mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 03:32:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			281 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			281 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| // This file contains various c++ utility routines and helper classes that
 | |
| // do not depend on any other components of yosys (except stuff like log_*).
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| 
 | |
| #ifndef UTILS_H
 | |
| #define UTILS_H
 | |
| 
 | |
| YOSYS_NAMESPACE_BEGIN
 | |
| 
 | |
| // ------------------------------------------------
 | |
| // A map-like container, but you can save and restore the state
 | |
| // ------------------------------------------------
 | |
| 
 | |
| template<typename Key, typename T>
 | |
| struct stackmap
 | |
| {
 | |
| private:
 | |
| 	std::vector<dict<Key, T*>> backup_state;
 | |
| 	dict<Key, T> current_state;
 | |
| 	static T empty_tuple;
 | |
| 
 | |
| public:
 | |
| 	stackmap() { }
 | |
| 	stackmap(const dict<Key, T> &other) : current_state(other) { }
 | |
| 
 | |
| 	template<typename Other>
 | |
| 	void operator=(const Other &other)
 | |
| 	{
 | |
| 		for (auto &it : current_state)
 | |
| 			if (!backup_state.empty() && backup_state.back().count(it.first) == 0)
 | |
| 				backup_state.back()[it.first] = new T(it.second);
 | |
| 		current_state.clear();
 | |
| 
 | |
| 		for (auto &it : other)
 | |
| 			set(it.first, it.second);
 | |
| 	}
 | |
| 
 | |
| 	bool has(const Key &k)
 | |
| 	{
 | |
| 		return current_state.count(k) != 0;
 | |
| 	}
 | |
| 
 | |
| 	void set(const Key &k, const T &v)
 | |
| 	{
 | |
| 		if (!backup_state.empty() && backup_state.back().count(k) == 0)
 | |
| 			backup_state.back()[k] = current_state.count(k) ? new T(current_state.at(k)) : nullptr;
 | |
| 		current_state[k] = v;
 | |
| 	}
 | |
| 
 | |
| 	void unset(const Key &k)
 | |
| 	{
 | |
| 		if (!backup_state.empty() && backup_state.back().count(k) == 0)
 | |
| 			backup_state.back()[k] = current_state.count(k) ? new T(current_state.at(k)) : nullptr;
 | |
| 		current_state.erase(k);
 | |
| 	}
 | |
| 
 | |
| 	const T &get(const Key &k)
 | |
| 	{
 | |
| 		if (current_state.count(k) == 0)
 | |
| 			return empty_tuple;
 | |
| 		return current_state.at(k);
 | |
| 	}
 | |
| 
 | |
| 	void reset(const Key &k)
 | |
| 	{
 | |
| 		for (int i = GetSize(backup_state)-1; i >= 0; i--)
 | |
| 			if (backup_state[i].count(k) != 0) {
 | |
| 				if (backup_state[i].at(k) == nullptr)
 | |
| 					current_state.erase(k);
 | |
| 				else
 | |
| 					current_state[k] = *backup_state[i].at(k);
 | |
| 				return;
 | |
| 			}
 | |
| 		current_state.erase(k);
 | |
| 	}
 | |
| 
 | |
| 	const dict<Key, T> &stdmap()
 | |
| 	{
 | |
| 		return current_state;
 | |
| 	}
 | |
| 
 | |
| 	void save()
 | |
| 	{
 | |
| 		backup_state.resize(backup_state.size()+1);
 | |
| 	}
 | |
| 
 | |
| 	void restore()
 | |
| 	{
 | |
| 		log_assert(!backup_state.empty());
 | |
| 		for (auto &it : backup_state.back())
 | |
| 			if (it.second != nullptr) {
 | |
| 				current_state[it.first] = *it.second;
 | |
| 				delete it.second;
 | |
| 			} else
 | |
| 				current_state.erase(it.first);
 | |
| 		backup_state.pop_back();
 | |
| 	}
 | |
| 
 | |
| 	~stackmap()
 | |
| 	{
 | |
| 		while (!backup_state.empty())
 | |
| 			restore();
 | |
| 	}
 | |
| };
 | |
| 
 | |
| 
 | |
| // ------------------------------------------------
 | |
| // A simple class for topological sorting
 | |
| // ------------------------------------------------
 | |
| 
 | |
| template <typename T, typename C = std::less<T>> class TopoSort
 | |
| {
 | |
|       public:
 | |
| 	// We use this ordering of the edges in the adjacency matrix for
 | |
| 	// exact compatibility with an older implementation.
