3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-05-11 09:44:44 +00:00
yosys/passes/techmap/extract.cc
Philippe Sauter 5c77c73888 extract: trim port widths to minimum
This does not yet seem to work completely as intended.
The idea is to trim the port widths of the extracted circuits,
so that it does not leave X bits as padding at the MSBs.
2024-06-14 10:03:17 +02:00

810 lines
29 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "libs/subcircuit/subcircuit.h"
#include <algorithm>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
class SubCircuitSolver : public SubCircuit::Solver
{
public:
bool ignore_parameters;
std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> ignored_parameters;
std::set<RTLIL::IdString> cell_attr, wire_attr;
SubCircuitSolver() : ignore_parameters(false)
{
}
bool compareAttributes(const std::set<RTLIL::IdString> &attr, const dict<RTLIL::IdString, RTLIL::Const> &needleAttr, const dict<RTLIL::IdString, RTLIL::Const> &haystackAttr)
{
for (auto &it : attr) {
size_t nc = needleAttr.count(it), hc = haystackAttr.count(it);
if (nc != hc || (nc > 0 && needleAttr.at(it) != haystackAttr.at(it)))
return false;
}
return true;
}
RTLIL::Const unified_param(RTLIL::IdString cell_type, RTLIL::IdString param, RTLIL::Const value)
{
if (!cell_type.begins_with("$") || cell_type.begins_with("$_"))
return value;
#define param_bool(_n) if (param == _n) return value.as_bool();
param_bool(ID::ARST_POLARITY);
param_bool(ID::A_SIGNED);
param_bool(ID::B_SIGNED);
param_bool(ID::CLK_ENABLE);
param_bool(ID::CLK_POLARITY);
param_bool(ID::CLR_POLARITY);
param_bool(ID::EN_POLARITY);
param_bool(ID::SET_POLARITY);
param_bool(ID::TRANSPARENT);
#undef param_bool
#define param_int(_n) if (param == _n) return value.as_int();
param_int(ID::ABITS)
param_int(ID::A_WIDTH)
param_int(ID::B_WIDTH)
param_int(ID::CTRL_IN_WIDTH)
param_int(ID::CTRL_OUT_WIDTH)
param_int(ID::OFFSET)
param_int(ID::PORTID)
param_int(ID::PRIORITY)
param_int(ID::RD_PORTS)
param_int(ID::SIZE)
param_int(ID::STATE_BITS)
param_int(ID::STATE_NUM)
param_int(ID::STATE_NUM_LOG2)
param_int(ID::STATE_RST)
param_int(ID::S_WIDTH)
param_int(ID::TRANS_NUM)
param_int(ID::WIDTH)
param_int(ID::WR_PORTS)
param_int(ID::Y_WIDTH)
#undef param_int
return value;
}
virtual bool userCompareNodes(const std::string &, const std::string &, void *needleUserData,
const std::string &, const std::string &, void *haystackUserData, const std::map<std::string, std::string> &portMapping)
{
RTLIL::Cell *needleCell = (RTLIL::Cell*) needleUserData;
RTLIL::Cell *haystackCell = (RTLIL::Cell*) haystackUserData;
if (!needleCell || !haystackCell) {
log_assert(!needleCell && !haystackCell);
return true;
}
// TODO: add an optional check to make sure the port-assignment is in one continous block, not in chunks
if (!ignore_parameters) {
std::map<RTLIL::IdString, RTLIL::Const> needle_param, haystack_param;
for (auto &it : needleCell->parameters)
if (!ignored_parameters.count(std::pair<RTLIL::IdString, RTLIL::IdString>(needleCell->type, it.first)))
needle_param[it.first] = unified_param(needleCell->type, it.first, it.second);
for (auto &it : haystackCell->parameters)
if (!ignored_parameters.count(std::pair<RTLIL::IdString, RTLIL::IdString>(haystackCell->type, it.first)))
haystack_param[it.first] = unified_param(haystackCell->type, it.first, it.second);
if (needle_param != haystack_param)
return false;
}
if (cell_attr.size() > 0 && !compareAttributes(cell_attr, needleCell->attributes, haystackCell->attributes))
return false;
if (wire_attr.size() > 0)
{
RTLIL::Wire *lastNeedleWire = nullptr;
RTLIL::Wire *lastHaystackWire = nullptr;
dict<RTLIL::IdString, RTLIL::Const> emptyAttr;
for (auto &conn : needleCell->connections())
