mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 03:32:29 +00:00 
			
		
		
		
	VS build currently failing with `error C2641: cannot deduce template arguments for 'std::array'`. Changing to `std::array<Cone, 2>` gives `error C2027: use of undefined type` instead.
		
			
				
	
	
		
			535 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			535 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| #include "kernel/satgen.h"
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| struct EquivSimpleWorker
 | |
| {
 | |
| 	Module *module;
 | |
| 	const vector<Cell*> &equiv_cells;
 | |
| 	const vector<Cell*> &assume_cells;
 | |
| 	struct Cone {
 | |
| 		pool<Cell*> cells;
 | |
| 		pool<SigBit> bits;
 | |
| 		void clear() {
 | |
| 			cells.clear();
 | |
| 			bits.clear();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct DesignModel {
 | |
| 		const SigMap &sigmap;
 | |
| 		dict<SigBit, Cell*> &bit2driver;
 | |
| 	};
 | |
| 	DesignModel model;
 | |
| 
 | |
| 	ezSatPtr ez;
 | |
| 	SatGen satgen;
 | |
| 
 | |
| 	struct Config {
 | |
| 		bool verbose = false;
 | |
| 		bool short_cones = false;
 | |
| 		bool model_undef = false;
 | |
| 		bool nogroup = false;
 | |
| 		bool set_assumes = false;
 | |
| 		int max_seq = 1;
 | |
| 	};
 | |
| 	Config cfg;
 | |
| 
 | |
| 	pool<pair<Cell*, int>> imported_cells_cache;
 | |
| 
 | |
| 	EquivSimpleWorker(const vector<Cell*> &equiv_cells, const vector<Cell*> &assume_cells, DesignModel model, Config cfg) :
 | |
| 			module(equiv_cells.front()->module), equiv_cells(equiv_cells), assume_cells(assume_cells),
 | |
| 			model(model), satgen(ez.get(), &model.sigmap), cfg(cfg)
 | |
| 	{
 | |
| 		satgen.model_undef = cfg.model_undef;
 | |
| 	}
 | |
| 
 | |
| 	struct ConeFinder {
 | |
| 		DesignModel model;
 | |
| 		// Bits we should also analyze in a later iteration (flop inputs)
 | |
| 		pool<SigBit> &next_seed;
 | |
| 		// Cells and bits we've seen so far while traversing
 | |
| 		Cone& cone;
 | |
| 		// We're not allowed to traverse past cells and bits in `stop`
 | |
| 		const Cone& stop;
 | |
| 		// Input bits are bits that no longer can be traversed
 | |
| 		// Tracking these is optional
 | |
| 		pool<SigBit>* input_bits;
 | |
| 
 | |
| 		// Recursively traverses backwards from a cell to find all cells in its input cone
 | |
| 		// Adds cell to cone.cells, stops at cells in 'stop' set
 | |
| 		// Returns true if stopped on a stop cell
 | |
| 		bool find_input_cone(Cell *cell)
 | |
| 		{
 | |
| 			if (cone.cells.count(cell))
 | |
| 				return false;
 | |
| 
 | |
| 			cone.cells.insert(cell);
 | |
| 
 | |
| 			if (stop.cells.count(cell))
 | |
| 				return true;
 | |
| 
 | |
| 			for (auto &conn : cell->connections())
 | |
| 				if (yosys_celltypes.cell_input(cell->type, conn.first))
 | |
| 					for (auto bit : model.sigmap(conn.second)) {
 | |
| 						if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
 | |
| 							if (!conn.first.in(ID::CLK, ID::C))
 | |
| 								next_seed.insert(bit);
 | |
| 						} else
 | |
| 							find_input_cone(bit);
 | |
| 					}
 | |
| 			return false;
 | |
| 		}
 | |
| 		void find_input_cone(SigBit bit)
 | |
| 		{
 | |
| 			if (cone.bits.count(bit))
