mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 03:32:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			219 lines
		
	
	
	
		
			6 KiB
		
	
	
	
		
			Verilog
		
	
	
	
	
	
			
		
		
	
	
			219 lines
		
	
	
	
		
			6 KiB
		
	
	
	
		
			Verilog
		
	
	
	
	
	
| // The core logic primitive of the Cyclone V is the Adaptive Logic Module
 | |
| // (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered
 | |
| // in this file, connected to combinational outputs, a carry chain, and four
 | |
| // D flip-flops (which are covered as MISTRAL_FF in dff_sim.v).
 | |
| //
 | |
| // The ALM is vertically symmetric, so I find it helps to think in terms of
 | |
| // half-ALMs, as that's predominantly the unit that synth_intel_alm uses.
 | |
| //
 | |
| // ALMs are quite flexible, having multiple modes.
 | |
| //
 | |
| // Normal (combinational) mode
 | |
| // ---------------------------
 | |
| // The ALM can implement:
 | |
| // - a single 6-input function (with the other inputs usable for flip-flop access)
 | |
| // - two 5-input functions that share two inputs
 | |
| // - a 5-input and a 4-input function that share one input
 | |
| // - a 5-input and a 3-or-less-input function that share no inputs
 | |
| // - two 4-or-less-input functions that share no inputs
 | |
| //
 | |
| // Normal-mode functions are represented as MISTRAL_ALUTN cells with N inputs.
 | |
| // It would be possible to represent a normal mode function as a single cell -
 | |
| // the vendor cyclone{v,10gx}_lcell_comb cell does exactly that - but I felt
 | |
| // it was more user-friendly to print out the specific function sizes
 | |
| // separately.
 | |
| //
 | |
| // With the exception of MISTRAL_ALUT6, you can think of two normal-mode cells
 | |
| // fitting inside a single ALM.
 | |
| //
 | |
| // Extended (7-input) mode
 | |
| // -----------------------
 | |
| // The ALM can also fit a 7-input function made of two 5-input functions that
 | |
| // share four inputs, multiplexed by another input.
 | |
| //
 | |
| // Because this can't accept arbitrary 7-input functions, Yosys can't handle
 | |
| // it, so it doesn't have a cell, but I would likely call it MISTRAL_ALUT7(E?)
 | |
| // if it did, and it would take up a full ALM.
 | |
| //
 | |
| // It might be possible to add an extraction pass to examine all ALUT5 cells
 | |
| // that feed into ALUT3 cells to see if they can be combined into an extended
 | |
| // ALM, but I don't think it will be worth it.
 | |
| //
 | |
| // Arithmetic mode
 | |
| // ---------------
 | |
| // In arithmetic mode, each half-ALM uses its carry chain to perform fast addition
 | |
| // of two four-input functions that share three inputs. Oddly, the result of
 | |
| // one of the functions is inverted before being added (you can see this as
 | |
| // the dot on a full-adder input of Figure 1-8 in the Handbook).
 | |
| //
 | |
| // The cell for an arithmetic-mode half-ALM is MISTRAL_ALM_ARITH. One idea
 | |
| // I've had (or rather was suggested by mwk) is that functions that feed into
 | |
| // arithmetic-mode cells could be packed directly into the arithmetic-mode
 | |
| // cell as a function, which reduces the number of ALMs needed.
 | |
| //
 | |
| // Shared arithmetic mode
 | |
| // ----------------------
 | |
| // Shared arithmetic mode looks a lot like arithmetic mode, but here the
 | |
| // output of every other four-input function goes to the input of the adder
 | |
| // the next bit along. What this means is that adding three bits together can
 | |
| // be done in an ALM, because functions can be used to implement addition that
 | |
| // then feeds into the carry chain. This means that three bits can be added per
 | |
| // ALM, as opposed to two in the arithmetic mode.
 | |
| //
 | |
| // Shared arithmetic mode doesn't currently have a cell, but I intend to add
 | |
| // it as MISTRAL_ALM_SHARED, and have it occupy a full ALM. Because it adds
 | |
