mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-30 19:22:31 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			350 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			350 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| #include "kernel/sigtools.h"
 | |
| #include "kernel/mem.h"
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| // Describes found feedback path.
 | |
| struct FeedbackPath {
 | |
| 	// Which write port it is.
 | |
| 	int wrport_idx;
 | |
| 	// Which data bit of that write port it is.
 | |
| 	int data_bit_idx;
 | |
| 	// Values of all mux select signals that need to be set to select this path.
 | |
| 	dict<RTLIL::SigBit, bool> condition;
 | |
| 	// The exact feedback bit used (used to match read port).
 | |
| 	SigBit feedback_bit;
 | |
| 
 | |
| 	FeedbackPath(int wrport_idx, int data_bit_idx, dict<RTLIL::SigBit, bool> condition, SigBit feedback_bit) : wrport_idx(wrport_idx), data_bit_idx(data_bit_idx), condition(condition), feedback_bit(feedback_bit) {}
 | |
| };
 | |
| 
 | |
| struct OptMemFeedbackWorker
 | |
| {
 | |
| 	RTLIL::Design *design;
 | |
| 	RTLIL::Module *module;
 | |
| 	SigMap sigmap, sigmap_xmux;
 | |
| 	FfInitVals initvals;
 | |
| 
 | |
| 	dict<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
 | |
| 	dict<RTLIL::SigBit, int> sig_users_count;
 | |
| 	dict<pair<pool<dict<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
 | |
| 
 | |
| 
 | |
| 	// -----------------------------------------------------------------
 | |
| 	// Converting feedbacks to async read ports to proper enable signals
 | |
| 	// -----------------------------------------------------------------
 | |
| 
 | |
| 	void find_data_feedback(const pool<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
 | |
| 			const dict<RTLIL::SigBit, bool> &state,
 | |
| 			int wrport_idx, int data_bit_idx,
 | |
| 			std::vector<FeedbackPath> &paths)
 | |
| 	{
 | |
| 		if (async_rd_bits.count(sig)) {
 | |
| 			paths.push_back(FeedbackPath(wrport_idx, data_bit_idx, state, sig));
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (sig_users_count[sig] != 1) {
 | |
| 			// Only descend into muxes if we're the only user.
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (sig_to_mux.count(sig) == 0)
 | |
| 			return;
 | |
| 
 | |
| 		RTLIL::Cell *cell = sig_to_mux.at(sig).first;
 | |
| 		int bit_idx = sig_to_mux.at(sig).second;
 | |
| 
 | |
| 		std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort(ID::A));
 | |
| 		std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort(ID::B));
 | |
| 		std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort(ID::S));
 | |
| 		std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
 | |
| 		log_assert(sig_y.at(bit_idx) == sig);
 | |
| 
 | |
| 		for (int i = 0; i < GetSize(sig_s); i++)
 | |
| 			if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
 | |
| 				find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, wrport_idx, data_bit_idx, paths);
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 
 | |
| 		for (int i = 0; i < GetSize(sig_s); i++)
 | |
| 		{
 | |
| 			if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
 | |
| 				continue;
 | |
| 
 | |
| 			dict<RTLIL::SigBit, bool> new_state = state;
 | |
| 			new_state[sig_s[i]] = true;
 | |
| 
 | |
| 			find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, wrport_idx, data_bit_idx, paths);
 | |
| 		}
 | |
| 
 | |
| 		dict<RTLIL::SigBit, bool> new_state = state;
 | |
| 		for (auto bit : sig_s)
 | |
| 			new_state[bit] = false;
 | |
| 
 | |
| 		find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, wrport_idx, data_bit_idx, paths);
 | |
| 	}
 | |
| 
 | |
| 	RTLIL::SigBit conditions_to_logic(pool<dict<RTLIL::SigBit, bool>> &conditions, SigBit olden)
 | |
| 	{
 | |
| 		auto key = make_pair(conditions, olden);
 | |
| 
 | |
| 		if (conditions_logic_cache.count(key))
 | |
| 			return conditions_logic_cache.at(key);
 | |
| 
 | |
| 		RTLIL::SigSpec terms;
 | |
| 		for (auto &cond : conditions) {
 | |
| 			RTLIL::SigSpec sig1, sig2;
 | |
| 			for (auto &it : cond) {
 | |
| 				sig1.append(it.first);
 | |
| 				sig2.append(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
 | |
| 			}
 | |
| 			terms.append(module->Ne(NEW_ID, sig1, sig2));
 | |
| 		}
 | |
| 
 | |
| 		if (olden != State::S1)
 | |
| 			terms.append(olden);
 | |
| 
 | |
| 		if (GetSize(terms) == 0)
 | |
| 			terms = State::S1;
 | |
| 
 | |
| 		if (GetSize(terms) > 1)
 | |
| 			terms = module->ReduceAnd(NEW_ID, terms);
 | |
| 
 | |
| 		return conditions_logic_cache[key] = terms;
 | |
| 	}
 | |
| 
 | |
| 	void translate_rd_feedback_to_en(Mem &mem)
 | |
| 	{
 | |
| 		// Look for async read ports that may be suitable for feedback paths.