 | |
| 				return;
 | |
| 
 | |
| 			cone.bits.insert(bit);
 | |
| 
 | |
| 			if (stop.bits.count(bit)) {
 | |
| 				if (input_bits != nullptr) input_bits->insert(bit);
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			if (!model.bit2driver.count(bit))
 | |
| 				return;
 | |
| 
 | |
| 			// If the input cone of the driver cell reaches a stop bit,
 | |
| 			// then `bit` is an "input bit"
 | |
| 			if (find_input_cone(model.bit2driver.at(bit)))
 | |
| 				if (input_bits != nullptr) input_bits->insert(bit);
 | |
| 		}
 | |
| 		void find_input_cone(pool<SigBit> bits)
 | |
| 		{
 | |
| 			for (auto bit : bits)
 | |
| 				find_input_cone(bit);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	// Builds (full or short) input cones from the seeds
 | |
| 	// Creates full cones (no stops) and optionally short cones (stop at other side's cone)
 | |
| 	// Updates seed_a/seed_b with next iteration's FF inputs
 | |
| 	// Returns input bits and cone structures for SAT problem construction
 | |
| 	std::tuple<pool<SigBit>, Cone, Cone> init_iter(pool<SigBit>& seed_a, pool<SigBit>& seed_b) const
 | |
| 	{
 | |
| 		// Empty, never inserted to, to traverse full cones
 | |
| 		const Cone no_stop;
 | |
| 		Cone full_cone_a, full_cone_b;
 | |
| 
 | |
| 		// Values of seed_* for the next iteration
 | |
| 		pool<SigBit> next_seed_a, next_seed_b;
 | |
| 
 | |
| 		{
 | |
| 			ConeFinder finder_a {model, next_seed_a, full_cone_a, no_stop, nullptr};
 | |
| 			finder_a.find_input_cone(seed_a);
 | |
| 
 | |
| 			ConeFinder finder_b {model, next_seed_b, full_cone_b, no_stop, nullptr};
 | |
| 			finder_b.find_input_cone(seed_b);
 | |
| 		}
 | |
| 
 | |
| 		Cone short_cone_a, short_cone_b;
 | |
| 		pool<SigBit> input_bits;
 | |
| 
 | |
| 		if (cfg.short_cones)
 | |
| 		{
 | |
| 			// Rebuild cones with the knowledge of the full cones.
 | |
| 			// Avoids stuffing overlaps in input cones into the solver
 | |
| 			// e.g. for A by using the full B cone as stops
 | |
| 			next_seed_a.clear();
 | |
| 			ConeFinder short_finder_a = {model, next_seed_a, short_cone_a, short_cone_b, &input_bits};
 | |
| 			short_finder_a.find_input_cone(seed_a);
 | |
| 			next_seed_a.swap(seed_a);
 | |
| 
 | |
| 			next_seed_b.clear();
 | |
| 			ConeFinder short_finder_b = {model, next_seed_b, short_cone_b, short_cone_a, &input_bits};
 | |
| 			short_finder_b.find_input_cone(seed_b);
 | |
| 			next_seed_b.swap(seed_b);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			short_cone_a = full_cone_a;
 | |
| 			next_seed_a.swap(seed_a);
 | |
| 
 | |
| 			short_cone_b = full_cone_b;
 | |
| 			next_seed_b.swap(seed_b);
 | |
| 		}
 | |
| 		return std::make_tuple(input_bits, short_cone_a, short_cone_b);
 | |
| 	}
 | |
| 
 | |
| 	void report_new_cells(const pool<Cell*>& cells, const Cone& cone_a, const Cone& cone_b) const
 | |
| 	{
 | |
| 		log("    Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
 | |
| 					GetSize(cells), GetSize(cone_a.cells), GetSize(cone_b.cells),
 | |
| 					(GetSize(cone_a.cells) + GetSize(cone_b.cells)) - GetSize(cells));
 | |
| 		#if 0
 | |
| 			for (auto cell : short_cells_cone_a)
 | |
| 				log("      A-side cell: %s\n", log_id(cell));
