3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-06 09:34:09 +00:00
yosys/kernel/mem.cc
Marcelina Kościelnicka 8bf9cb407d kernel/mem: Add a coalesce_inits helper.
While this helper is already useful to squash sequential initializations
into one in cxxrtl, its main purpose is to squash overlapping masked memory
initializations (when they land) and avoid having to deal with them in
cxxrtl runtime.
2021-07-13 15:59:11 +02:00

951 lines
30 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 Marcelina Kościelnicka <mwk@0x04.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/mem.h"
#include "kernel/ff.h"
USING_YOSYS_NAMESPACE
void Mem::remove() {
if (cell) {
module->remove(cell);
cell = nullptr;
}
if (mem) {
module->memories.erase(mem->name);
delete mem;
mem = nullptr;
}
for (auto &port : rd_ports) {
if (port.cell) {
module->remove(port.cell);
port.cell = nullptr;
}
}
for (auto &port : wr_ports) {
if (port.cell) {
module->remove(port.cell);
port.cell = nullptr;
}
}
for (auto &init : inits) {
if (init.cell) {
module->remove(init.cell);
init.cell = nullptr;
}
}
}
void Mem::emit() {
check();
std::vector<int> rd_left;
for (int i = 0; i < GetSize(rd_ports); i++) {
auto &port = rd_ports[i];
if (port.removed) {
if (port.cell) {
module->remove(port.cell);
}
} else {
rd_left.push_back(i);
}
}
std::vector<int> wr_left;
for (int i = 0; i < GetSize(wr_ports); i++) {
auto &port = wr_ports[i];
if (port.removed) {
if (port.cell) {
module->remove(port.cell);
}
} else {
wr_left.push_back(i);
}
}
std::vector<int> init_left;
for (int i = 0; i < GetSize(inits); i++) {
auto &init = inits[i];
if (init.removed) {
if (init.cell) {
module->remove(init.cell);
}
} else {
init_left.push_back(i);
}
}
for (int i = 0; i < GetSize(rd_left); i++)
if (i != rd_left[i])
std::swap(rd_ports[i], rd_ports[rd_left[i]]);
rd_ports.resize(GetSize(rd_left));
for (int i = 0; i < GetSize(wr_left); i++)
if (i != wr_left[i])
std::swap(wr_ports[i], wr_ports[wr_left[i]]);
wr_ports.resize(GetSize(wr_left));
for (int i = 0; i < GetSize(init_left); i++)
if (i != init_left[i])
std::swap(inits[i], inits[init_left[i]]);
inits.resize(GetSize(init_left));
// for future: handle transparency mask here
for (auto &port : wr_ports) {
for (int i = 0; i < GetSize(wr_left); i++)
port.priority_mask[i] = port.priority_mask[wr_left[i]];
port.priority_mask.resize(GetSize(wr_left));
}
if (packed) {
if (mem) {
module->memories.erase(mem->name);
delete mem;
mem = nullptr;
}
if (!cell) {
if (memid.empty())
memid = NEW_ID;
cell = module->addCell(memid, ID($mem));
}
cell->attributes = attributes;
cell->parameters[ID::MEMID] = Const(memid.str());
cell->parameters[ID::WIDTH] = Const(width);
cell->parameters[ID::OFFSET] = Const(start_offset);
cell->parameters[ID::SIZE] = Const(size);
Const rd_wide_continuation, rd_clk_enable, rd_clk_polarity, rd_transparent;
Const wr_wide_continuation, wr_clk_enable, wr_clk_polarity;
SigSpec rd_clk, rd_en, rd_addr, rd_data;
SigSpec wr_clk, wr_en, wr_addr, wr_data;
int abits = 0;
for (auto &port : rd_ports)
abits = std::max(abits, GetSize(port.addr));
for (auto &port : wr_ports)
abits = std::max(abits, GetSize(port.addr));
cell->parameters[ID::ABITS] = Const(abits);
for (auto &port : rd_ports) {
// TODO: remove
log_assert(port.arst == State::S0);
log_assert(port.srst == State::S0);
log_assert(port.init_value == Const(State::Sx, width << port.wide_log2));
if (port.cell) {
module->remove(port.cell);
port.cell = nullptr;
}
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
{
rd_wide_continuation.bits.push_back(State(sub != 0));
rd_clk_enable.bits.push_back(State(port.clk_enable));
rd_clk_polarity.bits.push_back(State(port.clk_polarity));
rd_transparent.bits.push_back(State(port.transparent));
rd_clk.append(port.clk);
rd_en.append(port.en);
SigSpec addr = port.sub_addr(sub);
addr.extend_u0(abits, false);
rd_addr.append(addr);
log_assert(GetSize(addr) == abits);
}
rd_data.append(port.data);
}
if (rd_ports.empty()) {
