3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-07-17 09:56:40 +00:00
yosys/tests/xilinx_ug901/cmacc.v
2019-10-17 17:08:38 +02:00

122 lines
3.1 KiB
Verilog

// Complex Multiplier with accumulation (pr+i.pi) = (ar+i.ai)*(br+i.bi)
// File: cmacc.v
// The RTL below describes a complex multiplier with accumulation
// which can be packed into 3 DSP blocks (Ultrascale architecture)
//Default parameters were changed because of slow test
//module cmacc # (parameter AWIDTH = 16, BWIDTH = 18, SIZEOUT = 40)
module cmacc # (parameter AWIDTH = 4, BWIDTH = 5, SIZEOUT = 9)
(
input clk,
input sload,
input signed [AWIDTH-1:0] ar,
input signed [AWIDTH-1:0] ai,
input signed [BWIDTH-1:0] br,
input signed [BWIDTH-1:0] bi,
output signed [SIZEOUT-1:0] pr,
output signed [SIZEOUT-1:0] pi);
reg signed [AWIDTH-1:0] ai_d, ai_dd, ai_ddd, ai_dddd;
reg signed [AWIDTH-1:0] ar_d, ar_dd, ar_ddd, ar_dddd;
reg signed [BWIDTH-1:0] bi_d, bi_dd, bi_ddd, br_d, br_dd, br_ddd;
reg signed [AWIDTH:0] addcommon;
reg signed [BWIDTH:0] addr, addi;
reg signed [AWIDTH+BWIDTH:0] mult0, multr, multi;
reg signed [SIZEOUT-1:0] pr_int, pi_int, old_result_real, old_result_im;
reg signed [AWIDTH+BWIDTH:0] common, commonr1, commonr2;
reg sload_reg;
`ifdef SIM
initial
begin
ai_d = 0;
ai_dd = 0;
ai_ddd = 0;
ai_dddd = 0;
ar_d = 0;
ar_dd = 0;
ar_ddd = 0;
ar_dddd = 0;
bi_d = 0;
bi_dd = 0;
bi_ddd = 0;
br_d = 0;
br_dd = 0;
br_ddd = 0;
end
`endif
always @(posedge clk)
begin
ar_d <= ar;
ar_dd <= ar_d;
ai_d <= ai;
ai_dd <= ai_d;
br_d <= br;
br_dd <= br_d;
br_ddd <= br_dd;
bi_d <= bi;
bi_dd <= bi_d;
bi_ddd <= bi_dd;
sload_reg <= sload;
end
// Common factor (ar ai) x bi, shared for the calculations of the real and imaginary final products
//
always @(posedge clk)
begin
addcommon <= ar_d - ai_d;
mult0 <= addcommon * bi_dd;
common <= mult0;
end
// Accumulation loop (combinatorial) for *Real*
//
always @(sload_reg or pr_int)
if (sload_reg)
old_result_real <= 0;
else
// 'sload' is now and opens the accumulation loop.
// The accumulator takes the next multiplier output
// in the same cycle.
old_result_real <= pr_int;
// Real product
//
always @(posedge clk)
begin
ar_ddd <= ar_dd;
ar_dddd <= ar_ddd;
addr <= br_ddd - bi_ddd;
multr <= addr * ar_dddd;
commonr1 <= common;
pr_int <= multr + commonr1 + old_result_real;
end
// Accumulation loop (combinatorial) for *Imaginary*
//
always @(sload_reg or pi_int)
if (sload_reg)
old_result_im <= 0;
else
// 'sload' is now and opens the accumulation loop.
// The accumulator takes the next multiplier output
// in the same cycle.
old_result_im <= pi_int;
// Imaginary product
//
always @(posedge clk)
begin
ai_ddd <= ai_dd;
ai_dddd <= ai_ddd;
addi <= br_ddd + bi_ddd;
multi <= addi * ai_dddd;
commonr2 <= common;
pi_int <= multi + commonr2 + old_result_im;
end
assign pr = pr_int;
assign pi = pi_int;
endmodule // cmacc