3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-08-18 17:22:17 +00:00
yosys/passes/cmds/stat.cc
clemens 71307b4a51 add Testcases
Fix existing testcases
Fix edgecase where modules where counted as cells.
2025-08-13 14:46:01 +02:00

900 lines
34 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <iterator>
#include "kernel/celltypes.h"
#include "kernel/cost.h"
#include "kernel/gzip.h"
#include "kernel/log_help.h"
#include "kernel/yosys.h"
#include "libs/json11/json11.hpp"
#include "passes/techmap/libparse.h"
#include <charconv>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct cell_area_t {
double area;
bool is_sequential;
};
struct statdata_t {
#define STAT_INT_MEMBERS \
X(num_wires) \
X(num_wire_bits) \
X(num_pub_wires) X(num_pub_wire_bits) X(num_ports) X(num_port_bits) X(num_memories) X(num_memory_bits) X(num_cells) X(num_processes)
#define STAT_NUMERIC_MEMBERS STAT_INT_MEMBERS X(area) X(sequential_area)
#define X(_name) unsigned int _name;
STAT_INT_MEMBERS
#undef X
#define X(_name) unsigned int local_##_name;
STAT_INT_MEMBERS
#undef X
double area = 0;
double sequential_area = 0;
double local_area = 0;
double local_sequential_area = 0;
double submodule_area = 0;
int num_submodules = 0;
std::map<RTLIL::IdString, unsigned int, RTLIL::sort_by_id_str> num_submodules_by_type;
std::map<RTLIL::IdString, double, RTLIL::sort_by_id_str> submodules_area_by_type;
std::map<RTLIL::IdString, unsigned int, RTLIL::sort_by_id_str> local_num_cells_by_type;
std::map<RTLIL::IdString, double, RTLIL::sort_by_id_str> local_area_cells_by_type;
std::map<RTLIL::IdString, double, RTLIL::sort_by_id_str> local_seq_area_cells_by_type;
string tech;
std::map<RTLIL::IdString, unsigned int, RTLIL::sort_by_id_str> num_cells_by_type;
std::map<RTLIL::IdString, double, RTLIL::sort_by_id_str> area_cells_by_type;
std::map<RTLIL::IdString, double, RTLIL::sort_by_id_str> seq_area_cells_by_type;
std::set<RTLIL::IdString> unknown_cell_area;
statdata_t operator+(const statdata_t &other) const
{
statdata_t sum = other;
#define X(_name) sum._name += _name;
STAT_NUMERIC_MEMBERS
#undef X
for (auto &it : num_cells_by_type)
sum.num_cells_by_type[it.first] += it.second;
return sum;
}
statdata_t operator*(unsigned int other) const
{
statdata_t sum = *this;
#define X(_name) sum._name *= other;
STAT_NUMERIC_MEMBERS
#undef X
for (auto &it : sum.num_cells_by_type)
it.second *= other;
return sum;
}
statdata_t add(const statdata_t &other)
{
#define X(_name) _name += other._name;
STAT_NUMERIC_MEMBERS
#undef X
for (auto &it : other.num_cells_by_type) {
if (num_cells_by_type.count(it.first))
num_cells_by_type[it.first] += it.second;
else
num_cells_by_type[it.first] = it.second;
}
for (auto &it : other.submodules_area_by_type) {
if (submodules_area_by_type.count(it.first))
submodules_area_by_type[it.first] += it.second;
else
submodules_area_by_type[it.first] = it.second;
}
for (auto &it : other.area_cells_by_type) {
if (area_cells_by_type.count(it.first))
area_cells_by_type[it.first] += it.second;
else
area_cells_by_type[it.first] = it.second;
}
for (auto &it : other.seq_area_cells_by_type) {
if (seq_area_cells_by_type.count(it.first))
seq_area_cells_by_type[it.first] += it.second;
else
seq_area_cells_by_type[it.first] = it.second;
}
unknown_cell_area.insert(other.unknown_cell_area.begin(), other.unknown_cell_area.end());
return *this;
}
statdata_t()
{
#define X(_name) _name = 0;
STAT_NUMERIC_MEMBERS
#undef X
}
statdata_t(cell_area_t &cell_data, string techname)
{
tech = techname;
area = cell_data.area;
if (cell_data.is_sequential) {
sequential_area = cell_data.area;
}
}
statdata_t(const RTLIL::Design *design, const RTLIL::Module *mod, bool width_mode, dict<IdString, cell_area_t> &cell_area, string techname)
{
tech = techname;