 | |
| 	struct IndirectCmp {
 | |
|                 IndirectCmp(const std::vector<T> &nodes) : node_cmp_(), nodes_(nodes) {}
 | |
| 		bool operator()(int a, int b) const
 | |
| 		{
 | |
|                         log_assert(static_cast<size_t>(a) < nodes_.size());
 | |
| 			log_assert(static_cast<size_t>(b) < nodes_.size());
 | |
| 			return node_cmp_(nodes_[a], nodes_[b]);
 | |
| 		}
 | |
| 		const C node_cmp_;
 | |
| 		const std::vector<T> &nodes_;
 | |
| 	};
 | |
| 
 | |
| 	bool analyze_loops;
 | |
| 	std::map<T, int, C> node_to_index;
 | |
| 	std::vector<std::set<int, IndirectCmp>> edges;
 | |
| 	std::vector<T> sorted;
 | |
| 	std::set<std::vector<T>> loops;
 | |
| 
 | |
| 	TopoSort() : indirect_cmp(nodes)
 | |
| 	{
 | |
| 		analyze_loops = true;
 | |
| 		found_loops = false;
 | |
| 	}
 | |
| 
 | |
| 	int node(T n)
 | |
| 	{
 | |
|                 auto rv = node_to_index.emplace(n, static_cast<int>(nodes.size()));
 | |
|                 if (rv.second) {
 | |
|       	              nodes.push_back(n);
 | |
| 		      edges.push_back(std::set<int, IndirectCmp>(indirect_cmp));
 | |
| 		}
 | |
| 		return rv.first->second;
 | |
| 	}
 | |
| 
 | |
| 	void edge(int l_index, int r_index) { edges[r_index].insert(l_index); }
 | |
| 
 | |
| 	void edge(T left, T right) { edge(node(left), node(right)); }
 | |
| 
 | |
| 	bool has_node(const T &node) { return node_to_index.find(node) != node_to_index.end(); }
 | |
| 
 | |
| 	bool sort()
 | |
| 	{
 | |
| 		log_assert(GetSize(node_to_index) == GetSize(edges));
 | |
| 		log_assert(GetSize(nodes) == GetSize(edges));
 | |
| 
 | |
| 		loops.clear();
 | |
| 		sorted.clear();
 | |
| 		found_loops = false;
 | |
| 
 | |
| 		std::vector<bool> marked_cells(edges.size(), false);
 | |
| 		std::vector<bool> active_cells(edges.size(), false);
 | |
| 		std::vector<int> active_stack;
 | |
| 		sorted.reserve(edges.size());
 | |
| 
 | |
| 		for (const auto &it : node_to_index)
 | |
| 			sort_worker(it.second, marked_cells, active_cells, active_stack);
 | |
| 
 | |
| 		log_assert(GetSize(sorted) == GetSize(nodes));
 | |
| 
 | |
| 		return !found_loops;
 | |
| 	}
 | |
| 
 | |
| 	// Build the more expensive representation of edges for
 | |
| 	// a few passes that use it directly.
 | |
| 	std::map<T, std::set<T, C>, C> get_database()
 | |
| 	{
 | |
| 		std::map<T, std::set<T, C>, C> database;
 | |
| 		for (size_t i = 0; i < nodes.size(); ++i) {
 | |
| 			std::set<T, C> converted_edge_set;
 | |
| 			for (int other_node : edges[i]) {
 | |
| 				converted_edge_set.insert(nodes[other_node]);
 | |
| 			}
 | |
| 			database.emplace(nodes[i], converted_edge_set);
 | |
| 		}
 | |
| 		return database;
 | |
| 	}
 | |
| 
 | |
|       private:
 | |
| 	bool found_loops;
 | |
| 	std::vector<T> nodes;
 | |
| 	const IndirectCmp indirect_cmp;
 | |
| 
 | |
| 	void sort_worker(const int root_index, std::vector<bool> &marked_cells, std::vector<bool> &active_cells, std::vector<int> &active_stack)
 | |
| 	{
 | |
| 		if (active_cells[root_index]) {
 | |
| 			found_loops = true;
 | |
| 			if (analyze_loops) {
 | |
| 				std::vector<T> loop;
 | |
| 				for (int i = GetSize(active_stack) - 1; i >= 0; i--) {
 | |
| 					const int index = active_stack[i];
 | |
| 					loop.push_back(nodes[index]);
 | |
| 					if (index == root_index)
 | |
| 						break;
 | |
| 				}
 | |
| 				loops.insert(loop);
 | |
| 			}
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (marked_cells[root_index])
 | |
| 			return;
 | |
| 
 | |
| 		if (!edges[root_index].empty()) {
 | |
| 			if (analyze_loops)
 | |
| 				active_stack.push_back(root_index);
 | |
| 			active_cells[root_index] = true;
 | |
| 
 | |
| 			for (int left_n : edges[root_index])
 | |
| 				sort_worker(left_n, marked_cells, active_cells, active_stack);
 | |
| 
 | |
| 			if (analyze_loops)
 | |
| 				active_stack.pop_back();
 | |
| 			active_cells[root_index] = false;
 | |
| 		}
 | |
| 
 | |
| 		marked_cells[root_index] = true;
 | |
| 		sorted.push_back(nodes[root_index]);
 | |
| 	}
 | |
| };
 | |
| 
 | |
| // this class is used for implementing operator-> on iterators that return values rather than references
 | |
| // it's necessary because in C++ operator-> is called recursively until a raw pointer is obtained
 | |
| template<class T>
 | |
| struct arrow_proxy {
 | |
| 	T v;
 | |
| 	explicit arrow_proxy(T const & v) : v(v) {}
 | |
| 	T* operator->() { return &v; }
 | |
| };
 | |
| 
 | |
| inline int ceil_log2(int x)
 | |
| {
 | |
| #if defined(__GNUC__)
 | |
|         return x > 1 ? (8*sizeof(int)) - __builtin_clz(x-1) : 0;
 | |
| #else
 | |
| 	if (x <= 0)
 | |
| 		return 0;
 | |
| 	for (int i = 0; i < 32; i++)
 | |
| 		if (((x-1) >> i) == 0)
 | |
| 			return i;
 | |
| 	log_abort();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| YOSYS_NAMESPACE_END
 | |
| 
 | |
| #endif
 |