rd_wide_continuation = State::S0;
rd_clk_enable = State::S0;
rd_clk_polarity = State::S0;
rd_transparent = State::S0;
}
cell->parameters[ID::RD_PORTS] = Const(GetSize(rd_clk));
cell->parameters[ID::RD_CLK_ENABLE] = rd_clk_enable;
cell->parameters[ID::RD_CLK_POLARITY] = rd_clk_polarity;
cell->parameters[ID::RD_TRANSPARENT] = rd_transparent;
cell->setPort(ID::RD_CLK, rd_clk);
cell->setPort(ID::RD_EN, rd_en);
cell->setPort(ID::RD_ADDR, rd_addr);
cell->setPort(ID::RD_DATA, rd_data);
for (auto &port : wr_ports) {
if (port.cell) {
module->remove(port.cell);
port.cell = nullptr;
}
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
{
wr_wide_continuation.bits.push_back(State(sub != 0));
wr_clk_enable.bits.push_back(State(port.clk_enable));
wr_clk_polarity.bits.push_back(State(port.clk_polarity));
wr_clk.append(port.clk);
SigSpec addr = port.sub_addr(sub);
addr.extend_u0(abits, false);
wr_addr.append(addr);
log_assert(GetSize(addr) == abits);
}
wr_en.append(port.en);
wr_data.append(port.data);
}
if (wr_ports.empty()) {
wr_wide_continuation = State::S0;
wr_clk_enable = State::S0;
wr_clk_polarity = State::S0;
}
cell->parameters[ID::WR_PORTS] = Const(GetSize(wr_clk));
cell->parameters[ID::WR_CLK_ENABLE] = wr_clk_enable;
cell->parameters[ID::WR_CLK_POLARITY] = wr_clk_polarity;
cell->setPort(ID::WR_CLK, wr_clk);
cell->setPort(ID::WR_EN, wr_en);
cell->setPort(ID::WR_ADDR, wr_addr);
cell->setPort(ID::WR_DATA, wr_data);
for (auto &init : inits) {
if (init.cell) {
module->remove(init.cell);
init.cell = nullptr;
}
}
cell->parameters[ID::INIT] = get_init_data();
} else {
if (cell) {
module->remove(cell);
cell = nullptr;
}
if (!mem) {
if (memid.empty())
memid = NEW_ID;
mem = new RTLIL::Memory;
mem->name = memid;
module->memories[memid] = mem;
}
mem->width = width;
mem->start_offset = start_offset;
mem->size = size;
mem->attributes = attributes;
for (auto &port : rd_ports) {
// TODO: remove
log_assert(port.arst == State::S0);
log_assert(port.srst == State::S0);
log_assert(port.init_value == Const(State::Sx, width << port.wide_log2));
if (!port.cell)
port.cell = module->addCell(NEW_ID, ID($memrd));
port.cell->attributes = port.attributes;
port.cell->parameters[ID::MEMID] = memid.str();
port.cell->parameters[ID::ABITS] = GetSize(port.addr);
port.cell->parameters[ID::WIDTH] = width << port.wide_log2;
port.cell->parameters[ID::CLK_ENABLE] = port.clk_enable;
port.cell->parameters[ID::CLK_POLARITY] = port.clk_polarity;
port.cell->parameters[ID::TRANSPARENT] = port.transparent;
port.cell->setPort(ID::CLK, port.clk);
port.cell->setPort(ID::EN, port.en);
port.cell->setPort(ID::ADDR, port.addr);
port.cell->setPort(ID::DATA, port.data);
}
int idx = 0;
for (auto &port : wr_ports) {
if (!port.cell)
port.cell = module->addCell(NEW_ID, ID($memwr));
port.cell->attributes = port.attributes;
port.cell->parameters[ID::MEMID] = memid.str();
port.cell->parameters[ID::ABITS] = GetSize(port.addr);
port.cell->parameters[ID::WIDTH] = width << port.wide_log2;
port.cell->parameters[ID::CLK_ENABLE] = port.clk_enable;
port.cell->parameters[ID::CLK_POLARITY] = port.clk_polarity;
port.cell->parameters[ID::PRIORITY] = idx++;
port.cell->setPort(ID::CLK, port.clk);
port.cell->setPort(ID::EN, port.en);
port.cell->setPort(ID::ADDR, port.addr);
port.cell->setPort(ID::DATA, port.data);
}
idx = 0;
for (auto &init : inits) {
if (!init.cell)
init.cell = module->addCell(NEW_ID, ID($meminit));
init.cell->attributes = init.attributes;
init.cell->parameters[ID::MEMID] = memid.str();
init.cell->parameters[ID::ABITS] = GetSize(init.addr);
init.cell->parameters[ID::WIDTH] = width;
init.cell->parameters[ID::WORDS] = GetSize(init.data) / width;
init.cell->parameters[ID::PRIORITY] = idx++;
init.cell->setPort(ID::ADDR, init.addr);
init.cell->setPort(ID::DATA, init.data);
}
}
}
void Mem::clear_inits() {
for (auto &init : inits)
init.removed = true;
}
void Mem::coalesce_inits() {
// start address -> end address
std::map<int, int> chunks;
// Figure out chunk boundaries.