#define X(_name) _name = 0;
STAT_NUMERIC_MEMBERS
#undef X
#define X(_name) local_##_name = 0;
STAT_NUMERIC_MEMBERS
#undef X
// additional_cell_area
for (auto wire : mod->selected_wires()) {
if (wire->port_input || wire->port_output) {
num_ports++;
local_num_ports++;
num_port_bits += wire->width;
local_num_port_bits += wire->width;
}
if (wire->name.isPublic()) {
num_pub_wires++;
local_num_pub_wires++;
num_pub_wire_bits += wire->width;
local_num_pub_wire_bits += wire->width;
}
num_wires++;
local_num_wires++;
num_wire_bits += wire->width;
local_num_wire_bits += wire->width;
}
for (auto &it : mod->memories) {
if (!design->selected(mod, it.second))
continue;
num_memories++;
local_num_memories++;
num_memory_bits += it.second->width * it.second->size;
local_num_memory_bits += it.second->width * it.second->size;
}
for (auto cell : mod->selected_cells()) {
RTLIL::IdString cell_type = cell->type;
if (width_mode) {
if (cell_type.in(ID($not), ID($pos), ID($neg), ID($logic_not), ID($logic_and), ID($logic_or), ID($reduce_and),
ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($lut), ID($and), ID($or),
ID($xor), ID($xnor), ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx), ID($lt),
ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt), ID($add), ID($sub), ID($mul),
ID($div), ID($mod), ID($divfloor), ID($modfloor), ID($pow), ID($alu))) {
int width_a = cell->hasPort(ID::A) ? GetSize(cell->getPort(ID::A)) : 0;
int width_b = cell->hasPort(ID::B) ? GetSize(cell->getPort(ID::B)) : 0;
int width_y = cell->hasPort(ID::Y) ? GetSize(cell->getPort(ID::Y)) : 0;
cell_type = stringf("%s_%d", cell_type.c_str(), max<int>({width_a, width_b, width_y}));
} else if (cell_type.in(ID($mux)))
cell_type = stringf("%s_%d", cell_type.c_str(), GetSize(cell->getPort(ID::Y)));
else if (cell_type.in(ID($bmux), ID($pmux)))
cell_type =
stringf("%s_%d_%d", cell_type.c_str(), GetSize(cell->getPort(ID::Y)), GetSize(cell->getPort(ID::S)));
else if (cell_type == ID($demux))
cell_type =
stringf("%s_%d_%d", cell_type.c_str(), GetSize(cell->getPort(ID::A)), GetSize(cell->getPort(ID::S)));
else if (cell_type.in(ID($sr), ID($ff), ID($dff), ID($dffe), ID($dffsr), ID($dffsre), ID($adff), ID($adffe),
ID($sdff), ID($sdffe), ID($sdffce), ID($aldff), ID($aldffe), ID($dlatch), ID($adlatch),
ID($dlatchsr)))
cell_type = stringf("%s_%d", cell_type.c_str(), GetSize(cell->getPort(ID::Q)));
}
if (!cell_area.empty()) {
if (cell_area.count(cell_type)) {
cell_area_t cell_data = cell_area.at(cell_type);
if (cell_data.is_sequential) {
sequential_area += cell_data.area;
local_sequential_area += cell_data.area;
}
area += cell_data.area;
num_cells++;
num_cells_by_type[cell_type]++;
area_cells_by_type[cell_type] += cell_data.area;
seq_area_cells_by_type[cell_type] += cell_data.is_sequential ? cell_data.area : 0;
local_area_cells_by_type[cell_type] += cell_data.area;
local_seq_area_cells_by_type[cell_type] += cell_data.is_sequential ? cell_data.area : 0;
local_area += cell_data.area;
local_num_cells++;
local_num_cells_by_type[cell_type]++;
} else {
unknown_cell_area.insert(cell_type);
num_cells++;
num_cells_by_type[cell_type]++;
local_num_cells++;
local_num_cells_by_type[cell_type]++;
area_cells_by_type[cell_type] = 0;
seq_area_cells_by_type[cell_type] = 0;
local_area_cells_by_type[cell_type] = 0;
local_seq_area_cells_by_type[cell_type] = 0;
}
} else {
num_cells++;
num_cells_by_type[cell_type]++;
area_cells_by_type[cell_type] = 0;
seq_area_cells_by_type[cell_type] = 0;
local_num_cells++;
local_num_cells_by_type[cell_type]++;
local_area_cells_by_type[cell_type] = 0;
local_seq_area_cells_by_type[cell_type] = 0;
}
}
for (auto &it : mod->processes) {
if (!design->selected(mod, it.second))
continue;
num_processes++;
local_num_processes++;
}
RTLIL::IdString cell_name = mod->name;
