mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 19:52:31 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			520 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			520 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2020 R. Ou <rqou@robertou.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| #include "kernel/sigtools.h"
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| RTLIL::Wire *makexorbuffer(RTLIL::Module *module, SigBit inwire, const char *cellname)
 | |
| {
 | |
| 	RTLIL::Wire *outwire = nullptr;
 | |
| 
 | |
| 	if (inwire == SigBit(true))
 | |
| 	{
 | |
| 		// Constant 1
 | |
| 		outwire = module->addWire(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF1_XOR_OUT", cellname)));
 | |
| 		auto xor_cell = module->addCell(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF1_XOR", cellname)),
 | |
| 			ID(MACROCELL_XOR));
 | |
| 		xor_cell->setParam(ID(INVERT_OUT), true);
 | |
| 		xor_cell->setPort(ID(OUT), outwire);
 | |
| 	}
 | |
| 	else if (inwire == SigBit(false))
 | |
| 	{
 | |
| 		// Constant 0
 | |
| 		outwire = module->addWire(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
 | |
| 		auto xor_cell = module->addCell(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
 | |
| 			ID(MACROCELL_XOR));
 | |
| 		xor_cell->setParam(ID(INVERT_OUT), false);
 | |
| 		xor_cell->setPort(ID(OUT), outwire);
 | |
| 	}
 | |
| 	else if (inwire == SigBit(RTLIL::State::Sx))
 | |
| 	{
 | |
| 		// x; treat as 0
 | |
| 		log_warning("While buffering, changing x to 0 into cell %s\n", cellname);
 | |
| 		outwire = module->addWire(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
 | |
| 		auto xor_cell = module->addCell(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
 | |
| 			ID(MACROCELL_XOR));
 | |
| 		xor_cell->setParam(ID(INVERT_OUT), false);
 | |
| 		xor_cell->setPort(ID(OUT), outwire);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		auto inwire_name = inwire.wire->name.c_str();
 | |
| 
 | |
| 		outwire = module->addWire(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF_XOR_OUT", inwire_name)));
 | |
| 
 | |
| 		auto and_to_xor_wire = module->addWire(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));
 | |
| 
 | |
| 		auto and_cell = module->addCell(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
 | |
| 			ID(ANDTERM));
 | |
| 		and_cell->setParam(ID(TRUE_INP), 1);
 | |
| 		and_cell->setParam(ID(COMP_INP), 0);
 | |
| 		and_cell->setPort(ID(OUT), and_to_xor_wire);
 | |
| 		and_cell->setPort(ID(IN), inwire);
 | |
| 		and_cell->setPort(ID(IN_B), SigSpec());
 | |
| 
 | |
| 		auto xor_cell = module->addCell(
 | |
| 			module->uniquify(stringf("$xc2fix$%s_BUF_XOR", inwire_name)),
 | |
| 			ID(MACROCELL_XOR));
 | |
| 		xor_cell->setParam(ID(INVERT_OUT), false);
 | |
| 		xor_cell->setPort(ID(IN_PTC), and_to_xor_wire);
 | |
| 		xor_cell->setPort(ID(OUT), outwire);
 | |
| 	}
 | |
| 
 | |
| 	return outwire;
 | |
| }
 | |
| 
 | |
| RTLIL::Wire *makeptermbuffer(RTLIL::Module *module, SigBit inwire)
 | |
| {
 | |
| 	auto inwire_name = inwire.wire->name.c_str();
 | |
| 
 | |
| 	auto outwire = module->addWire(
 | |
| 		module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));
 | |
| 
 | |
| 	auto and_cell = module->addCell(
 | |
| 		module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
 | |
| 		ID(ANDTERM));
 | |
| 	and_cell->setParam(ID(TRUE_INP), 1);
 | |
| 	and_cell->setParam(ID(COMP_INP), 0);
 | |
| 	and_cell->setPort(ID(OUT), outwire);
 | |
| 	and_cell->setPort(ID(IN), inwire);
 | |
| 	and_cell->setPort(ID(IN_B), SigSpec());
 | |
| 
 | |
| 	return outwire;
 | |
| }
 | |
| 
 | |
| struct Coolrunner2FixupPass : public Pass {
 | |
| 	Coolrunner2FixupPass() : Pass("coolrunner2_fixup", "insert necessary buffer cells for CoolRunner-II architecture") { }
 | |
| 	void help() override
 | |
| 	{
 | |
| 		log("\n");
 | |
| 		log("    coolrunner2_fixup [options] [selection]\n");
 | |
| 		log("\n");
 | |
| 		log("Insert necessary buffer cells for CoolRunner-II architecture.\n");