for (auto &init : inits) {
if (init.removed)
continue;
int addr = init.addr.as_int();
int addr_e = addr + GetSize(init.data) / width;
auto it_e = chunks.upper_bound(addr_e);
auto it = it_e;
while (it != chunks.begin()) {
--it;
if (it->second < addr) {
++it;
break;
}
}
if (it == it_e) {
// No overlapping inits — add this one to index.
chunks[addr] = addr_e;
} else {
// We have an overlap — all chunks in the [it, it_e)
// range will be merged with this init.
if (it->first < addr)
addr = it->first;
auto it_last = it_e;
it_last--;
if (it_last->second > addr_e)
addr_e = it_last->second;
chunks.erase(it, it_e);
chunks[addr] = addr_e;
}
}
// Group inits by the chunk they belong to.
dict<int, std::vector<int>> inits_by_chunk;
for (int i = 0; i < GetSize(inits); i++) {
auto &init = inits[i];
if (init.removed)
continue;
auto it = chunks.upper_bound(init.addr.as_int());
--it;
inits_by_chunk[it->first].push_back(i);
int addr = init.addr.as_int();
int addr_e = addr + GetSize(init.data) / width;
log_assert(addr >= it->first && addr_e <= it->second);
}
// Process each chunk.
for (auto &it : inits_by_chunk) {
int caddr = it.first;
int caddr_e = chunks[caddr];
auto &chunk_inits = it.second;
if (GetSize(chunk_inits) == 1) {
continue;
}
Const cdata(State::Sx, (caddr_e - caddr) * width);
for (int idx : chunk_inits) {
auto &init = inits[idx];
int offset = (init.addr.as_int() - caddr) * width;
log_assert(offset >= 0);
log_assert(offset + GetSize(init.data) <= GetSize(cdata));
for (int i = 0; i < GetSize(init.data); i++)
cdata.bits[i+offset] = init.data.bits[i];
init.removed = true;
}
MemInit new_init;
new_init.addr = caddr;
new_init.data = cdata;
inits.push_back(new_init);
}
}
Const Mem::get_init_data() const {
Const init_data(State::Sx, width * size);
for (auto &init : inits) {
if (init.removed)
continue;
int offset = (init.addr.as_int() - start_offset) * width;
for (int i = 0; i < GetSize(init.data); i++)
if (0 <= i+offset && i+offset < GetSize(init_data))
init_data.bits[i+offset] = init.data.bits[i];
}
return init_data;
}
void Mem::check() {
int max_wide_log2 = 0;
for (auto &port : rd_ports) {
if (port.removed)
continue;
log_assert(GetSize(port.clk) == 1);
log_assert(GetSize(port.en) == 1);
log_assert(GetSize(port.arst) == 1);
log_assert(GetSize(port.srst) == 1);
log_assert(GetSize(port.data) == (width << port.wide_log2));
log_assert(GetSize(port.init_value) == (width << port.wide_log2));
log_assert(GetSize(port.arst_value) == (width << port.wide_log2));
log_assert(GetSize(port.srst_value) == (width << port.wide_log2));
if (!port.clk_enable) {
log_assert(!port.transparent);
log_assert(port.en == State::S1);
log_assert(port.arst == State::S0);
log_assert(port.srst == State::S0);
}
for (int j = 0; j < port.wide_log2; j++) {
log_assert(port.addr[j] == State::S0);