{
RTLIL::SigSpec needleSig = conn.second;
RTLIL::SigSpec haystackSig = haystackCell->getPort(portMapping.at(conn.first.str()));
for (int i = 0; i < min(needleSig.size(), haystackSig.size()); i++) {
RTLIL::Wire *needleWire = needleSig[i].wire, *haystackWire = haystackSig[i].wire;
if (needleWire != lastNeedleWire || haystackWire != lastHaystackWire)
if (!compareAttributes(wire_attr, needleWire ? needleWire->attributes : emptyAttr, haystackWire ? haystackWire->attributes : emptyAttr))
return false;
lastNeedleWire = needleWire, lastHaystackWire = haystackWire;
}
}
}
return true;
}
};
struct bit_ref_t {
std::string cell, port;
int bit;
};
bool module2graph(SubCircuit::Graph &graph, RTLIL::Module *mod, bool constports, int min_port_width = -1, RTLIL::Design *sel = nullptr,
int max_fanout = -1, std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> *split = nullptr)
{
SigMap sigmap(mod);
std::map<RTLIL::SigBit, bit_ref_t> sig_bit_ref;
if (sel && !sel->selected(mod)) {
log(" Skipping module %s as it is not selected.\n", log_id(mod->name));
return false;
}
if (mod->processes.size() > 0) {
log(" Skipping module %s as it contains unprocessed processes.\n", log_id(mod->name));
return false;
}
if (constports) {
graph.createNode("$const$0", "$const$0", nullptr, true);
graph.createNode("$const$1", "$const$1", nullptr, true);
graph.createNode("$const$x", "$const$x", nullptr, true);
graph.createNode("$const$z", "$const$z", nullptr, true);
graph.createPort("$const$0", "\\Y", 1);
graph.createPort("$const$1", "\\Y", 1);
graph.createPort("$const$x", "\\Y", 1);
graph.createPort("$const$z", "\\Y", 1);
graph.markExtern("$const$0", "\\Y", 0);
graph.markExtern("$const$1", "\\Y", 0);
graph.markExtern("$const$x", "\\Y", 0);
graph.markExtern("$const$z", "\\Y", 0);
}
std::map<std::pair<RTLIL::Wire*, int>, int> sig_use_count;
if (max_fanout > 0)
for (auto cell : mod->cells())
{
if (!sel || sel->selected(mod, cell))
for (auto &conn : cell->connections()) {
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (bit.wire != nullptr)
sig_use_count[std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset)]++;
}
}
// create graph nodes from cells
for (auto cell : mod->cells())
{
if (sel && !sel->selected(mod, cell))
continue;
std::string type = cell->type.str();
if (sel == nullptr && type.compare(0, 2, "\\$") == 0)
type = type.substr(1);
graph.createNode(cell->name.str(), type, (void*)cell);
for (auto &conn : cell->connections())
{
graph.createPort(cell->name.str(), conn.first.str(), conn.second.size(), min_port_width);
if (split && split->count(std::pair<RTLIL::IdString, RTLIL::IdString>(cell->type, conn.first)) > 0)
continue;
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (int i = 0; i < conn_sig.size(); i++)
{
auto &bit = conn_sig[i];
if (bit.wire == nullptr) {
if (constports) {
std::string node = "$const$x";
if (bit == RTLIL::State::S0) node = "$const$0";
if (bit == RTLIL::State::S1) node = "$const$1";
if (bit == RTLIL::State::Sz) node = "$const$z";
graph.createConnection(cell->name.str(), conn.first.str(), i, node, "\\Y", 0);
} else
graph.createConstant(cell->name.str(), conn.first.str(), i, int(bit.data));
continue;
}
if (max_fanout > 0 && sig_use_count[std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset)] > max_fanout)
continue;
if (sel && !sel->selected(mod, bit.wire))
continue;
if (sig_bit_ref.count(bit) == 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
bit_ref.cell = cell->name.str();
bit_ref.port = conn.first.str();
bit_ref.bit = i;
}
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.createConnection(bit_ref.cell, bit_ref.port, bit_ref.bit, cell->name.str(), conn.first.str(), i);
}
}
}