| // three bits per cell, it makes addition shorter and use less ALMs, but
 | |
| // I don't know enough to tell whether it's more efficient to use shared
 | |
| // arithmetic mode to shorten the carry chain, or plain arithmetic mode with
 | |
| // the functions packed in.
 | |
| 
 | |
| `default_nettype none
 | |
| 
 | |
| // Cyclone V LUT output timings (picoseconds):
 | |
| //
 | |
| //          CARRY   A    B    C   D   E    F   G
 | |
| //  COMBOUT    -  605  583  510 512   -   97 400 (LUT6)
 | |
| //  COMBOUT    -  602  583  457 510 302   93 483 (LUT7)
 | |
| //   SUMOUT  368 1342 1323  887 927   -  785   -
 | |
| // CARRYOUT   71 1082 1062  866 813   - 1198   -
 | |
| 
 | |
| (* abc9_lut=2, lib_whitebox *)
 | |
| module MISTRAL_ALUT6(input A, B, C, D, E, F, output Q);
 | |
| 
 | |
| parameter [63:0] LUT = 64'h0000_0000_0000_0000;
 | |
| 
 | |
| `ifdef cyclonev
 | |
| specify
 | |
|     (A => Q) = 605;
 | |
|     (B => Q) = 583;
 | |
|     (C => Q) = 510;
 | |
|     (D => Q) = 512;
 | |
|     (E => Q) = 400;
 | |
|     (F => Q) = 97;
 | |
| endspecify
 | |
| `endif
 | |
| 
 | |
| assign Q = LUT >> {F, E, D, C, B, A};
 | |
| 
 | |
| endmodule
 | |
| 
 | |
| 
 | |
| (* abc9_lut=1, lib_whitebox *)
 | |
| module MISTRAL_ALUT5(input A, B, C, D, E, output Q);
 | |
| 
 | |
| parameter [31:0] LUT = 32'h0000_0000;
 | |
| 
 | |
| `ifdef cyclonev
 | |
| specify
 | |
|     (A => Q) = 583;
 | |
|     (B => Q) = 510;
 | |
|     (C => Q) = 512;
 | |
|     (D => Q) = 400;
 | |
|     (E => Q) = 97;
 | |
| endspecify
 | |
| `endif
 | |
| 
 | |
| assign Q = LUT >> {E, D, C, B, A};
 | |
| 
 | |
| endmodule
 | |
| 
 | |
| 
 | |
| (* abc9_lut=1, lib_whitebox *)
 | |
| module MISTRAL_ALUT4(input A, B, C, D, output Q);
 | |
| 
 | |
| parameter [15:0] LUT = 16'h0000;
 | |
| 
 | |
| `ifdef cyclonev
 | |
| specify
 | |
|     (A => Q) = 510;
 | |
|     (B => Q) = 512;
 | |
|     (C => Q) = 400;
 | |
|     (D => Q) = 97;
 | |
| endspecify
 | |
| `endif
 | |
| 
 | |
| assign Q = LUT >> {D, C, B, A};
 | |
| 
 | |
| endmodule
 | |
| 
 | |
| 
 | |
| (* abc9_lut=1, lib_whitebox *)
 | |
| module MISTRAL_ALUT3(input A, B, C, output Q);
 | |
| 
 | |
| parameter [7:0] LUT = 8'h00;
 | |
| 
 | |
| `ifdef cyclonev
 | |
| specify
 | |
|     (A => Q) = 510;
 | |
|     (B => Q) = 400;
 | |
|     (C => Q) = 97;
 | |
| endspecify
 | |
| `endif
 | |
| 
 | |
| assign Q = LUT >> {C, B, A};
 | |
| 
 | |
| endmodule
 | |
| 
 | |
| 
 | |
| (* abc9_lut=1, lib_whitebox *)
 | |
| module MISTRAL_ALUT2(input A, B, output Q);
 | |
| 
 | |
| parameter [3:0] LUT = 4'h0;
 | |
| 
 | |
| `ifdef cyclonev
 | |
| specify
 | |
|     (A => Q) = 400;
 | |
|     (B => Q) = 97;
 | |
| endspecify
 | |
| `endif
 | |
| 
 | |
| assign Q = LUT >> {B, A};
 | |
| 
 | |
| endmodule
 | |
| 
 | |
| 
 | |
| (* abc9_lut=1, lib_whitebox *)
 | |
| module MISTRAL_NOT(input A, output Q);
 | |
| 
 | |
| `ifdef cyclonev
 | |
| specify
 | |
|     (A => Q) = 97;
 | |
| endspecify
 | |
| `endif
 | |
| 
 | |
| assign Q = ~A;
 | |
| 
 | |
| endmodule
 | |
| 
 | |
| (* abc9_box, lib_whitebox *)
 | |
| module MISTRAL_ALUT_ARITH(input A, B, C, D0, D1, (* abc9_carry *) input CI, output SO, (* abc9_carry *) output CO);
 | |
| 
 | |
| parameter LUT0 = 16'h0000;
 | |
| parameter LUT1 = 16'h0000;
 | |
| 
 | |
| `ifdef cyclonev
 | |
| specify
 | |
|     (A  => SO) = 1342;
 | |
|     (B  => SO) = 1323;
 | |
|     (C  => SO) = 927;
 | |
|     (D0 => SO) = 887;
 | |
|     (D1 => SO) = 785;
 | |
|     (CI => SO) = 368;
 | |
| 
 | |
|     (A  => CO) = 1082;
 | |
|     (B  => CO) = 1062;
 | |
|     (C  => CO) = 813;
 | |
|     (D0 => CO) = 866;
 | |
|     (D1 => CO) = 1198;
 | |
|     (CI => CO) = 36; // Divided by 2 to account for there being two ALUT_ARITHs in an ALM)
 | |
| endspecify
 | |
| `endif
 | |
| 
 | |
| wire q0, q1;
 | |
| 
 | |
| assign q0 = LUT0 >> {D0, C, B, A};
 | |
| assign q1 = LUT1 >> {D1, C, B, A};
 | |
| 
 | |
| assign {CO, SO} = q0 + !q1 + CI;
 | |
| 
 | |
| endmodule
 |