}
max_wide_log2 = std::max(max_wide_log2, port.wide_log2);
}
for (int i = 0; i < GetSize(wr_ports); i++) {
auto &port = wr_ports[i];
if (port.removed)
continue;
log_assert(GetSize(port.clk) == 1);
log_assert(GetSize(port.en) == (width << port.wide_log2));
log_assert(GetSize(port.data) == (width << port.wide_log2));
for (int j = 0; j < port.wide_log2; j++) {
log_assert(port.addr[j] == State::S0);
}
max_wide_log2 = std::max(max_wide_log2, port.wide_log2);
log_assert(GetSize(port.priority_mask) == GetSize(wr_ports));
for (int j = 0; j < GetSize(wr_ports); j++) {
auto &wport = wr_ports[j];
if (port.priority_mask[j] && !wport.removed) {
log_assert(j < i);
log_assert(port.clk_enable == wport.clk_enable);
if (port.clk_enable) {
log_assert(port.clk == wport.clk);
log_assert(port.clk_polarity == wport.clk_polarity);
}
}
}
}
int mask = (1 << max_wide_log2) - 1;
log_assert(!(start_offset & mask));
log_assert(!(size & mask));
}
namespace {
struct MemIndex {
dict<IdString, pool<Cell *>> rd_ports;
dict<IdString, pool<Cell *>> wr_ports;
dict<IdString, pool<Cell *>> inits;
MemIndex (Module *module) {
for (auto cell: module->cells()) {
if (cell->type == ID($memwr))
wr_ports[cell->parameters.at(ID::MEMID).decode_string()].insert(cell);
else if (cell->type == ID($memrd))
rd_ports[cell->parameters.at(ID::MEMID).decode_string()].insert(cell);
else if (cell->type == ID($meminit))
inits[cell->parameters.at(ID::MEMID).decode_string()].insert(cell);
}
}
};
Mem mem_from_memory(Module *module, RTLIL::Memory *mem, const MemIndex &index) {
Mem res(module, mem->name, mem->width, mem->start_offset, mem->size);
res.packed = false;
res.mem = mem;
res.attributes = mem->attributes;
if (index.rd_ports.count(mem->name)) {
for (auto cell : index.rd_ports.at(mem->name)) {
MemRd mrd;
mrd.cell = cell;
mrd.attributes = cell->attributes;
mrd.clk_enable = cell->parameters.at(ID::CLK_ENABLE).as_bool();
mrd.clk_polarity = cell->parameters.at(ID::CLK_POLARITY).as_bool();
mrd.transparent = cell->parameters.at(ID::TRANSPARENT).as_bool();
mrd.clk = cell->getPort(ID::CLK);
mrd.en = cell->getPort(ID::EN);
mrd.addr = cell->getPort(ID::ADDR);
mrd.data = cell->getPort(ID::DATA);
mrd.wide_log2 = ceil_log2(GetSize(mrd.data) / mem->width);
mrd.ce_over_srst = false;
mrd.arst_value = Const(State::Sx, mem->width << mrd.wide_log2);
mrd.srst_value = Const(State::Sx, mem->width << mrd.wide_log2);
mrd.init_value = Const(State::Sx, mem->width << mrd.wide_log2);
mrd.srst = State::S0;
mrd.arst = State::S0;
if (!mrd.clk_enable) {
// Fix some patterns that we'll allow for backwards compatibility,
// but don't want to see moving forwards: async transparent
// ports (inherently meaningless) and async ports without
// const 1 tied to EN bit (which may mean a latch in the future).