// mark external signals (used in non-selected cells)
for (auto cell : mod->cells())
{
if (sel && !sel->selected(mod, cell))
for (auto &conn : cell->connections())
{
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (sig_bit_ref.count(bit) != 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
}
// mark external signals (used in module ports)
for (auto wire : mod->wires())
{
if (wire->port_id > 0)
{
RTLIL::SigSpec conn_sig(wire);
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (sig_bit_ref.count(bit) != 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
}
// graph.print();
return true;
}
RTLIL::Cell *replace(RTLIL::Module *needle, RTLIL::Module *haystack, SubCircuit::Solver::Result &match, bool minimize_port_width=false)
{
SigMap sigmap(needle);
SigSet<std::pair<RTLIL::IdString, int>> sig2port;
// create new cell
RTLIL::Cell *cell = haystack->addCell(stringf("$extract$%s$%d", needle->name.c_str(), autoidx++), needle->name);
// create cell ports
for (auto wire : needle->wires()) {
// for all ports in the needle module
if (wire->port_id > 0) {
cell->setPort(wire->name, RTLIL::SigSpec(RTLIL::State::Sz, wire->width));
// remember all bits
for (int i = 0; i < wire->width; i++)
sig2port.insert(sigmap(RTLIL::SigSpec(wire, i)), std::pair<RTLIL::IdString, int>(wire->name, i));
}
}
// delete replaced cells and connect new ports
for (auto &it : match.mappings)
{
auto &mapping = it.second;
RTLIL::Cell *needle_cell = (RTLIL::Cell*)mapping.needleUserData;
RTLIL::Cell *haystack_cell = (RTLIL::Cell*)mapping.haystackUserData;
if (needle_cell == nullptr)
continue;
for (auto &conn : needle_cell->connections()) {
RTLIL::SigSpec nsig = sigmap(conn.second);
std::string nsig_name = conn.first.str();
// if it is a mapped port and connects to a wire/port in the needle module
if (mapping.portMapping.count(nsig_name) > 0 && sig2port.has(sigmap(nsig))) {
RTLIL::IdString hport_name = mapping.portMapping[nsig_name];
// copy signed-ness from haystack to new needle cell
RTLIL::IdString nconn_sgn = RTLIL::escape_id(nsig_name + "_SIGNED");
if(haystack_cell->hasParam(RTLIL::escape_id(hport_name.str() + "_SIGNED"))) {
cell->setParam(nconn_sgn, haystack_cell->getParam(RTLIL::escape_id(hport_name.str() + "_SIGNED")));
} else {
cell->setParam(nconn_sgn, 0);
}
// add and connect ports
RTLIL::SigSpec hsig = haystack_cell->getPort(hport_name);
for (int i = 0; i < nsig.size() && i < hsig.size(); i++) { // for each bit
// for each needle port connected to wire-bit
for (auto &port : sig2port.find(nsig[i])) {
RTLIL::SigSpec bitsig = hsig.extract(i, 1);
RTLIL::SigSpec new_sig = cell->getPort(port.first);
new_sig.replace(port.second, bitsig);
cell->setPort(port.first, new_sig);
}
}
}
}
haystack->remove(haystack_cell);
}
// for all connections/port of the new cell
for (auto &conn : cell->connections()) {
// for all ports in the needle module
RTLIL::IdString port_name = conn.first;
RTLIL::SigSpec port = cell->getPort(conn.first);
if(minimize_port_width) {
// starting from the MSB, remove until first non-constant bit
int msb = port.size()-1;
for (; msb >= 0; msb--) {
if(port[msb].is_wire())
break;
}
if(msb > 0 && msb < port.size()-1) {
log("removing in %s (width: %d) from bit %d-%d\n", port_name.c_str(), port.size(), port.size()-1, msb+1);
log(" remove(%d, %d)\n", msb+1, port.size()-1-msb);
port.remove(msb+1, port.size()-1-msb);
log("removing in %s (width: %d) from bit %d-%d\n", port_name.c_str(), port.size(), port.size()-1, msb+1);
}
}
RTLIL::IdString port_width = RTLIL::escape_id(port_name.str() + "_WIDTH");
cell->setParam(port_width, port.size());
}
return cell;
}
bool compareSortNeedleList(RTLIL::Module *left, RTLIL::Module *right)
{
int left_idx = 0, right_idx = 0;