 | |
| 		dict<RTLIL::SigSpec, std::vector<pool<RTLIL::SigBit>>> async_rd_bits;
 | |
| 
 | |
| 		for (auto &port : mem.rd_ports)
 | |
| 		{
 | |
| 			if (port.clk_enable)
 | |
| 				continue;
 | |
| 
 | |
| 			for (int sub = 0; sub < (1 << port.wide_log2); sub++) {
 | |
| 				SigSpec addr = sigmap_xmux(port.sub_addr(sub));
 | |
| 				async_rd_bits[addr].resize(mem.width);
 | |
| 				for (int i = 0; i < mem.width; i++)
 | |
| 					async_rd_bits[addr][i].insert(sigmap(port.data[i + sub * mem.width]));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (async_rd_bits.empty())
 | |
| 			return;
 | |
| 
 | |
| 		// Look for actual feedback paths.
 | |
| 		std::vector<FeedbackPath> paths;
 | |
| 
 | |
| 		for (int i = 0; i < GetSize(mem.wr_ports); i++)
 | |
| 		{
 | |
| 			auto &port = mem.wr_ports[i];
 | |
| 
 | |
| 			log("  Analyzing %s.%s write port %d.\n", log_id(module), log_id(mem.memid), i);
 | |
| 
 | |
| 			for (int sub = 0; sub < (1 << port.wide_log2); sub++)
 | |
| 			{
 | |
| 				SigSpec addr = sigmap_xmux(port.sub_addr(sub));
 | |
| 
 | |
| 				if (!async_rd_bits.count(addr))
 | |
| 					continue;
 | |
| 
 | |
| 				for (int j = 0; j < mem.width; j++)
 | |
| 				{
 | |
| 					int bit_idx = sub * mem.width + j;
 | |
| 
 | |
| 					if (port.en[bit_idx] == State::S0)
 | |
| 						continue;
 | |
| 
 | |
| 					dict<RTLIL::SigBit, bool> state;
 | |
| 
 | |
| 					find_data_feedback(async_rd_bits.at(addr).at(j), sigmap(port.data[bit_idx]), state, i, bit_idx, paths);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (paths.empty())
 | |
| 			return;
 | |
| 
 | |
| 		// Now determine which read ports are actually used only for
 | |
| 		// feedback paths, and can be removed.
 | |
| 
 | |
| 		dict<SigBit, int> feedback_users_count;
 | |
| 		for (auto &path : paths)
 | |
| 			feedback_users_count[path.feedback_bit]++;
 | |
| 
 | |
| 		pool<SigBit> feedback_ok;
 | |
| 		for (auto &port : mem.rd_ports)
 | |
| 		{
 | |
| 			if (port.clk_enable)
 | |
| 				continue;
 | |
| 
 | |
| 			bool ok = true;
 | |
| 			for (auto bit : sigmap(port.data))
 | |
| 				if (sig_users_count[bit] != feedback_users_count[bit])
 | |
| 					ok = false;
 | |
| 
 | |
| 			if (ok)
 | |
| 			{
 | |
| 				// This port is going bye-bye.
 | |
| 				for (auto bit : sigmap(port.data))
 | |
| 					feedback_ok.insert(bit);
 | |
| 
 | |
| 				port.removed = true;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (feedback_ok.empty())
 | |
| 			return;
 | |
| 
 | |
| 		// Prepare a feedback condition list grouped by port bits.
 | |
| 
 | |
| 		dict<std::pair<int, int>, pool<dict<SigBit, bool>>> portbit_conds;
 | |
| 		for (auto &path : paths)
 | |
| 			if (feedback_ok.count(path.feedback_bit))
 | |
| 				portbit_conds[std::make_pair(path.wrport_idx, path.data_bit_idx)].insert(path.condition);
 | |
| 
 | |
| 		if (portbit_conds.empty())
 | |
| 			return;
 | |
| 
 | |
| 		// Okay, let's do it.
 | |
| 
 | |
| 		log("Populating enable bits on write ports of memory %s.%s with async read feedback:\n", log_id(module), log_id(mem.memid));
 | |
| 
 | |
| 		// If a write port has a feedback path that we're about to bypass,
 | |
| 		// but also has priority over some other write port, the feedback
 | |
| 		// path is not necessarily a NOP — it may overwrite the other port.
 | |
| 		// Emulate this effect by converting the priority to soft logic
 | |
| 		// (this will affect the other port's enable signal).