 | |
| 		log("\n");
 | |
| 	}
 | |
| 	void execute(std::vector<std::string> args, RTLIL::Design *design) override
 | |
| 	{
 | |
| 		log_header(design, "Executing COOLRUNNER2_FIXUP pass (insert necessary buffer cells for CoolRunner-II architecture).\n");
 | |
| 		extra_args(args, 1, design);
 | |
| 
 | |
| 		for (auto module : design->selected_modules())
 | |
| 		{
 | |
| 			SigMap sigmap(module);
 | |
| 
 | |
| 			// Find all the FF outputs
 | |
| 			pool<SigBit> sig_fed_by_ff;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
 | |
| 							ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID::Q)[0]);
 | |
| 					sig_fed_by_ff.insert(output);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all the XOR outputs
 | |
| 			pool<SigBit> sig_fed_by_xor;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(MACROCELL_XOR))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID(OUT))[0]);
 | |
| 					sig_fed_by_xor.insert(output);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all the input/inout outputs
 | |
| 			pool<SigBit> sig_fed_by_io;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type.in(ID(IBUF), ID(IOBUFE)))
 | |
| 				{
 | |
| 					if (cell->hasPort(ID::O)) {
 | |
| 						auto output = sigmap(cell->getPort(ID::O)[0]);
 | |
| 						sig_fed_by_io.insert(output);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all the pterm outputs
 | |
| 			pool<SigBit> sig_fed_by_pterm;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(ANDTERM))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID(OUT))[0]);
 | |
| 					sig_fed_by_pterm.insert(output);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all the bufg outputs
 | |
| 			pool<SigBit> sig_fed_by_bufg;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(BUFG))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID::O)[0]);
 | |
| 					sig_fed_by_bufg.insert(output);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all the bufgsr outputs
 | |
| 			pool<SigBit> sig_fed_by_bufgsr;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(BUFGSR))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID::O)[0]);
 | |
| 					sig_fed_by_bufgsr.insert(output);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all the bufgts outputs
 | |
| 			pool<SigBit> sig_fed_by_bufgts;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(BUFGTS))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID::O)[0]);
 | |
| 					sig_fed_by_bufgts.insert(output);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// This is used to fix the input -> FF -> output scenario
 | |
| 			pool<SigBit> sig_fed_by_ibuf;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(IBUF))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID::O)[0]);
 | |
| 					sig_fed_by_ibuf.insert(output);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all of the sinks for each output from an IBUF
 | |
| 			dict<SigBit, std::pair<int, RTLIL::Cell *>> ibuf_fanouts;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				for (auto &conn : cell->connections())
 | |
| 				{
 | |
| 					if (cell->input(conn.first))
 | |
| 					{
 | |
| 						for (auto wire_in : sigmap(conn.second))
 | |
| 						{
 | |
| 							if (sig_fed_by_ibuf[wire_in])
 | |
| 							{
 | |
| 								auto existing_count = ibuf_fanouts[wire_in].first;
 | |
| 								ibuf_fanouts[wire_in] =
 | |
| 									std::pair<int, RTLIL::Cell *>(existing_count + 1, cell);
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			dict<SigBit, RTLIL::Cell *> ibuf_out_to_packed_reg_cell;
 | |
| 			pool<SigBit> packed_reg_out;
 | |
| 			for (auto x : ibuf_fanouts)
 | |
| 			{
 | |
| 				auto ibuf_out_wire = x.first;
 | |
| 				auto fanout_count = x.second.first;
 | |
| 				auto maybe_ff_cell = x.second.second;
 | |
| 
 | |
| 				// The register can be packed with the IBUF only if it's
 | |
| 				// actually a register and it's the only fanout. Otherwise,
 | |
| 				// the pad-to-zia path has to be used up and the register
 | |
| 				// can't be packed with the ibuf.