if (left->attributes.count(ID::extract_order) > 0)
left_idx = left->attributes.at(ID::extract_order).as_int();
if (right->attributes.count(ID::extract_order) > 0)
right_idx = right->attributes.at(ID::extract_order).as_int();
if (left_idx != right_idx)
return left_idx < right_idx;
return left->name < right->name;
}
struct ExtractPass : public Pass {
ExtractPass() : Pass("extract", "find subcircuits and replace them with cells") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" extract -map <map_file> [options] [selection]\n");
log(" extract -mine <out_file> [options] [selection]\n");
log("\n");
log("This pass looks for subcircuits that are isomorphic to any of the modules\n");
log("in the given map file and replaces them with instances of this modules. The\n");
log("map file can be a Verilog source file (*.v) or an RTLIL source file (*.il).\n");
log("\n");
log(" -map <map_file>\n");
log(" use the modules in this file as reference. This option can be used\n");
log(" multiple times.\n");
log("\n");
log(" -map %%<design-name>\n");
log(" use the modules in this in-memory design as reference. This option can\n");
log(" be used multiple times.\n");
log("\n");
log(" -verbose\n");
log(" print debug output while analyzing\n");
log("\n");
log(" -constports\n");
log(" also find instances with constant drivers. this may be much\n");
log(" slower than the normal operation.\n");
log("\n");
log(" -nodefaultswaps\n");
log(" normally builtin port swapping rules for internal cells are used per\n");
log(" default. This turns that off, so e.g. 'a^b' does not match 'b^a'\n");
log(" when this option is used.\n");
log("\n");
log(" -compat <needle_type> <haystack_type>\n");
log(" Per default, the cells in the map file (needle) must have the\n");
log(" type as the cells in the active design (haystack). This option\n");
log(" can be used to register additional pairs of types that should\n");
log(" match. This option can be used multiple times.\n");
log("\n");
log(" -swap <needle_type> <port1>,<port2>[,...]\n");
log(" Register a set of swappable ports for a needle cell type.\n");
log(" This option can be used multiple times.\n");
log("\n");
log(" -perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]\n");
log(" Register a valid permutation of swappable ports for a needle\n");
log(" cell type. This option can be used multiple times.\n");
log("\n");
log(" -cell_attr <attribute_name>\n");
log(" Attributes on cells with the given name must match.\n");
log("\n");
log(" -wire_attr <attribute_name>\n");
log(" Attributes on wires with the given name must match.\n");
log("\n");
log(" -ignore_parameters\n");
log(" Do not use parameters when matching cells.\n");
log("\n");
log(" -ignore_param <cell_type> <parameter_name>\n");
log(" Do not use this parameter when matching cells.\n");
log("\n");
log("This pass does not operate on modules with unprocessed processes in it.\n");
log("(I.e. the 'proc' pass should be used first to convert processes to netlists.)\n");
log("\n");
log("This pass can also be used for mining for frequent subcircuits. In this mode\n");
log("the following options are to be used instead of the -map option.\n");
log("\n");
log(" -mine <out_file>\n");
log(" mine for frequent subcircuits and write them to the given RTLIL file\n");
log("\n");
log(" -mine_cells_span <min> <max>\n");
log(" only mine for subcircuits with the specified number of cells\n");
log(" default value: 3 5\n");
log("\n");
log(" -mine_min_freq <num>\n");
log(" only mine for subcircuits with at least the specified number of matches\n");
log(" default value: 10\n");
log("\n");
log(" -mine_limit_matches_per_module <num>\n");