auto s = cell_name.str();
}
unsigned int estimate_xilinx_lc()
{
unsigned int lut6_cnt = num_cells_by_type[ID(LUT6)];
unsigned int lut5_cnt = num_cells_by_type[ID(LUT5)];
unsigned int lut4_cnt = num_cells_by_type[ID(LUT4)];
unsigned int lut3_cnt = num_cells_by_type[ID(LUT3)];
unsigned int lut2_cnt = num_cells_by_type[ID(LUT2)];
unsigned int lut1_cnt = num_cells_by_type[ID(LUT1)];
unsigned int lc_cnt = 0;
lc_cnt += lut6_cnt;
lc_cnt += lut5_cnt;
if (lut1_cnt) {
int cnt = std::min(lut5_cnt, lut1_cnt);
lut5_cnt -= cnt;
lut1_cnt -= cnt;
}
lc_cnt += lut4_cnt;
if (lut1_cnt) {
int cnt = std::min(lut4_cnt, lut1_cnt);
lut4_cnt -= cnt;
lut1_cnt -= cnt;
}
if (lut2_cnt) {
int cnt = std::min(lut4_cnt, lut2_cnt);
lut4_cnt -= cnt;
lut2_cnt -= cnt;
}
lc_cnt += lut3_cnt;
if (lut1_cnt) {
int cnt = std::min(lut3_cnt, lut1_cnt);
lut3_cnt -= cnt;
lut1_cnt -= cnt;
}
if (lut2_cnt) {
int cnt = std::min(lut3_cnt, lut2_cnt);
lut3_cnt -= cnt;
lut2_cnt -= cnt;
}
if (lut3_cnt) {
int cnt = (lut3_cnt + 1) / 2;
lut3_cnt -= cnt;
}
lc_cnt += (lut2_cnt + lut1_cnt + 1) / 2;
return lc_cnt;
}
unsigned int cmos_transistor_count(bool *tran_cnt_exact)
{
unsigned int tran_cnt = 0;
auto &gate_costs = CellCosts::cmos_gate_cost();
for (auto it : num_cells_by_type) {
auto ctype = it.first;
auto cnum = it.second;
if (gate_costs.count(ctype))
tran_cnt += cnum * gate_costs.at(ctype);
else
*tran_cnt_exact = false;
}
return tran_cnt;
}
/*
format a floating point value to a of 8 characters, with at most 7 digits or scientific notation
uses - to mark zero or very small values
*/
std::string f_val(double value)
{
if (std::abs(value) < 1e-12)
return " -";
char buf[16];
int len = snprintf(buf, sizeof(buf), "%.3f", value);
while (len > 0 && buf[len - 1] == '0')
--len;
if (len > 0 && buf[len - 1] == '.')
--len;
buf[len] = '\0';
if (len <= 7) {
return std::string(8 - len, ' ') + std::string(buf);
}
// use scientific notation, this should always fit in 8 characters
snprintf(buf, sizeof(buf), "%8.3G", value);
return std::string(buf);
}
void print_log_line(const std::string &name, unsigned int count_local, double area_local, unsigned int count_global, double area_global,
int spacer = 0, bool print_area = true, bool print_hierarchical = true, bool print_global_only = false)
{
const std::string indent(2 * spacer, ' ');
std::string count_local_str = f_val(static_cast<double>(count_local));
std::string count_global_str = f_val(static_cast<double>(count_global));
std::string area_local_str = f_val(area_local);
std::string area_global_str = f_val(area_global);
if (print_area) {
if (print_hierarchical) {
log(" %s %s %s %s %s%s\n", count_global_str.c_str(), area_global_str.c_str(), count_local_str.c_str(),
area_local_str.c_str(), indent.c_str(), name.c_str());
} else if (print_global_only) {
log(" %s %s %s%s\n", count_global_str.c_str(), area_global_str.c_str(), indent.c_str(), name.c_str());
} else {
if (count_local > 0)
log(" %s %s %s%s\n", count_local_str.c_str(), area_local_str.c_str(), indent.c_str(), name.c_str());
}
} else {
if (print_hierarchical) {
log(" %s %s %s%s\n", count_global_str.c_str(), count_local_str.c_str(), indent.c_str(), name.c_str());
} else if (print_global_only) {
log(" %s %s%s\n", count_global_str.c_str(), indent.c_str(), name.c_str());
} else {
if (count_local > 0)
log(" %s %s%s\n", count_local_str.c_str(), indent.c_str(), name.c_str());
}
}
}
void print_log_header(bool print_area = true, bool print_hierarchical = true, bool print_global_only = false)
{
if (print_area) {
if (print_hierarchical) {
log(" %8s-%8s-%8s-%8s-%s\n", "+", "--------", "--------", "--------", "Count including submodules.");
log(" %8s %8s-%8s-%8s-%s\n", "|", "+", "--------", "--------", "Area including submodules.");
