 			{
 | ||
| 				order = atoi(args[++argidx].c_str());
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-minlut" && argidx + 1 < args.size())
 | ||
| 			{
 | ||
| 				minlut = atoi(args[++argidx].c_str());
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-cells" && argidx + 1 < args.size())
 | ||
| 			{
 | ||
| 				split(cells, args[++argidx], ',');
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-relax")
 | ||
| 			{
 | ||
| 				relax = true;
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-r-alpha" && argidx + 1 < args.size())
 | ||
| 			{
 | ||
| 				r_alpha = atoi(args[++argidx].c_str());
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-r-beta" && argidx + 1 < args.size())
 | ||
| 			{
 | ||
| 				r_beta = atoi(args[++argidx].c_str());
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-r-gamma" && argidx + 1 < args.size())
 | ||
| 			{
 | ||
| 				r_gamma = atoi(args[++argidx].c_str());
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-optarea" && argidx + 1 < args.size())
 | ||
| 			{
 | ||
| 				relax = true;
 | ||
| 				optarea = atoi(args[++argidx].c_str());
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-debug")
 | ||
| 			{
 | ||
| 				debug = true;
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			if (args[argidx] == "-debug-relax")
 | ||
| 			{
 | ||
| 				debug = debug_relax = true;
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			break;
 | ||
| 		}
 | ||
| 		extra_args(args, argidx, design);
 | ||
| 
 | ||
| 		pool<IdString> cell_types;
 | ||
| 		if (!cells.empty())
 | ||
| 		{
 | ||
| 			for (auto &cell : cells)
 | ||
| 				cell_types.insert(cell);
 | ||
| 		}
 | ||
| 		else
 | ||
| 		{
 | ||
| 			cell_types = {ID($_NOT_), ID($_AND_), ID($_OR_), ID($_XOR_), ID($_MUX_)};
 | ||
| 		}
 | ||
| 
 | ||
| 		const char *algo_r = relax ? "-r" : "";
 | ||
| 		log_header(design, "Executing FLOWMAP pass (pack LUTs with FlowMap%s).\n", algo_r);
 | ||
| 
 | ||
| 		int gate_count = 0, lut_count = 0, packed_count = 0;
 | ||
| 		int gate_area = 0, lut_area = 0;
 | ||
| 		for (auto module : design->selected_modules())
 | ||
| 		{
 | ||
| 			FlowmapWorker worker(order, minlut, cell_types, r_alpha, r_beta, r_gamma, relax, optarea, debug, debug_relax, module);
 | ||
| 			gate_count += worker.gate_count;
 | ||
| 			lut_count += worker.lut_count;
 | ||
| 			packed_count += worker.packed_count;
 | ||
| 			gate_area += worker.gate_area;
 | ||
| 			lut_area += worker.lut_area;
 | ||
| 		}
 | ||
| 
 | ||
| 		log("\n");
 | ||
| 		log("Packed %d cells (%d of them duplicated) into %d LUTs.\n", packed_count, packed_count - gate_count, lut_count);
 | ||
| 		log("Solution takes %.1f%% of original gate area.\n", lut_area * 100.0 / gate_area);
 | ||
| 	}
 | ||
| } FlowmapPass;
 | ||
| 
 | ||
| PRIVATE_NAMESPACE_END
 |