log(" when calculating the number of matches for a subcircuit, don't count\n");
log(" more than the specified number of matches per module\n");
log("\n");
log(" -mine_max_fanout <num>\n");
log(" don't consider internal signals with more than <num> connections\n");
log("\n");
log(" -min_port_width <num>\n");
log(" match all subcircuits with port widths starting from <num>");
log(" up to the needle port width defined in the map-design\n");
log(" default: -1 (exact port width matching)\n");
log("\n");
log("The modules in the map file may have the attribute 'extract_order' set to an\n");
log("integer value. Then this value is used to determine the order in which the pass\n");
log("tries to map the modules to the design (ascending, default value is 0).\n");
log("\n");
log("See 'help techmap' for a pass that does the opposite thing.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing EXTRACT pass (map subcircuits to cells).\n");
log_push();
SubCircuitSolver solver;
std::vector<std::string> map_filenames;
std::string mine_outfile;
bool constports = false;
bool nodefaultswaps = false;
bool mine_mode = false;
int mine_cells_min = 3;
int mine_cells_max = 5;
int mine_min_freq = 10;
int mine_limit_mod = -1;
int mine_max_fanout = -1;
int min_port_width = -1;
std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> mine_split;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-map" && argidx+1 < args.size()) {
if (mine_mode)
log_cmd_error("You cannot mix -map and -mine.\n");
map_filenames.push_back(args[++argidx]);
continue;
}
if (args[argidx] == "-mine" && argidx+1 < args.size()) {
if (!map_filenames.empty())
log_cmd_error("You cannot mix -map and -mine.\n");
mine_outfile = args[++argidx];
mine_mode = true;
continue;
}
if (args[argidx] == "-mine_cells_span" && argidx+2 < args.size()) {
mine_cells_min = atoi(args[++argidx].c_str());
mine_cells_max = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_min_freq" && argidx+1 < args.size()) {
mine_min_freq = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_limit_matches_per_module" && argidx+1 < args.size()) {
mine_limit_mod = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_split" && argidx+2 < args.size()) {
mine_split.insert(std::pair<RTLIL::IdString, RTLIL::IdString>(RTLIL::escape_id(args[argidx+1]), RTLIL::escape_id(args[argidx+2])));
argidx += 2;
continue;
}
if (args[argidx] == "-mine_max_fanout" && argidx+1 < args.size()) {
mine_max_fanout = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-verbose") {
solver.setVerbose();
continue;
}
if (args[argidx] == "-constports") {
constports = true;
continue;
}
if (args[argidx] == "-nodefaultswaps") {
nodefaultswaps = true;
continue;
}
if (args[argidx] == "-compat" && argidx+2 < args.size()) {
std::string needle_type = RTLIL::escape_id(args[++argidx]);
std::string haystack_type = RTLIL::escape_id(args[++argidx]);
solver.addCompatibleTypes(needle_type, haystack_type);
continue;
}
if (args[argidx] == "-swap" && argidx+2 < args.size()) {
std::string type = RTLIL::escape_id(args[++argidx]);
std::set<std::string> ports;
std::string ports_str = args[++argidx], p;
while (!(p = next_token(ports_str, ",\t\r\n ")).empty())
ports.insert(RTLIL::escape_id(p));
solver.addSwappablePorts(type, ports);
continue;
}
if (args[argidx] == "-perm" && argidx+3 < args.size()) {
std::string type = RTLIL::escape_id(args[++argidx]);
std::vector<std::string> map_left, map_right;
std::string left_str = args[++argidx];
std::string right_str = args[++argidx], p;
while (!(p = next_token(left_str, ",\t\r\n ")).empty())
map_left.push_back(RTLIL::escape_id(p));
while (!(p = next_token(right_str, ",\t\r\n ")).empty())
map_right.push_back(RTLIL::escape_id(p));
if (map_left.size() != map_right.size())