 | |
| 
 | |
| 			for (auto cell : short_cells_cone_b)
 | |
| 				log("      B-side cell: %s\n", log_id(cell));
 | |
| 		#endif
 | |
| 	}
 | |
| 	void report_new_assume_cells(const pool<Cell*>& extra_problem_cells, int old_size, const pool<Cell*>& problem_cells) const
 | |
| 	{
 | |
| 		if (cfg.verbose) {
 | |
| 			log("    Adding %d new cells to check assumptions (and reusing %d).\n",
 | |
| 				GetSize(problem_cells) - old_size,
 | |
| 				old_size - (GetSize(problem_cells) - GetSize(extra_problem_cells)));
 | |
| 		#if 0
 | |
| 			for (auto cell : extra_problem_cells)
 | |
| 				log("      cell: %s\n", log_id(cell));
 | |
| 		#endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Ensure the input cones of $assume cells get modelled by the problem
 | |
| 	pool<Cell*> add_assumes_to_problem(const Cone& cone_a, const Cone& cone_b) const
 | |
| 	{
 | |
| 		pool<Cell*> extra_problem_cells;
 | |
| 		for (auto assume : assume_cells) {
 | |
| 			pool<SigBit> assume_seed, dummy_next_seed, overlap_bits;
 | |
| 			assume_seed.insert(model.sigmap(assume->getPort(ID::A)).as_bit());
 | |
| 			assume_seed.insert(model.sigmap(assume->getPort(ID::EN)).as_bit());
 | |
| 
 | |
| 			for (auto& cone : {cone_a, cone_b}) {
 | |
| 				Cone assume_cone;
 | |
| 				ConeFinder{model, dummy_next_seed, assume_cone, cone, &overlap_bits}
 | |
| 					.find_input_cone(assume_seed);
 | |
| 				if (GetSize(overlap_bits)) {
 | |
| 					extra_problem_cells.insert(assume);
 | |
| 					extra_problem_cells.insert(assume_cone.cells.begin(), assume_cone.cells.end());
 | |
| 					overlap_bits.clear();
 | |
| 				}
 | |
| 				assume_cone.clear();
 | |
| 				dummy_next_seed.clear();
 | |
| 			}
 | |
| 		}
 | |
| 		return extra_problem_cells;
 | |
| 	}
 | |
| 
 | |
| 	static void report_missing_model(Cell* cell)
 | |
| 	{
 | |
| 		if (RTLIL::builtin_ff_cell_types().count(cell->type))
 | |
| 			log_cmd_error("No SAT model available for async FF cell %s (%s).  Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type));
 | |
| 		else
 | |
| 			log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
 | |
| 	}
 | |
| 
 | |
| 	void prepare_ezsat(int ez_context, SigBit bit_a, SigBit bit_b)
 | |
| 	{
 | |
| 		if (satgen.model_undef)
 | |
| 		{
 | |
| 			int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
 | |
| 			int ez_b = satgen.importDefSigBit(bit_b, cfg.max_seq+1);
 | |
| 			int ez_undef_a = satgen.importUndefSigBit(bit_a, cfg.max_seq+1);
 | |
| 
 | |
| 			ez->assume(ez->XOR(ez_a, ez_b), ez_context);
 | |
| 			ez->assume(ez->NOT(ez_undef_a), ez_context);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			int ez_a = satgen.importSigBit(bit_a, cfg.max_seq+1);
 | |
| 			int ez_b = satgen.importSigBit(bit_b, cfg.max_seq+1);
 | |
| 			ez->assume(ez->XOR(ez_a, ez_b), ez_context);
 | |
| 		}
 | |
| 	}
 | |
| 	void construct_ezsat(const pool<SigBit>& input_bits, int step)
 | |
| 	{
 | |
| 		if (cfg.set_assumes) {
 | |
| 			if (cfg.verbose && step == cfg.max_seq) {
 | |
| 				RTLIL::SigSpec assumes_a, assumes_en;
 | |
| 				satgen.getAssumes(assumes_a, assumes_en, step+1);
 | |
| 				for (int i = 0; i < GetSize(assumes_a); i++)
 | |