 | |
| 				if (fanout_count == 1 && maybe_ff_cell->type.in(
 | |
| 					ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
 | |
| 					ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
 | |
| 				{
 | |
| 					SigBit input;
 | |
| 					if (maybe_ff_cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
 | |
| 						input = sigmap(maybe_ff_cell->getPort(ID::T)[0]);
 | |
| 					else
 | |
| 						input = sigmap(maybe_ff_cell->getPort(ID::D)[0]);
 | |
| 					SigBit output = sigmap(maybe_ff_cell->getPort(ID::Q)[0]);
 | |
| 
 | |
| 					if (input == ibuf_out_wire)
 | |
| 					{
 | |
| 						log("Found IBUF %s that can be packed with FF %s (type %s)\n",
 | |
| 							ibuf_out_wire.wire->name.c_str(),
 | |
| 							maybe_ff_cell->name.c_str(),
 | |
| 							maybe_ff_cell->type.c_str());
 | |
| 
 | |
| 						ibuf_out_to_packed_reg_cell[ibuf_out_wire] = maybe_ff_cell;
 | |
| 						packed_reg_out.insert(output);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N),
 | |
| 							ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
 | |
| 				{
 | |
| 					// Buffering FF inputs. FF inputs can only come from either
 | |
| 					// an IO pin or from an XOR. Otherwise AND/XOR cells need
 | |
| 					// to be inserted.
 | |
| 					SigBit input;
 | |
| 					if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
 | |
| 						input = sigmap(cell->getPort(ID::T)[0]);
 | |
| 					else
 | |
| 						input = sigmap(cell->getPort(ID::D)[0]);
 | |
| 
 | |
| 					// If the input wasn't an XOR nor an IO, then a buffer
 | |
| 					// definitely needs to be added.
 | |
| 					// Otherwise, if it is an IO, only leave unbuffered
 | |
| 					// if we're being packed with the IO.
 | |
| 					if ((!sig_fed_by_xor[input] && !sig_fed_by_io[input]) ||
 | |
| 						(sig_fed_by_io[input] && ibuf_out_to_packed_reg_cell[input] != cell))
 | |
| 					{
 | |
| 						log("Buffering input to \"%s\"\n", cell->name.c_str());
 | |
| 
 | |
| 						auto xor_to_ff_wire = makexorbuffer(module, input, cell->name.c_str());
 | |
| 
 | |
| 						if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP)))
 | |
| 							cell->setPort(ID::T, xor_to_ff_wire);
 | |
| 						else
 | |
| 							cell->setPort(ID::D, xor_to_ff_wire);
 | |
| 					}
 | |
| 
 | |
| 					// Buffering FF clocks. FF clocks can only come from either
 | |
| 					// a pterm or a bufg. In some cases this will be handled
 | |
| 					// in coolrunner2_sop (e.g. if clock is generated from
 | |
| 					// AND-ing two signals) but not in all cases.