log_cmd_error("Arguments to -perm are not a valid permutation!\n");
std::map<std::string, std::string> map;
for (size_t i = 0; i < map_left.size(); i++)
map[map_left[i]] = map_right[i];
std::sort(map_left.begin(), map_left.end());
std::sort(map_right.begin(), map_right.end());
if (map_left != map_right)
log_cmd_error("Arguments to -perm are not a valid permutation!\n");
solver.addSwappablePortsPermutation(type, map);
continue;
}
if (args[argidx] == "-cell_attr" && argidx+1 < args.size()) {
solver.cell_attr.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-wire_attr" && argidx+1 < args.size()) {
solver.wire_attr.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-ignore_parameters") {
solver.ignore_parameters = true;
continue;
}
if (args[argidx] == "-ignore_param" && argidx+2 < args.size()) {
solver.ignored_parameters.insert(std::pair<RTLIL::IdString, RTLIL::IdString>(RTLIL::escape_id(args[argidx+1]), RTLIL::escape_id(args[argidx+2])));
argidx += 2;
continue;
}
if (args[argidx] == "-min_port_width" && argidx+1 < args.size()) {
min_port_width = atoi(args[++argidx].c_str());
continue;
}
break;
}
extra_args(args, argidx, design);
if (!nodefaultswaps) {
solver.addSwappablePorts("$and", "\\A", "\\B");
solver.addSwappablePorts("$or", "\\A", "\\B");
solver.addSwappablePorts("$xor", "\\A", "\\B");
solver.addSwappablePorts("$xnor", "\\A", "\\B");
solver.addSwappablePorts("$eq", "\\A", "\\B");
solver.addSwappablePorts("$ne", "\\A", "\\B");
solver.addSwappablePorts("$eqx", "\\A", "\\B");
solver.addSwappablePorts("$nex", "\\A", "\\B");
solver.addSwappablePorts("$add", "\\A", "\\B");
solver.addSwappablePorts("$mul", "\\A", "\\B");
solver.addSwappablePorts("$logic_and", "\\A", "\\B");
solver.addSwappablePorts("$logic_or", "\\A", "\\B");
solver.addSwappablePorts("$_AND_", "\\A", "\\B");
solver.addSwappablePorts("$_OR_", "\\A", "\\B");
solver.addSwappablePorts("$_XOR_", "\\A", "\\B");
}
if (map_filenames.empty() && mine_outfile.empty())
log_cmd_error("Missing option -map <verilog_or_rtlil_file> or -mine <output_rtlil_file>.\n");
RTLIL::Design *map = nullptr;
if (!mine_mode)
{
map = new RTLIL::Design;
for (auto &filename : map_filenames)
{
if (filename.compare(0, 1, "%") == 0)
{
if (!saved_designs.count(filename.substr(1))) {
delete map;
log_cmd_error("Can't saved design `%s'.\n", filename.c_str()+1);
}
for (auto mod : saved_designs.at(filename.substr(1))->modules())
if (!map->has(mod->name))
map->add(mod->clone());
}
else
{
std::ifstream f;
rewrite_filename(filename);
f.open(filename.c_str());
if (f.fail()) {
delete map;
log_cmd_error("Can't open map file `%s'.\n", filename.c_str());
}
Frontend::frontend_call(map, &f, filename, (filename.size() > 3 && filename.compare(filename.size()-3, std::string::npos, ".il") == 0 ? "rtlil" : "verilog"));
f.close();
if (filename.size() <= 3 || filename.compare(filename.size()-3, std::string::npos, ".il") != 0) {
Pass::call(map, "proc");
Pass::call(map, "opt_clean");
}
}
}
}
std::map<std::string, RTLIL::Module*> needle_map, haystack_map;
std::vector<RTLIL::Module*> needle_list;
log_header(design, "Creating graphs for SubCircuit library.\n");
if (!mine_mode)
for (auto module : map->modules()) {
SubCircuit::Graph mod_graph;
std::string graph_name = "needle_" + RTLIL::unescape_id(module->name);
log("Creating needle graph %s.\n", graph_name.c_str());
if (module2graph(mod_graph, module, constports, min_port_width)) {
solver.addGraph(graph_name, mod_graph);
needle_map[graph_name] = module;
needle_list.push_back(module);
}
}
for (auto module : design->modules()) {
SubCircuit::Graph mod_graph;
std::string graph_name = "haystack_" + RTLIL::unescape_id(module->name);