mrd.transparent = false;
if (mrd.en == State::Sx)
mrd.en = State::S1;
}
res.rd_ports.push_back(mrd);
}
}
if (index.wr_ports.count(mem->name)) {
std::vector<std::pair<int, MemWr>> ports;
for (auto cell : index.wr_ports.at(mem->name)) {
MemWr mwr;
mwr.cell = cell;
mwr.attributes = cell->attributes;
mwr.clk_enable = cell->parameters.at(ID::CLK_ENABLE).as_bool();
mwr.clk_polarity = cell->parameters.at(ID::CLK_POLARITY).as_bool();
mwr.clk = cell->getPort(ID::CLK);
mwr.en = cell->getPort(ID::EN);
mwr.addr = cell->getPort(ID::ADDR);
mwr.data = cell->getPort(ID::DATA);
mwr.wide_log2 = ceil_log2(GetSize(mwr.data) / mem->width);
ports.push_back(std::make_pair(cell->parameters.at(ID::PRIORITY).as_int(), mwr));
}
std::sort(ports.begin(), ports.end(), [](const std::pair<int, MemWr> &a, const std::pair<int, MemWr> &b) { return a.first < b.first; });
for (auto &it : ports)
res.wr_ports.push_back(it.second);
}
if (index.inits.count(mem->name)) {
std::vector<std::pair<int, MemInit>> inits;
for (auto cell : index.inits.at(mem->name)) {
MemInit init;
init.cell = cell;
init.attributes = cell->attributes;
auto addr = cell->getPort(ID::ADDR);
auto data = cell->getPort(ID::DATA);
if (!addr.is_fully_const())
log_error("Non-constant address %s in memory initialization %s.\n", log_signal(addr), log_id(cell));
if (!data.is_fully_const())
log_error("Non-constant data %s in memory initialization %s.\n", log_signal(data), log_id(cell));
init.addr = addr.as_const();
init.data = data.as_const();
inits.push_back(std::make_pair(cell->parameters.at(ID::PRIORITY).as_int(), init));
}
std::sort(inits.begin(), inits.end(), [](const std::pair<int, MemInit> &a, const std::pair<int, MemInit> &b) { return a.first < b.first; });
for (auto &it : inits)
res.inits.push_back(it.second);
}
for (int i = 0; i < GetSize(res.wr_ports); i++) {
auto &port = res.wr_ports[i];
port.priority_mask.resize(GetSize(res.wr_ports));
for (int j = 0; j < i; j++) {
auto &oport = res.wr_ports[j];
if (port.clk_enable != oport.clk_enable)
continue;
if (port.clk_enable && port.clk != oport.clk)
continue;
if (port.clk_enable && port.clk_polarity != oport.clk_polarity)
continue;
port.priority_mask[j] = true;
}
}
res.check();
return res;
}
Mem mem_from_cell(Cell *cell) {
Mem res(cell->module, cell->parameters.at(ID::MEMID).decode_string(),
cell->parameters.at(ID::WIDTH).as_int(),
cell->parameters.at(ID::OFFSET).as_int(),
cell->parameters.at(ID::SIZE).as_int()
);
int abits = cell->parameters.at(ID::ABITS).as_int();
res.packed = true;
res.cell = cell;
res.attributes = cell->attributes;
Const &init = cell->parameters.at(ID::INIT);
if (!init.is_fully_undef()) {
int pos = 0;
while (pos < res.size) {
Const word = init.extract(pos * res.width, res.width, State::Sx);
if (word.is_fully_undef()) {
pos++;
} else {
int epos;
for (epos = pos; epos < res.size; epos++) {
Const eword = init.extract(epos * res.width, res.width, State::Sx);
if (eword.is_fully_undef())
break;
}
MemInit minit;
minit.addr = res.start_offset + pos;
minit.data = init.extract(pos * res.width, (epos - pos) * res.width, State::Sx);
res.inits.push_back(minit);
pos = epos;
}
}
}
for (int i = 0; i < cell->parameters.at(ID::RD_PORTS).as_int(); i++) {
MemRd mrd;
mrd.wide_log2 = 0;
mrd.clk_enable = cell->parameters.at(ID::RD_CLK_ENABLE).extract(i, 1).as_bool();
mrd.clk_polarity = cell->parameters.at(ID::RD_CLK_POLARITY).extract(i, 1).as_bool();
mrd.transparent = cell->parameters.at(ID::RD_TRANSPARENT).extract(i, 1).as_bool();
mrd.clk = cell->getPort(ID::RD_CLK).extract(i, 1);
mrd.en = cell->getPort(ID::RD_EN).extract(i, 1);
mrd.addr = cell->getPort(ID::RD_ADDR).extract(i * abits, abits);
mrd.data = cell->getPort(ID::RD_DATA).extract(i * res.width, res.width);
mrd.ce_over_srst = false;
mrd.arst_value = Const(State::Sx, res.width << mrd.wide_log2);