log(" %8s %8s %8s-%8s-%s\n", "|", "|", "+", "--------", "Local count, excluding submodules.");
log(" %8s %8s %8s %8s-%s\n", "|", "|", "|", "+", "Local area, excluding submodules.");
log(" %8s %8s %8s %8s \n", "|", "|", "|", "|");
} else if (print_global_only) {
log(" %8s-%8s-%s\n", "+", "--------", "Count including submodules.");
log(" %8s %8s-%s\n", "|", "+", "Area including submodules.");
log(" %8s %8s \n", "|", "|");
} else {
log(" %8s-%8s-%s\n", "+", "--------", "Local Count, excluding submodules.");
log(" %8s %8s-%s\n", "|", "+", "Local Area, excluding submodules.");
log(" %8s %8s \n", "|", "|");
}
} else {
if (print_hierarchical) {
log(" %8s-%8s-%8s-%s\n", "+", "--------", "--------", "Count including submodules.");
log(" %8s %8s-%8s-%s\n", "|", "+", "--------", "Local count, excluding submodules.");
log(" %8s %8s \n", "|", "|");
} else if (print_global_only) {
log(" %8s-%8s-%s\n", "+", "--------", "Count including submodules.");
log(" %8s %8s \n", "|", "|");
} else {
log(" %8s-%8s-%s\n", "+", "--------", "Local Count, excluding submodules.");
log(" %8s \n", "|");
}
}
}
void log_data(RTLIL::IdString mod_name, bool top_mod, bool print_area = true, bool print_hierarchical = true, bool print_global_only = false)
{
print_log_header(print_area, print_hierarchical, print_global_only);
print_log_line("wires", local_num_wires, 0, num_wires, 0, 0, print_area, print_hierarchical, print_global_only);
print_log_line("wire bits", local_num_wire_bits, 0, num_wire_bits, 0, 0, print_area, print_hierarchical, print_global_only);
print_log_line("public wires", local_num_pub_wires, 0, num_pub_wires, 0, 0, print_area, print_hierarchical, print_global_only);
print_log_line("public wire bits", local_num_pub_wire_bits, 0, num_pub_wire_bits, 0, 0, print_area, print_hierarchical,
print_global_only);
print_log_line("ports", local_num_ports, 0, num_ports, 0, 0, print_area, print_hierarchical, print_global_only);
print_log_line("port bits", local_num_port_bits, 0, num_port_bits, 0, 0, print_area, print_hierarchical, print_global_only);
print_log_line("memories", local_num_memories, 0, num_memories, 0, 0, print_area, print_hierarchical, print_global_only);
print_log_line("memory bits", local_num_memory_bits, 0, num_memory_bits, 0, 0, print_area, print_hierarchical, print_global_only);
print_log_line("processes", local_num_processes, 0, num_processes, 0, 0, print_area, print_hierarchical, print_global_only);
print_log_line("cells", local_num_cells, local_area, num_cells, area, 0, print_area, print_hierarchical, print_global_only);
for (auto &it : num_cells_by_type)
if (it.second) {
auto name = string(log_id(it.first));
print_log_line(name, local_num_cells_by_type.count(it.first) ? local_num_cells_by_type.at(it.first) : 0,
local_area_cells_by_type.count(it.first) ? local_area_cells_by_type.at(it.first) : 0, it.second,
area_cells_by_type.at(it.first), 1, print_area, print_hierarchical, print_global_only);
}
if (num_submodules > 0) {
print_log_line("submodules", num_submodules, 0, num_submodules, submodule_area, 0, print_area, print_hierarchical,
print_global_only);
for (auto &it : num_submodules_by_type)
if (it.second)
print_log_line(string(log_id(it.first)), it.second, 0, it.second,
submodules_area_by_type.count(it.first) ? submodules_area_by_type.at(it.first) : 0, 1,
print_area, print_hierarchical, print_global_only);
}
if (!unknown_cell_area.empty()) {
log("\n");
for (auto cell_type : unknown_cell_area)
log(" Area for cell type %s is unknown!\n", cell_type.c_str());
}
if (area != 0) {
log("\n");
log(" Chip area for %smodule '%s': %f\n", (top_mod) ? "top " : "", mod_name.c_str(), area);
log(" of which used for sequential elements: %f (%.2f%%)\n", sequential_area, 100.0 * sequential_area / area);
}
if (tech == "xilinx") {
log("\n");