 | |
| 		for (auto &it : portbit_conds)
 | |
| 		{
 | |
| 			int wrport_idx = it.first.first;
 | |
| 			auto &port = mem.wr_ports[wrport_idx];
 | |
| 
 | |
| 			for (int i = 0; i < wrport_idx; i++)
 | |
| 				if (port.priority_mask[i])
 | |
| 					mem.emulate_priority(i, wrport_idx, &initvals);
 | |
| 		}
 | |
| 
 | |
| 		for (auto &it : portbit_conds)
 | |
| 		{
 | |
| 			int wrport_idx = it.first.first;
 | |
| 			int bit = it.first.second;
 | |
| 			auto &port = mem.wr_ports[wrport_idx];
 | |
| 
 | |
| 			port.en[bit] = conditions_to_logic(it.second, port.en[bit]);
 | |
| 			log("    Port %d bit %d: added enable logic for %d different cases.\n", wrport_idx, bit, GetSize(it.second));
 | |
| 		}
 | |
| 
 | |
| 		mem.emit();
 | |
| 
 | |
| 		for (auto bit : feedback_ok)
 | |
| 			module->connect(bit, State::Sx);
 | |
| 
 | |
| 		design->scratchpad_set_bool("opt.did_something", true);
 | |
| 	}
 | |
| 
 | |
| 	// -------------
 | |
| 	// Setup and run
 | |
| 	// -------------
 | |
| 
 | |
| 	OptMemFeedbackWorker(RTLIL::Design *design) : design(design) {}
 | |
| 
 | |
| 	void operator()(RTLIL::Module* module)
 | |
| 	{
 | |
| 		std::vector<Mem> memories = Mem::get_selected_memories(module);
 | |
| 
 | |
| 		this->module = module;
 | |
| 		sigmap.set(module);
 | |
| 		initvals.set(&sigmap, module);
 | |
| 		sig_to_mux.clear();
 | |
| 		conditions_logic_cache.clear();
 | |
| 
 | |
| 		sigmap_xmux = sigmap;
 | |
| 
 | |
| 		for (auto wire : module->wires()) {
 | |
| 			if (wire->port_output)
 | |
| 				for (auto bit : sigmap(wire))
 | |
| 					sig_users_count[bit]++;
 | |
| 		}
 | |
| 
 | |
| 		for (auto cell : module->cells())
 | |
| 		{
 | |
| 			if (cell->type == ID($mux))
 | |
| 			{
 | |
| 				RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A));
 | |
| 				RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort(ID::B));
 | |
| 
 | |
| 				if (sig_a.is_fully_undef())
 | |
| 					sigmap_xmux.add(cell->getPort(ID::Y), sig_b);
 | |
| 				else if (sig_b.is_fully_undef())
 | |
| 					sigmap_xmux.add(cell->getPort(ID::Y), sig_a);
 | |
| 			}
 | |
| 
 | |
| 			if (cell->type.in(ID($mux), ID($pmux)))
 | |
| 			{
 | |
| 				std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
 | |
| 				for (int i = 0; i < int(sig_y.size()); i++)
 | |
| 					sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
 | |
| 			}
 | |
| 
 | |
| 			for (auto &conn : cell->connections())
 | |
| 				if (!cell->known() || cell->input(conn.first))
 | |
| 					for (auto bit : sigmap(conn.second))
 | |
| 						sig_users_count[bit]++;
 | |
| 		}
 | |
| 
 | |
| 		for (auto &mem : memories)
 | |
| 			translate_rd_feedback_to_en(mem);
 | |
| 	}
 | |
| };
 | |
| 
 | |
| struct OptMemFeedbackPass : public Pass {
 | |
| 	OptMemFeedbackPass() : Pass("opt_mem_feedback", "convert memory read-to-write port feedback paths to write enables") { }
 | |
| 	void help() override
 | |
| 	{
 | |
| 		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | |
| 		log("\n");
 | |
| 		log("    opt_mem_feedback [selection]\n");
 | |
| 		log("\n");
 | |
| 		log("This pass detects cases where an asynchronous read port is only connected via\n");
 | |
| 		log("a mux tree to a write port with the same address.  When such a connection is\n");
 | |
| 		log("found, it is replaced with a new condition on an enable signal, allowing\n");
 | |
| 		log("for removal of the read port.\n");
 | |
| 		log("\n");
 | |
| 	}
 | |
| 	void execute(std::vector<std::string> args, RTLIL::Design *design) override {
 | |
| 		log_header(design, "Executing OPT_MEM_FEEDBACK pass (finding memory read-to-write feedback paths).\n");
 | |
| 		extra_args(args, 1, design);
 | |
| 		OptMemFeedbackWorker worker(design);
 | |
| 
 | |
| 		for (auto module : design->selected_modules())
 | |
| 			worker(module);
 | |
| 	}
 | |
| } OptMemFeedbackPass;
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 | |
| 
 |