 | |
| 					SigBit clock;
 | |
| 					if (cell->type.in(ID(LDCP), ID(LDCP_N)))
 | |
| 						clock = sigmap(cell->getPort(ID::G)[0]);
 | |
| 					else
 | |
| 						clock = sigmap(cell->getPort(ID::C)[0]);
 | |
| 
 | |
| 					if (!sig_fed_by_pterm[clock] && !sig_fed_by_bufg[clock])
 | |
| 					{
 | |
| 						log("Buffering clock to \"%s\"\n", cell->name.c_str());
 | |
| 
 | |
| 						auto pterm_to_ff_wire = makeptermbuffer(module, clock);
 | |
| 
 | |
| 						if (cell->type.in(ID(LDCP), ID(LDCP_N)))
 | |
| 							cell->setPort(ID::G, pterm_to_ff_wire);
 | |
| 						else
 | |
| 							cell->setPort(ID::C, pterm_to_ff_wire);
 | |
| 					}
 | |
| 
 | |
| 					// Buffering FF set/reset. This can only come from either
 | |
| 					// a pterm or a bufgsr.
 | |
| 					SigBit set;
 | |
| 					set = sigmap(cell->getPort(ID(PRE))[0]);
 | |
| 					if (set != SigBit(false))
 | |
| 					{
 | |
| 						if (!sig_fed_by_pterm[set] && !sig_fed_by_bufgsr[set])
 | |
| 						{
 | |
| 							log("Buffering set to \"%s\"\n", cell->name.c_str());
 | |
| 
 | |
| 							auto pterm_to_ff_wire = makeptermbuffer(module, set);
 | |
| 
 | |
| 							cell->setPort(ID(PRE), pterm_to_ff_wire);
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					SigBit reset;
 | |
| 					reset = sigmap(cell->getPort(ID::CLR)[0]);
 | |
| 					if (reset != SigBit(false))
 | |
| 					{
 | |
| 						if (!sig_fed_by_pterm[reset] && !sig_fed_by_bufgsr[reset])
 | |
| 						{
 | |
| 							log("Buffering reset to \"%s\"\n", cell->name.c_str());
 | |
| 
 | |
| 							auto pterm_to_ff_wire = makeptermbuffer(module, reset);
 | |
| 
 | |
| 							cell->setPort(ID::CLR, pterm_to_ff_wire);
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					// Buffering FF clock enable
 | |
| 					// FIXME: This doesn't fully fix PTC conflicts
 | |
| 					// FIXME: Need to ensure constant enables are optimized out
 | |
| 					if (cell->type.in(ID(FDCPE), ID(FDCPE_N), ID(FDDCPE)))
 | |
| 					{
 | |
| 						SigBit ce;
 | |
| 						ce = sigmap(cell->getPort(ID(CE))[0]);
 | |
| 						if (!sig_fed_by_pterm[ce])
 | |
| 						{
 | |
| 							log("Buffering clock enable to \"%s\"\n", cell->name.c_str());
 | |
| 
 | |
| 							auto pterm_to_ff_wire = makeptermbuffer(module, ce);
 | |
| 
 | |
| 							cell->setPort(ID(CE), pterm_to_ff_wire);
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(IOBUFE))
 | |
| 				{
 | |
| 					// Buffer IOBUFE inputs. This can only be fed from an XOR or FF.
 | |
| 					SigBit input = sigmap(cell->getPort(ID::I)[0]);
 | |
| 
 | |
| 					if ((!sig_fed_by_xor[input] && !sig_fed_by_ff[input]) ||
 | |
| 						packed_reg_out[input])
 | |
| 					{
 | |
| 						log("Buffering input to \"%s\"\n", cell->name.c_str());
 | |
| 
 | |
| 						auto xor_to_io_wire = makexorbuffer(module, input, cell->name.c_str());
 | |
| 
 | |
| 						cell->setPort(ID::I, xor_to_io_wire);
 | |
| 					}
 | |
| 
 | |
| 					// Buffer IOBUFE enables. This can only be fed from a pterm
 | |
| 					// or a bufgts.