log(" Estimated number of LCs: %10u\n", estimate_xilinx_lc());
}
if (tech == "cmos") {
bool tran_cnt_exact = true;
unsigned int tran_cnt = cmos_transistor_count(&tran_cnt_exact);
log("\n");
log(" Estimated number of transistors: %10u%s\n", tran_cnt, tran_cnt_exact ? "" : "+");
}
}
string json_line(unsigned int count_local, double area_local, unsigned int count_global, double area_global)
{
return stringf("{ \"count\": \"%u\", \"area\": \"%f\", \"local_count\": \"%u\", \"local_area\": \"%f\" }", count_global, area_global,
count_local, area_local);
}
void log_data_json(const char *mod_name, bool first_module, bool hierarchical = false, bool global_only = false)
{
if (!first_module)
log(",\n");
if (hierarchical) {
log(" %s: {\n", json11::Json(mod_name).dump().c_str());
log(" \"num_wires\": %s,\n", json_line(local_num_wires, 0, num_wires, 0).c_str());
log(" \"num_wire_bits\": %s,\n", json_line(local_num_wire_bits, 0, num_wire_bits, 0).c_str());
log(" \"num_pub_wires\": %s,\n", json_line(local_num_pub_wires, 0, num_pub_wires, 0).c_str());
log(" \"num_pub_wire_bits\": %s,\n", json_line(local_num_pub_wire_bits, 0, num_pub_wire_bits, 0).c_str());
log(" \"num_ports\": %s,\n", json_line(local_num_ports, 0, num_ports, 0).c_str());
log(" \"num_port_bits\": %s,\n", json_line(local_num_port_bits, 0, num_port_bits, 0).c_str());
log(" \"num_memories\": %s,\n", json_line(local_num_memories, 0, num_memories, 0).c_str());
log(" \"num_memory_bits\": %s,\n", json_line(local_num_memory_bits, 0, num_memory_bits, 0).c_str());
log(" \"num_processes\": %s,\n", json_line(local_num_processes, 0, num_processes, 0).c_str());
log(" \"num_cells\": %s,\n", json_line(local_num_cells, local_area, num_cells, area).c_str());
log(" \"num_submodules\": %s,\n", json_line(0, 0, num_submodules, submodule_area).c_str());
log(" \"sequential_area\": %s,\n", json_line(0, local_sequential_area, 0, sequential_area).c_str());
log(" \"num_cells_by_type\": {\n");
bool first_line = true;
for (auto &it : num_cells_by_type)
if (it.second) {
if (!first_line)
log(",\n");
log(" %s: %s", json11::Json(log_id(it.first)).dump().c_str(),
json_line(local_num_cells_by_type.count(it.first) ? local_num_cells_by_type.at(it.first) : 0,
local_area_cells_by_type.count(it.first) ? local_area_cells_by_type.at(it.first) : 0, it.second,
area_cells_by_type.at(it.first))
.c_str());
first_line = false;
}
log("\n },\n");
log(" \"num_submodules_by_type\": {\n");
first_line = true;
for (auto &it : num_submodules_by_type)
if (it.second) {
if (!first_line)
log(",\n");
log(" %s: %s", json11::Json(log_id(it.first)).dump().c_str(),
json_line(0, 0, it.second,
submodules_area_by_type.count(it.first) ? submodules_area_by_type.at(it.first) : 0)
.c_str());
first_line = false;
}
log("\n }\n");
if (tech == "xilinx") {
log(" \"estimated_num_lc\": %u,\n", estimate_xilinx_lc());
}
if (tech == "cmos") {
bool tran_cnt_exact = true;
unsigned int tran_cnt = cmos_transistor_count(&tran_cnt_exact);
log(" \"estimated_num_transistors\": \"%u%s\"\n", tran_cnt, tran_cnt_exact ? "" : "+");
}
log(" }");
} else {
if (global_only) {
log(" %s: {\n", json11::Json(mod_name).dump().c_str());
log(" \"num_wires\": %u,\n", num_wires);
log(" \"num_wire_bits\": %u,\n", num_wire_bits);
log(" \"num_pub_wires\": %u,\n", num_pub_wires);
log(" \"num_pub_wire_bits\": %u,\n", num_pub_wire_bits);
log(" \"num_ports\": %u,\n", num_ports);
log(" \"num_port_bits\": %u,\n", num_port_bits);
log(" \"num_memories\": %u,\n", num_memories);
log(" \"num_memory_bits\": %u,\n", num_memory_bits);
log(" \"num_processes\": %u,\n", num_processes);
log(" \"num_cells\": %u,\n", num_cells);
log(" \"num_submodules\": %u,\n", num_submodules);
if (area != 0) {
log(" \"area\": %f,\n", area);
log(" \"sequential_area\": %f,\n", sequential_area);