| 					log("    Import constraint from assume cell: %s when %s (%d).\n", log_signal(assumes_a[i]), log_signal(assumes_en[i]), step);
 | |
| 			}
 | |
| 			ez->assume(satgen.importAssumes(step+1));
 | |
| 		}
 | |
| 
 | |
| 		if (satgen.model_undef) {
 | |
| 			for (auto bit : input_bits)
 | |
| 				ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1)));
 | |
| 		}
 | |
| 
 | |
| 		if (cfg.verbose)
 | |
| 			log("    Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses());
 | |
| 	}
 | |
| 
 | |
| 	bool prove_equiv_cell(Cell* cell)
 | |
| 	{
 | |
| 		SigBit bit_a = model.sigmap(cell->getPort(ID::A)).as_bit();
 | |
| 		SigBit bit_b = model.sigmap(cell->getPort(ID::B)).as_bit();
 | |
| 		int ez_context = ez->frozen_literal();
 | |
| 
 | |
| 		prepare_ezsat(ez_context, bit_a, bit_b);
 | |
| 
 | |
| 		// Two bits, bit_a, and bit_b, have been marked equivalent in the design
 | |
| 		// We will be traversing the input cones for each of them
 | |
| 		// In the first iteration, we will using those as starting points
 | |
| 		pool<SigBit> seed_a = { bit_a };
 | |
| 		pool<SigBit> seed_b = { bit_b };
 | |
| 
 | |
| 		if (cfg.verbose) {
 | |
| 			log("  Trying to prove $equiv cell %s:\n", log_id(cell));
 | |
| 			log("    A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(cell->getPort(ID::Y)));
 | |
| 		} else {
 | |
| 			log("  Trying to prove $equiv for %s:", log_signal(cell->getPort(ID::Y)));
 | |
| 		}
 | |
| 
 | |
| 		int step = cfg.max_seq;
 | |
| 		while (1)
 | |
| 		{
 | |
| 			// Traverse input cones of seed_a and seed_b, potentially finding new seeds
 | |
| 			auto [input_bits, cone_a, cone_b] = init_iter(seed_a, seed_b);
 | |
| 
 | |
| 			// Cells to model in SAT solver
 | |
| 			pool<Cell*> problem_cells;
 | |
| 			problem_cells.insert(cone_a.cells.begin(), cone_a.cells.end());
 | |
| 			problem_cells.insert(cone_b.cells.begin(), cone_b.cells.end());
 | |
| 
 | |
| 			if (cfg.verbose)
 | |
| 				report_new_cells(problem_cells, cone_a, cone_b);
 | |
| 
 | |
| 			if (cfg.set_assumes) {
 | |
| 				auto extras = add_assumes_to_problem(cone_a, cone_b);
 | |
| 				if (GetSize(extras)) {
 | |
| 					auto old_size = GetSize(problem_cells);
 | |
| 					problem_cells.insert(extras.begin(), extras.end());
 | |
| 					report_new_assume_cells(extras, old_size, problem_cells);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			for (auto cell : problem_cells) {
 | |
| 				auto key = pair<Cell*, int>(cell, step+1);
 | |
| 				if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) {
 | |
| 					report_missing_model(cell);
 | |
| 				}
 | |
| 				imported_cells_cache.insert(key);
 | |
| 			}
 | |
| 
 | |
| 			construct_ezsat(input_bits, step);
 | |
| 
 | |
| 			if (!ez->solve(ez_context)) {
 | |
| 				log(cfg.verbose ? "    Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
 | |
| 				// Replace $equiv cell with a short
 | |
| 				cell->setPort(ID::B, cell->getPort(ID::A));
 | |
| 				ez->assume(ez->NOT(ez_context));
 | |
| 				return true;
 | |
| 			}
 | |
| 
 | |
| 			if (cfg.verbose)
 | |
| 				log("    Failed to prove equivalence with sequence length %d.\n", cfg.max_seq - step);
 | |
| 
 | |
| 			if (--step < 0) {