mrd.srst_value = Const(State::Sx, res.width << mrd.wide_log2);
mrd.init_value = Const(State::Sx, res.width << mrd.wide_log2);
mrd.srst = State::S0;
mrd.arst = State::S0;
res.rd_ports.push_back(mrd);
}
for (int i = 0; i < cell->parameters.at(ID::WR_PORTS).as_int(); i++) {
MemWr mwr;
mwr.wide_log2 = 0;
mwr.clk_enable = cell->parameters.at(ID::WR_CLK_ENABLE).extract(i, 1).as_bool();
mwr.clk_polarity = cell->parameters.at(ID::WR_CLK_POLARITY).extract(i, 1).as_bool();
mwr.clk = cell->getPort(ID::WR_CLK).extract(i, 1);
mwr.en = cell->getPort(ID::WR_EN).extract(i * res.width, res.width);
mwr.addr = cell->getPort(ID::WR_ADDR).extract(i * abits, abits);
mwr.data = cell->getPort(ID::WR_DATA).extract(i * res.width, res.width);
res.wr_ports.push_back(mwr);
}
for (int i = 0; i < GetSize(res.wr_ports); i++) {
auto &port = res.wr_ports[i];
port.priority_mask.resize(GetSize(res.wr_ports));
for (int j = 0; j < i; j++) {
auto &oport = res.wr_ports[j];
if (port.clk_enable != oport.clk_enable)
continue;
if (port.clk_enable && port.clk != oport.clk)
continue;
if (port.clk_enable && port.clk_polarity != oport.clk_polarity)
continue;
port.priority_mask[j] = true;
}
}
res.check();
return res;
}
}
std::vector<Mem> Mem::get_all_memories(Module *module) {
std::vector<Mem> res;
MemIndex index(module);
for (auto it: module->memories) {
res.push_back(mem_from_memory(module, it.second, index));
}
for (auto cell: module->cells()) {
if (cell->type == ID($mem))
res.push_back(mem_from_cell(cell));
}
return res;
}
std::vector<Mem> Mem::get_selected_memories(Module *module) {
std::vector<Mem> res;
MemIndex index(module);
for (auto it: module->memories) {
if (module->design->selected(module, it.second))
res.push_back(mem_from_memory(module, it.second, index));
}
for (auto cell: module->selected_cells()) {
if (cell->type == ID($mem))
res.push_back(mem_from_cell(cell));
}
return res;
}
Cell *Mem::extract_rdff(int idx, FfInitVals *initvals) {
MemRd &port = rd_ports[idx];
if (!port.clk_enable)
return nullptr;
Cell *c;
// There are two ways to handle rdff extraction when transparency is involved:
//
// - if all of the following conditions are true, put the FF on address input:
//
// - the port has no clock enable, no reset, and no initial value
// - the port is transparent wrt all write ports (implying they also share
// the clock domain)
//
// - otherwise, put the FF on the data output, and make bypass paths for
// all write ports wrt which this port is transparent
bool trans_use_addr = port.transparent;
// If there are no write ports at all, we could possibly use either way; do data
// FF in this case.
if (GetSize(wr_ports) == 0)
trans_use_addr = false;
if (port.en != State::S1 || port.srst != State::S0 || port.arst != State::S0 || !port.init_value.is_fully_undef())
trans_use_addr = false;
if (trans_use_addr)
{
// Do not put a register in front of constant address bits — this is both
// unnecessary and will break wide ports.
int width = 0;
for (int i = 0; i < GetSize(port.addr); i++)
if (port.addr[i].wire)
width++;
if (width)
{
SigSpec sig_q = module->addWire(stringf("$%s$rdreg[%d]$q", memid.c_str(), idx), width);
SigSpec sig_d;
int pos = 0;
for (int i = 0; i < GetSize(port.addr); i++)
if (port.addr[i].wire) {
sig_d.append(port.addr[i]);
port.addr[i] = sig_q[pos++];
}
c = module->addDff(stringf("$%s$rdreg[%d]", memid.c_str(), idx), port.clk, sig_d, sig_q, port.clk_polarity);
} else {
c = nullptr;
}
}
else
{
log_assert(port.arst == State::S0 || port.srst == State::S0);
SigSpec async_d = module->addWire(stringf("$%s$rdreg[%d]$d", memid.c_str(), idx), GetSize(port.data));
SigSpec sig_d = async_d;
for (int i = 0; i < GetSize(wr_ports); i++) {
auto &wport = wr_ports[i];
if (port.transparent) {
log_assert(wport.clk_enable);