}
log(" \"num_cells_by_type\": {\n");
bool first_line = true;
for (auto &it : num_cells_by_type)
if (it.second) {
if (!first_line)
log(",\n");
log(" %s: %u", json11::Json(log_id(it.first)).dump().c_str(), it.second);
first_line = false;
}
for (auto &it : num_submodules_by_type)
if (it.second) {
if (!first_line)
log(",\n");
log(" %s: %u", json11::Json(log_id(it.first)).dump().c_str(), it.second);
first_line = false;
}
log("\n");
log(" }");
} else {
log(" %s: {\n", json11::Json(mod_name).dump().c_str());
log(" \"num_wires\": %u,\n", local_num_wires);
log(" \"num_wire_bits\": %u,\n", local_num_wire_bits);
log(" \"num_pub_wires\": %u,\n", local_num_pub_wires);
log(" \"num_pub_wire_bits\": %u,\n", local_num_pub_wire_bits);
log(" \"num_ports\": %u,\n", local_num_ports);
log(" \"num_port_bits\": %u,\n", local_num_port_bits);
log(" \"num_memories\": %u,\n", local_num_memories);
log(" \"num_memory_bits\": %u,\n", local_num_memory_bits);
log(" \"num_processes\": %u,\n", local_num_processes);
log(" \"num_cells\": %u,\n", local_num_cells);
log(" \"num_submodules\": %u,\n", num_submodules);
if (area != 0) {
log(" \"area\": %f,\n", area);
log(" \"sequential_area\": %f,\n", sequential_area);
}
log(" \"num_cells_by_type\": {\n");
bool first_line = true;
for (auto &it : local_num_cells_by_type)
if (it.second) {
if (!first_line)
log(",\n");
log(" %s: %u", json11::Json(log_id(it.first)).dump().c_str(), it.second);
first_line = false;
}
for (auto &it : num_submodules_by_type)
if (it.second) {
if (!first_line)
log(",\n");
log(" %s: %u", json11::Json(log_id(it.first)).dump().c_str(), it.second);
first_line = false;
}
log("\n");
log(" }");
}
if (tech == "xilinx") {
log(",\n");
log(" \"estimated_num_lc\": %u", estimate_xilinx_lc());
}
if (tech == "cmos") {
bool tran_cnt_exact = true;
unsigned int tran_cnt = cmos_transistor_count(&tran_cnt_exact);
log(",\n");
log(" \"estimated_num_transistors\": \"%u%s\"", tran_cnt, tran_cnt_exact ? "" : "+");
}
log("\n");
log(" }");
}
}
};
statdata_t hierarchy_worker(std::map<RTLIL::IdString, statdata_t> &mod_stat, RTLIL::IdString mod, int level, bool quiet = false, bool has_area = true,
bool hierarchy_mode = true)
{
statdata_t mod_data = mod_stat.at(mod);
for (auto &it : mod_data.num_submodules_by_type) {
if (mod_stat.count(it.first) > 0) {
if (!quiet)
mod_data.print_log_line(string(log_id(it.first)), mod_stat.at(it.first).local_num_cells,
mod_stat.at(it.first).local_area, mod_stat.at(it.first).num_cells, mod_stat.at(it.first).area,
level, has_area, hierarchy_mode);
hierarchy_worker(mod_stat, it.first, level + 1, quiet, has_area, hierarchy_mode) * it.second;
}
}
return mod_data;
}
statdata_t hierarchy_builder(const RTLIL::Design *design, const RTLIL::Module *top_mod, std::map<RTLIL::IdString, statdata_t> &mod_stat,
bool width_mode, dict<IdString, cell_area_t> &cell_area, string techname)
{
if (top_mod == nullptr)
top_mod = design->top_module();
statdata_t mod_data(design, top_mod, width_mode, cell_area, techname);
for (auto cell : top_mod->selected_cells()) {
if (cell_area.count(cell->type) == 0) {
if (design->has(cell->type)) {
if (!(design->module(cell->type)->attributes.count(ID::blackbox))) {
// deal with modules
mod_data.add(
hierarchy_builder(design, design->module(cell->type), mod_stat, width_mode, cell_area, techname));
mod_data.num_submodules_by_type[cell->type]++;
mod_data.submodules_area_by_type[cell->type] += mod_stat.at(cell->type).area;
mod_data.submodule_area += mod_stat.at(cell->type).area;
mod_data.num_submodules++;
mod_data.unknown_cell_area.erase(cell->type);
mod_data.num_cells -= (mod_data.num_cells_by_type.count(cell->type) != 0)? mod_data.num_cells_by_type.at(cell->type): 0;
mod_data.num_cells_by_type.erase(cell->type);