 | |
| 				if (cfg.verbose)
 | |
| 					log("    Reached sequence limit.\n");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (seed_a.empty() && seed_b.empty()) {
 | |
| 				if (cfg.verbose)
 | |
| 					log("    No nets to continue in previous time step.\n");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (seed_a.empty()) {
 | |
| 				if (cfg.verbose)
 | |
| 					log("    No nets on A-side to continue in previous time step.\n");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (seed_b.empty()) {
 | |
| 				if (cfg.verbose)
 | |
| 					log("    No nets on B-side to continue in previous time step.\n");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (cfg.verbose) {
 | |
| 			#if 0
 | |
| 				log("    Continuing analysis in previous time step with the following nets:\n");
 | |
| 				for (auto bit : seed_a)
 | |
| 					log("      A: %s\n", log_signal(bit));
 | |
| 				for (auto bit : seed_b)
 | |
| 					log("      B: %s\n", log_signal(bit));
 | |
| 			#else
 | |
| 				log("    Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b));
 | |
| 			#endif
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!cfg.verbose)
 | |
| 			log(" failed.\n");
 | |
| 
 | |
| 		ez->assume(ez->NOT(ez_context));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	int run()
 | |
| 	{
 | |
| 		if (GetSize(equiv_cells) > 1) {
 | |
| 			SigSpec sig;
 | |
| 			for (auto c : equiv_cells)
 | |
| 				sig.append(model.sigmap(c->getPort(ID::Y)));
 | |
| 			log(" Grouping SAT models for %s:\n", log_signal(sig));
 | |
| 		}
 | |
| 
 | |
| 		int counter = 0;
 | |
| 		for (auto c : equiv_cells) {
 | |
| 			if (prove_equiv_cell(c))
 | |
| 				counter++;
 | |
| 		}
 | |
| 		return counter;
 | |
| 	}
 | |
| 
 | |
| };
 | |
| 
 | |
| struct EquivSimplePass : public Pass {
 | |
| 	EquivSimplePass() : Pass("equiv_simple", "try proving simple $equiv instances") { }
 | |
| 	void help() override
 | |
| 	{
 | |
| 		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | |
| 		log("\n");
 | |
| 		log("    equiv_simple [options] [selection]\n");
 | |
| 		log("\n");
 | |
| 		log("This command tries to prove $equiv cells using a simple direct SAT approach.\n");
 | |
| 		log("\n");
 | |
| 		log("    -v\n");
 | |
| 		log("        verbose output\n");
 | |
| 		log("\n");
 | |
| 		log("    -undef\n");
 | |
| 		log("        enable modelling of undef states\n");
 | |
| 		log("\n");
 | |
| 		log("    -short\n");
 | |
| 		log("        create shorter input cones that stop at shared nodes. This yields\n");
 | |
| 		log("        simpler SAT problems but sometimes fails to prove equivalence.\n");
 | |
| 		log("\n");
 | |
| 		log("    -nogroup\n");
 | |
| 		log("        disabling grouping of $equiv cells by output wire\n");
 | |
| 		log("\n");
 | |
| 		log("    -seq <N>\n");
 | |
| 		log("        the max. number of time steps to be considered (default = 1)\n");
 | |
| 		log("\n");
 | |
| 		log("    -set-assumes\n");
 | |
| 		log("        set all assumptions provided via $assume cells\n");
 | |
| 		log("\n");
 | |
| 	}
 | |
| 	void execute(std::vector<std::string> args, Design *design) override
 | |
| 	{
 | |
| 		EquivSimpleWorker::Config cfg = {};