 | |
| 					if (cell->hasPort(ID::E))
 | |
| 					{
 | |
| 						SigBit oe;
 | |
| 						oe = sigmap(cell->getPort(ID::E)[0]);
 | |
| 						if (!sig_fed_by_pterm[oe] && !sig_fed_by_bufgts[oe])
 | |
| 						{
 | |
| 							log("Buffering output enable to \"%s\"\n", cell->name.c_str());
 | |
| 
 | |
| 							auto pterm_to_oe_wire = makeptermbuffer(module, oe);
 | |
| 
 | |
| 							cell->setPort(ID::E, pterm_to_oe_wire);
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Now we have to fix up some cases where shared logic can
 | |
| 			// cause XORs to have multiple fanouts to something other than
 | |
| 			// pterms (which is not ok)
 | |
| 
 | |
| 			// Find all the XOR outputs
 | |
| 			dict<SigBit, RTLIL::Cell *> xor_out_to_xor_cell;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(MACROCELL_XOR))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID(OUT))[0]);
 | |
| 					xor_out_to_xor_cell[output] = cell;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all of the sinks for each output from an XOR
 | |
| 			pool<SigBit> xor_fanout_once;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(ANDTERM))
 | |
| 					continue;
 | |
| 
 | |
| 				for (auto &conn : cell->connections())
 | |
| 				{
 | |
| 					if (cell->input(conn.first))
 | |
| 					{
 | |
| 						for (auto wire_in : sigmap(conn.second))
 | |
| 						{
 | |
| 							auto xor_cell = xor_out_to_xor_cell[wire_in];
 | |
| 							if (xor_cell)
 | |
| 							{
 | |
| 								if (xor_fanout_once[wire_in])
 | |
| 								{
 | |
| 									log("Additional fanout found for %s into %s (type %s), duplicating\n",
 | |
| 										xor_cell->name.c_str(),
 | |
| 										cell->name.c_str(),
 | |
| 										cell->type.c_str());
 | |
| 
 | |
| 									auto new_xor_cell = module->addCell(
 | |
| 										module->uniquify(xor_cell->name), xor_cell);
 | |
| 									auto new_wire = module->addWire(
 | |
| 										module->uniquify(wire_in.wire->name));
 | |
| 									new_xor_cell->setPort(ID(OUT), new_wire);
 | |
| 									cell->setPort(conn.first, new_wire);
 | |
| 								}
 | |
| 								xor_fanout_once.insert(wire_in);
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Do the same fanout fixing for OR terms. By doing this
 | |
| 			// after doing XORs, both pieces will be duplicated when necessary.
 | |
| 
 | |
| 			// Find all the OR outputs
 | |
| 			dict<SigBit, RTLIL::Cell *> or_out_to_or_cell;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				if (cell->type == ID(ORTERM))
 | |
| 				{
 | |
| 					auto output = sigmap(cell->getPort(ID(OUT))[0]);
 | |
| 					or_out_to_or_cell[output] = cell;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Find all of the sinks for each output from an OR
 | |
| 			pool<SigBit> or_fanout_once;
 | |
| 			for (auto cell : module->selected_cells())
 | |
| 			{
 | |
| 				for (auto &conn : cell->connections())
 | |
| 				{
 | |
| 					if (cell->input(conn.first))
 | |
| 					{
 | |
| 						for (auto wire_in : sigmap(conn.second))
 | |
| 						{
 | |
| 							auto or_cell = or_out_to_or_cell[wire_in];
 | |
| 							if (or_cell)
 | |
| 							{
 | |
| 								if (or_fanout_once[wire_in])
 | |
| 								{
 | |
| 									log("Additional fanout found for %s into %s (type %s), duplicating\n",
 | |
| 										or_cell->name.c_str(),
 | |
| 										cell->name.c_str(),
 | |
| 										cell->type.c_str());
 | |
| 
 | |
| 									auto new_or_cell = module->addCell(
 | |
| 										module->uniquify(or_cell->name), or_cell);
 | |
| 									auto new_wire = module->addWire(
 | |
| 										module->uniquify(wire_in.wire->name));
 | |
| 									new_or_cell->setPort(ID(OUT), new_wire);
 | |
| 									cell->setPort(conn.first, new_wire);
 | |
| 								}
 | |
| 								or_fanout_once.insert(wire_in);
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| } Coolrunner2FixupPass;
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 |