mod_data.local_num_cells -= (mod_data.local_num_cells_by_type.count(cell->type) != 0)? mod_data.local_num_cells_by_type.at(cell->type): 0;
mod_data.local_num_cells_by_type.erase(cell->type);
mod_data.local_area_cells_by_type.erase(cell->type);
} else {
// deal with blackbox cells
if (design->module(cell->type)->attributes.count(ID::area) &&
design->module(cell->type)->attributes.at(ID::area).size() == 0) {
mod_data.num_submodules_by_type[cell->type]++;
mod_data.num_submodules++;
mod_data.submodules_area_by_type[cell->type] +=
double(design->module(cell->type)->attributes.at(ID::area).as_int());
mod_data.area += double(design->module(cell->type)->attributes.at(ID::area).as_int());
mod_data.unknown_cell_area.erase(cell->type);
mod_data.num_cells -= (mod_data.num_cells_by_type.count(cell->type) != 0)? mod_data.num_cells_by_type.at(cell->type): 0;
mod_data.num_cells_by_type.erase(cell->type);
mod_data.local_num_cells -= (mod_data.local_num_cells_by_type.count(cell->type) != 0)? mod_data.local_num_cells_by_type.at(cell->type): 0;
mod_data.local_num_cells_by_type.erase(cell->type);
mod_data.local_area_cells_by_type.erase(cell->type);
}
}
}
}
}
mod_stat[top_mod->name] = mod_data;
return mod_data;
}
void read_liberty_cellarea(dict<IdString, cell_area_t> &cell_area, string liberty_file)
{
std::istream *f = uncompressed(liberty_file.c_str());
yosys_input_files.insert(liberty_file);
LibertyParser libparser(*f, liberty_file);
delete f;
for (auto cell : libparser.ast->children) {
if (cell->id != "cell" || cell->args.size() != 1)
continue;
const LibertyAst *ar = cell->find("area");
bool is_flip_flop = cell->find("ff") != nullptr;
if (ar != nullptr && !ar->value.empty()) {
string prefix = cell->args[0].substr(0, 1) == "$" ? "" : "\\";
cell_area[prefix + cell->args[0]] = {atof(ar->value.c_str()), is_flip_flop};
}
}
}
struct StatPass : public Pass {
StatPass() : Pass("stat", "print some statistics") {}
bool formatted_help() override
{
auto *help = PrettyHelp::get_current();
help->set_group("passes/status");
return false;
}
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" stat [options] [selection]\n");
log("\n");
log("Print some statistics (number of objects) on the selected portion of the\n");
log("design.\n");
log("Extracts the area of cells from a liberty file, if provided.\n");
log("\n");
log(" -top <module>\n");
log(" print design hierarchy with this module as top. if the design is fully\n");
log(" selected and a module has the 'top' attribute set, this module is used\n");
log(" default value for this option.\n");
log("\n");
log(" -liberty <liberty_file>\n");
log(" use cell area information from the provided liberty file\n");
log("\n");
log(" -tech <technology>\n");
log(" print area estimate for the specified technology. Currently supported\n");
log(" values for <technology>: xilinx, cmos\n");
log("\n");
log(" -width\n");
log(" annotate internal cell types with their word width.\n");
log(" e.g. $add_8 for an 8 bit wide $add cell.\n");
log("\n");
log(" -json\n");
log(" output the statistics in a machine-readable JSON format.\n");
log(" this is output to the console; use \"tee\" to output to a file.\n");
log("\n");
log(" -hierarchy\n");
log(" print hierarchical statistics, i.e. The area and number of cells include submodules.\n");
log(" this changes the format of the json output.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool width_mode = false, json_mode = false, hierarchy_mode = false;
RTLIL::Module *top_mod = nullptr;
std::map<RTLIL::IdString, statdata_t> mod_stat;
dict<IdString, cell_area_t> cell_area;
string techname;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-width") {
width_mode = true;
continue;
}
if (args[argidx] == "-liberty" && argidx + 1 < args.size()) {
string liberty_file = args[++argidx];