 | |
| 		int success_counter = 0;
 | |
| 
 | |
| 		log_header(design, "Executing EQUIV_SIMPLE pass.\n");
 | |
| 
 | |
| 		size_t argidx;
 | |
| 		for (argidx = 1; argidx < args.size(); argidx++) {
 | |
| 			if (args[argidx] == "-v") {
 | |
| 				cfg.verbose = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (args[argidx] == "-short") {
 | |
| 				cfg.short_cones = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (args[argidx] == "-undef") {
 | |
| 				cfg.model_undef = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (args[argidx] == "-nogroup") {
 | |
| 				cfg.nogroup = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (args[argidx] == "-seq" && argidx+1 < args.size()) {
 | |
| 				cfg.max_seq = atoi(args[++argidx].c_str());
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (args[argidx] == "-set-assumes") {
 | |
| 				cfg.set_assumes = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		extra_args(args, argidx, design);
 | |
| 
 | |
| 		CellTypes ct;
 | |
| 		ct.setup_internals();
 | |
| 		ct.setup_stdcells();
 | |
| 		ct.setup_internals_ff();
 | |
| 		ct.setup_stdcells_mem();
 | |
| 
 | |
| 		for (auto module : design->selected_modules())
 | |
| 		{
 | |
| 			SigMap sigmap(module);
 | |
| 			dict<SigBit, Cell*> bit2driver;
 | |
| 			dict<SigBit, dict<SigBit, Cell*>> unproven_equiv_cells;
 | |
| 			vector<Cell*> assumes;
 | |
| 			int unproven_cells_counter = 0;
 | |
| 
 | |
| 			for (auto cell : module->selected_cells()) {
 | |
| 				if (cell->type == ID($equiv) && cell->getPort(ID::A) != cell->getPort(ID::B)) {
 | |
| 					auto bit = sigmap(cell->getPort(ID::Y).as_bit());
 | |
| 					auto bit_group = bit;
 | |
| 					if (!cfg.nogroup && bit_group.wire)
 | |
| 						bit_group.offset = 0;
 | |
| 					unproven_equiv_cells[bit_group][bit] = cell;
 | |
| 					unproven_cells_counter++;
 | |
| 				} else if (cell->type == ID($assume)) {
 | |
| 					assumes.push_back(cell);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (unproven_equiv_cells.empty())
 | |
| 				continue;
 | |
| 
 | |
| 			log("Found %d unproven $equiv cells (%d groups) in %s:\n",
 | |
| 					unproven_cells_counter, GetSize(unproven_equiv_cells), log_id(module));
 | |
| 
 | |
| 			for (auto cell : module->cells()) {
 | |
| 				if (!ct.cell_known(cell->type))
 | |
| 					continue;
 | |
| 				for (auto &conn : cell->connections())
 | |
| 					if (yosys_celltypes.cell_output(cell->type, conn.first))
 | |
| 						for (auto bit : sigmap(conn.second))
 | |
| 							bit2driver[bit] = cell;
 | |
| 			}
 | |
| 
 | |
| 			unproven_equiv_cells.sort();
 | |
| 			for (auto [_, d] : unproven_equiv_cells)
 | |
| 			{
 | |
| 				d.sort();
 | |
| 
 | |
| 				vector<Cell*> cells;
 | |
| 				for (auto [_, cell] : d)
 | |
| 					cells.push_back(cell);
 | |
| 
 | |
| 				EquivSimpleWorker::DesignModel model {sigmap, bit2driver};
 | |
| 				EquivSimpleWorker worker(cells, assumes, model, cfg);
 | |
| 				success_counter += worker.run();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		log("Proved %d previously unproven $equiv cells.\n", success_counter);
 | |
| 	}
 | |
| } EquivSimplePass;
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 |