log_assert(wport.clk == port.clk);
log_assert(wport.clk_enable == port.clk_enable);
int min_wide_log2 = std::min(port.wide_log2, wport.wide_log2);
int max_wide_log2 = std::max(port.wide_log2, wport.wide_log2);
bool wide_write = wport.wide_log2 > port.wide_log2;
for (int sub = 0; sub < (1 << max_wide_log2); sub += (1 << min_wide_log2)) {
SigSpec raddr = port.addr;
SigSpec waddr = wport.addr;
if (wide_write)
waddr = wport.sub_addr(sub);
else
raddr = port.sub_addr(sub);
SigSpec addr_eq;
if (raddr != waddr)
addr_eq = module->Eq(stringf("$%s$rdtransen[%d][%d][%d]$d", memid.c_str(), idx, i, sub), raddr, waddr);
int pos = 0;
int ewidth = width << min_wide_log2;
int wsub = wide_write ? sub : 0;
int rsub = wide_write ? 0 : sub;
while (pos < ewidth) {
int epos = pos;
while (epos < ewidth && wport.en[epos + wsub * width] == wport.en[pos + wsub * width])
epos++;
SigSpec cur = sig_d.extract(pos + rsub * width, epos-pos);
SigSpec other = wport.data.extract(pos + wsub * width, epos-pos);
SigSpec cond;
if (raddr != waddr)
cond = module->And(stringf("$%s$rdtransgate[%d][%d][%d][%d]$d", memid.c_str(), idx, i, sub, pos), wport.en[pos + wsub * width], addr_eq);
else
cond = wport.en[pos + wsub * width];
SigSpec merged = module->Mux(stringf("$%s$rdtransmux[%d][%d][%d][%d]$d", memid.c_str(), idx, i, sub, pos), cur, other, cond);
sig_d.replace(pos + rsub * width, merged);
pos = epos;
}
}
}
}
IdString name = stringf("$%s$rdreg[%d]", memid.c_str(), idx);
FfData ff(initvals);
ff.width = GetSize(port.data);
ff.has_clk = true;
ff.sig_clk = port.clk;
ff.pol_clk = port.clk_polarity;
if (port.en != State::S1) {
ff.has_en = true;
ff.pol_en = true;
ff.sig_en = port.en;
}
if (port.arst != State::S0) {
ff.has_arst = true;
ff.pol_arst = true;
ff.sig_arst = port.arst;
ff.val_arst = port.arst_value;
}
if (port.srst != State::S0) {
ff.has_srst = true;
ff.pol_srst = true;
ff.sig_srst = port.srst;
ff.val_srst = port.srst_value;
ff.ce_over_srst = ff.has_en && port.ce_over_srst;
}
ff.sig_d = sig_d;
ff.sig_q = port.data;
ff.val_init = port.init_value;
port.data = async_d;
c = ff.emit(module, name);
}
log("Extracted %s FF from read port %d of %s.%s: %s\n", trans_use_addr ? "addr" : "data",
idx, log_id(module), log_id(memid), log_id(c));
port.en = State::S1;
port.clk = State::S0;
port.arst = State::S0;
port.srst = State::S0;
port.clk_enable = false;
port.clk_polarity = true;
port.transparent = false;
port.ce_over_srst = false;
port.arst_value = Const(State::Sx, GetSize(port.data));
port.srst_value = Const(State::Sx, GetSize(port.data));
port.init_value = Const(State::Sx, GetSize(port.data));
return c;
}
void Mem::narrow() {
// NOTE: several passes depend on this function not modifying
// the design at all until (and unless) emit() is called.
// Be careful to preserve this.
std::vector<MemRd> new_rd_ports;
std::vector<MemWr> new_wr_ports;
std::vector<std::pair<int, int>> new_rd_map;
std::vector<std::pair<int, int>> new_wr_map;
for (int i = 0; i < GetSize(rd_ports); i++) {
auto &port = rd_ports[i];
for (int sub = 0; sub < (1 << port.wide_log2); sub++) {
new_rd_map.push_back(std::make_pair(i, sub));
}
}
for (int i = 0; i < GetSize(wr_ports); i++) {
auto &port = wr_ports[i];
for (int sub = 0; sub < (1 << port.wide_log2); sub++) {
new_wr_map.push_back(std::make_pair(i, sub));
}
}
for (auto &it : new_rd_map) {
MemRd &orig = rd_ports[it.first];
MemRd port = orig;
if (it.second != 0)
port.cell = nullptr;
if (port.wide_log2) {
port.data = port.data.extract(it.second * width, width);
port.init_value = port.init_value.extract(it.second * width, width);
port.arst_value = port.arst_value.extract(it.second * width, width);
port.srst_value = port.srst_value.extract(it.second * width, width);
port.addr = port.sub_addr(it.second);
port.wide_log2 = 0;