log("Creating haystack graph %s.\n", graph_name.c_str());
if (module2graph(mod_graph, module, constports, -1, design, mine_mode ? mine_max_fanout : -1, mine_mode ? &mine_split : nullptr)) {
solver.addGraph(graph_name, mod_graph);
haystack_map[graph_name] = module;
}
}
if (!mine_mode)
{
std::vector<SubCircuit::Solver::Result> results;
log_header(design, "Running solver from SubCircuit library.\n");
std::sort(needle_list.begin(), needle_list.end(), compareSortNeedleList);
for (auto needle : needle_list)
for (auto &haystack_it : haystack_map) {
log("Solving for %s in %s.\n", ("needle_" + RTLIL::unescape_id(needle->name)).c_str(), haystack_it.first.c_str());
solver.solve(results, "needle_" + RTLIL::unescape_id(needle->name), haystack_it.first, false);
}
log("Found %d matches.\n", GetSize(results));
if (results.size() > 0)
{
log_header(design, "Substitute SubCircuits with cells.\n");
for (int i = 0; i < int(results.size()); i++) {
auto &result = results[i];
log("\nMatch #%d: (%s in %s)\n", i, result.needleGraphId.c_str(), result.haystackGraphId.c_str());
for (const auto &it : result.mappings) {
log(" %s -> %s", it.first.c_str(), it.second.haystackNodeId.c_str());
for (const auto & it2 : it.second.portMapping)
log(" %s:%s", it2.first.c_str(), it2.second.c_str());
log("\n");
}
RTLIL::Cell *new_cell = replace(needle_map.at(result.needleGraphId), haystack_map.at(result.haystackGraphId), result, (min_port_width >= 0));
design->select(haystack_map.at(result.haystackGraphId), new_cell);
log(" new cell: %s\n", log_id(new_cell->name));
}
}
}
else
{
std::vector<SubCircuit::Solver::MineResult> results;
log_header(design, "Running miner from SubCircuit library.\n");
solver.mine(results, mine_cells_min, mine_cells_max, mine_min_freq, mine_limit_mod);
map = new RTLIL::Design;
int needleCounter = 0;
for (auto &result: results)
{
log("\nFrequent SubCircuit with %d nodes and %d matches:\n", int(result.nodes.size()), result.totalMatchesAfterLimits);
log(" primary match in %s:", log_id(haystack_map.at(result.graphId)->name));
for (auto &node : result.nodes)
log(" %s", RTLIL::unescape_id(node.nodeId).c_str());
log("\n");
for (auto &it : result.matchesPerGraph)
log(" matches in %s: %d\n", log_id(haystack_map.at(it.first)->name), it.second);
RTLIL::Module *mod = haystack_map.at(result.graphId);
std::set<RTLIL::Cell*> cells;
std::set<RTLIL::Wire*> wires;
SigMap sigmap(mod);
for (auto &node : result.nodes)
cells.insert((RTLIL::Cell*)node.userData);
for (auto cell : cells)
for (auto &conn : cell->connections()) {
RTLIL::SigSpec sig = sigmap(conn.second);
for (auto &chunk : sig.chunks())
if (chunk.wire != nullptr)
wires.insert(chunk.wire);
}
RTLIL::Module *newMod = new RTLIL::Module;
newMod->name = stringf("\\needle%05d_%s_%dx", needleCounter++, log_id(haystack_map.at(result.graphId)->name), result.totalMatchesAfterLimits);
map->add(newMod);
for (auto wire : wires) {
RTLIL::Wire *newWire = newMod->addWire(wire->name, wire->width);
newWire->port_input = true;
newWire->port_output = true;
}
newMod->fixup_ports();
for (auto cell : cells) {
RTLIL::Cell *newCell = newMod->addCell(cell->name, cell->type);
newCell->parameters = cell->parameters;
for (auto &conn : cell->connections()) {
std::vector<SigChunk> chunks = sigmap(conn.second);
for (auto &chunk : chunks)
if (chunk.wire != nullptr)
chunk.wire = newMod->wire(chunk.wire->name);
newCell->setPort(conn.first, chunks);
}
}
}
std::ofstream f;
rewrite_filename(mine_outfile);
f.open(mine_outfile.c_str(), std::ofstream::trunc);
if (f.fail())
log_error("Can't open output file `%s'.\n", mine_outfile.c_str());
Backend::backend_call(map, &f, mine_outfile, "rtlil");
f.close();
}
delete map;
log_pop();
}
} ExtractPass;
PRIVATE_NAMESPACE_END