rewrite_filename(liberty_file);
read_liberty_cellarea(cell_area, liberty_file);
continue;
}
if (args[argidx] == "-tech" && argidx + 1 < args.size()) {
techname = args[++argidx];
continue;
}
if (args[argidx] == "-top" && argidx + 1 < args.size()) {
if (design->module(RTLIL::escape_id(args[argidx + 1])) == nullptr)
log_cmd_error("Can't find module %s.\n", args[argidx + 1].c_str());
top_mod = design->module(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-json") {
json_mode = true;
continue;
}
if (args[argidx] == "-hierarchy") {
hierarchy_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!json_mode)
log_header(design, "Printing statistics.\n");
if (techname != "" && techname != "xilinx" && techname != "cmos" && !json_mode)
log_cmd_error("Unsupported technology: '%s'\n", techname.c_str());
if (json_mode) {
log("{\n");
log(" \"creator\": %s,\n", json11::Json(yosys_maybe_version()).dump().c_str());
std::stringstream invocation;
std::copy(args.begin(), args.end(), std::ostream_iterator<std::string>(invocation, " "));
log(" \"invocation\": %s,\n", json11::Json(invocation.str()).dump().c_str());
log(" \"modules\": {\n");
}
if (top_mod != nullptr) {
hierarchy_builder(design, top_mod, mod_stat, width_mode, cell_area, techname);
} else {
for (auto mod : design->selected_modules()) {
if (mod_stat.count(mod->name) == 0) {
hierarchy_builder(design, mod, mod_stat, width_mode, cell_area, techname);
}
}
}
bool first_module = true;
// determine if anything has a area.
bool has_area = false;
for (auto &it : mod_stat) {
if (it.second.area > 0 || it.second.sequential_area > 0) {
has_area = true;
break;
}
}
for (auto mod : design->selected_modules()) {
if (!top_mod && design->full_selection())
if (mod->get_bool_attribute(ID::top))
top_mod = mod;
statdata_t data = mod_stat.at(mod->name);
if (json_mode) {
data.log_data_json(mod->name.c_str(), first_module, hierarchy_mode);
first_module = false;
} else {
log("\n");
log("=== %s%s ===\n", log_id(mod->name), mod->is_selected_whole() ? "" : " (partially selected)");
log("\n");
data.log_data(mod->name, false, has_area, hierarchy_mode);
}
}
if (json_mode) {
log("\n");
log(top_mod == nullptr ? " }\n" : " },\n");
}
if (top_mod != nullptr) {
if (!json_mode && GetSize(mod_stat) > 1) {
log("\n");
log("=== design hierarchy ===\n");
log("\n");
mod_stat[top_mod->name].print_log_header(has_area, hierarchy_mode, true);
mod_stat[top_mod->name].print_log_line(log_id(top_mod->name), mod_stat[top_mod->name].local_num_cells,
mod_stat[top_mod->name].local_area, mod_stat[top_mod->name].num_cells,
mod_stat[top_mod->name].area, 0, has_area, hierarchy_mode, true);
}
statdata_t data = hierarchy_worker(mod_stat, top_mod->name, 0, /*quiet=*/json_mode, has_area, hierarchy_mode);
if (json_mode)
data.log_data_json("design", true, hierarchy_mode, true);
else if (GetSize(mod_stat) > 1) {
log("\n");
data.log_data(top_mod->name, true, has_area, hierarchy_mode, true);
}
design->scratchpad_set_int("stat.num_wires", data.num_wires);
design->scratchpad_set_int("stat.num_wire_bits", data.num_wire_bits);
design->scratchpad_set_int("stat.num_pub_wires", data.num_pub_wires);
design->scratchpad_set_int("stat.num_pub_wire_bits", data.num_pub_wire_bits);
design->scratchpad_set_int("stat.num_ports", data.num_ports);
design->scratchpad_set_int("stat.num_port_bits", data.num_port_bits);
design->scratchpad_set_int("stat.num_memories", data.num_memories);
design->scratchpad_set_int("stat.num_memory_bits", data.num_memory_bits);
design->scratchpad_set_int("stat.num_processes", data.num_processes);
design->scratchpad_set_int("stat.num_cells", data.num_cells);
design->scratchpad_set_int("stat.area", data.area);
}
if (json_mode) {
log("\n");
log("}\n");
}
log("\n");
}
} StatPass;
PRIVATE_NAMESPACE_END