}
new_rd_ports.push_back(port);
}
for (auto &it : new_wr_map) {
MemWr &orig = wr_ports[it.first];
MemWr port = orig;
if (it.second != 0)
port.cell = nullptr;
if (port.wide_log2) {
port.data = port.data.extract(it.second * width, width);
port.en = port.en.extract(it.second * width, width);
port.addr = port.sub_addr(it.second);
port.wide_log2 = 0;
}
port.priority_mask.clear();
for (auto &it2 : new_wr_map)
port.priority_mask.push_back(orig.priority_mask[it2.first]);
new_wr_ports.push_back(port);
}
std::swap(rd_ports, new_rd_ports);
std::swap(wr_ports, new_wr_ports);
}
void Mem::emulate_priority(int idx1, int idx2)
{
auto &port1 = wr_ports[idx1];
auto &port2 = wr_ports[idx2];
if (!port2.priority_mask[idx1])
return;
int min_wide_log2 = std::min(port1.wide_log2, port2.wide_log2);
int max_wide_log2 = std::max(port1.wide_log2, port2.wide_log2);
bool wide1 = port1.wide_log2 > port2.wide_log2;
for (int sub = 0; sub < (1 << max_wide_log2); sub += (1 << min_wide_log2)) {
SigSpec addr1 = port1.addr;
SigSpec addr2 = port2.addr;
if (wide1)
addr1 = port1.sub_addr(sub);
else
addr2 = port2.sub_addr(sub);
SigSpec addr_eq = module->Eq(NEW_ID, addr1, addr2);
int ewidth = width << min_wide_log2;
int sub1 = wide1 ? sub : 0;
int sub2 = wide1 ? 0 : sub;
dict<std::pair<SigBit, SigBit>, SigBit> cache;
for (int pos = 0; pos < ewidth; pos++) {
SigBit &en1 = port1.en[pos + sub1 * width];
SigBit &en2 = port2.en[pos + sub2 * width];
std::pair<SigBit, SigBit> key(en1, en2);
if (cache.count(key)) {
en1 = cache[key];
} else {
SigBit active2 = module->And(NEW_ID, addr_eq, en2);
SigBit nactive2 = module->Not(NEW_ID, active2);
en1 = cache[key] = module->And(NEW_ID, en1, nactive2);
}
}
}
port2.priority_mask[idx1] = false;
}
void Mem::prepare_wr_merge(int idx1, int idx2) {
log_assert(idx1 < idx2);
auto &port1 = wr_ports[idx1];
auto &port2 = wr_ports[idx2];
// If port 2 has priority over a port before port 1, make port 1 have priority too.
for (int i = 0; i < idx1; i++)
if (port2.priority_mask[i])
port1.priority_mask[i] = true;
// If port 2 has priority over a port after port 1, emulate it.
for (int i = idx1 + 1; i < idx2; i++)
if (port2.priority_mask[i])
emulate_priority(i, idx2);
// If some port had priority over port 2, make it have priority over the merged port too.
for (int i = idx2 + 1; i < GetSize(wr_ports); i++) {
auto &oport = wr_ports[i];
if (oport.priority_mask[idx2])
oport.priority_mask[idx1] = true;
}
}
void Mem::widen_prep(int wide_log2) {
// Make sure start_offset and size are aligned to the port width,
// adjust if necessary.
int mask = ((1 << wide_log2) - 1);
int delta = start_offset & mask;
start_offset -= delta;
size += delta;
if (size & mask) {
size |= mask;
size++;
}
}
void Mem::widen_wr_port(int idx, int wide_log2) {
widen_prep(wide_log2);
auto &port = wr_ports[idx];
log_assert(port.wide_log2 <= wide_log2);
if (port.wide_log2 < wide_log2) {
SigSpec new_data, new_en;
SigSpec addr_lo = port.addr.extract(0, wide_log2);
for (int sub = 0; sub < (1 << wide_log2); sub += (1 << port.wide_log2))
{
Const cur_addr_lo(sub, wide_log2);
if (addr_lo == cur_addr_lo) {
// Always writes to this subword.
new_data.append(port.data);
new_en.append(port.en);
} else if (addr_lo.is_fully_const()) {
// Never writes to this subword.
new_data.append(Const(State::Sx, GetSize(port.data)));
new_en.append(Const(State::S0, GetSize(port.data)));
} else {
// May or may not write to this subword.
new_data.append(port.data);
SigSpec addr_eq = module->Eq(NEW_ID, addr_lo, cur_addr_lo);
SigSpec en = module->Mux(NEW_ID, Const(State::S0, GetSize(port.data)), port.en, addr_eq);
new_en.append(en);
}
}
port.addr.replace(port.wide_log2, Const(State::S0, wide_log2 - port.wide_log2));
port.data = new_data;
port.en = new_en;
port.wide_log2 = wide_log2;
}
}