mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 11:42:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			409 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			409 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /****************************************************************************************[Solver.h]
 | |
| Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
 | |
| Copyright (c) 2007-2010, Niklas Sorensson
 | |
| 
 | |
| Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
 | |
| associated documentation files (the "Software"), to deal in the Software without restriction,
 | |
| including without limitation the rights to use, copy, modify, merge, publish, distribute,
 | |
| sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
 | |
| furnished to do so, subject to the following conditions:
 | |
| 
 | |
| The above copyright notice and this permission notice shall be included in all copies or
 | |
| substantial portions of the Software.
 | |
| 
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
 | |
| NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 | |
| DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
 | |
| OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| **************************************************************************************************/
 | |
| 
 | |
| #ifndef Minisat_Solver_h
 | |
| #define Minisat_Solver_h
 | |
| 
 | |
| #include "Vec.h"
 | |
| #include "Heap.h"
 | |
| #include "Alg.h"
 | |
| #include "IntMap.h"
 | |
| #include "Options.h"
 | |
| #include "SolverTypes.h"
 | |
| 
 | |
| 
 | |
| namespace Minisat {
 | |
| 
 | |
| //=================================================================================================
 | |
| // Solver -- the main class:
 | |
| 
 | |
| class Solver {
 | |
| public:
 | |
| 
 | |
|     // Constructor/Destructor:
 | |
|     //
 | |
|     Solver();
 | |
|     virtual ~Solver();
 | |
| 
 | |
|     // Problem specification:
 | |
|     //
 | |
|     Var     newVar    (lbool upol = l_Undef, bool dvar = true); // Add a new variable with parameters specifying variable mode.
 | |
|     void    releaseVar(Lit l);                                  // Make literal true and promise to never refer to variable again.
 | |
| 
 | |
|     bool    addClause (const vec<Lit>& ps);                     // Add a clause to the solver. 
 | |
|     bool    addEmptyClause();                                   // Add the empty clause, making the solver contradictory.
 | |
|     bool    addClause (Lit p);                                  // Add a unit clause to the solver. 
 | |
|     bool    addClause (Lit p, Lit q);                           // Add a binary clause to the solver. 
 | |
|     bool    addClause (Lit p, Lit q, Lit r);                    // Add a ternary clause to the solver. 
 | |
|     bool    addClause (Lit p, Lit q, Lit r, Lit s);             // Add a quaternary clause to the solver. 
 | |
|     bool    addClause_(      vec<Lit>& ps);                     // Add a clause to the solver without making superflous internal copy. Will
 | |
|                                                                 // change the passed vector 'ps'.
 | |
| 
 | |
|     // Solving:
 | |
|     //
 | |
|     bool    simplify     ();                        // Removes already satisfied clauses.
 | |
|     bool    solve        (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
 | |
|     lbool   solveLimited (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions (With resource constraints).
 | |
|     bool    solve        ();                        // Search without assumptions.
 | |
|     bool    solve        (Lit p);                   // Search for a model that respects a single assumption.
 | |
|     bool    solve        (Lit p, Lit q);            // Search for a model that respects two assumptions.
 | |
|     bool    solve        (Lit p, Lit q, Lit r);     // Search for a model that respects three assumptions.
 | |
|     bool    okay         () const;                  // FALSE means solver is in a conflicting state
 | |
| 
 | |
|     bool    implies      (const vec<Lit>& assumps, vec<Lit>& out);
 | |
| 
 | |
|     // Iterate over clauses and top-level assignments:
 | |
|     ClauseIterator clausesBegin() const;
 | |
|     ClauseIterator clausesEnd()   const;
 | |
|     TrailIterator  trailBegin()   const;
 | |
|     TrailIterator  trailEnd  ()   const;
 | |
| 
 | |
|     void    toDimacs     (FILE* f, const vec<Lit>& assumps);            // Write CNF to file in DIMACS-format.
 | |
|     void    toDimacs     (const char *file, const vec<Lit>& assumps);
 | |
|     void    toDimacs     (FILE* f, Clause& c, vec<Var>& map, Var& max);
 | |
| 
 | |
|     // Convenience versions of 'toDimacs()':
 | |
|     void    toDimacs     (const char* file);
 | |
|     void    toDimacs     (const char* file, Lit p);
 | |
|     void    toDimacs     (const char* file, Lit p, Lit q);
 | |
|     void    toDimacs     (const char* file, Lit p, Lit q, Lit r);
 | |
|     
 | |
|     // Variable mode:
 | |
|     // 
 | |
|     void    setPolarity    (Var v, lbool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
 | |
|     void    setDecisionVar (Var v, bool b);  // Declare if a variable should be eligible for selection in the decision heuristic.
 | |
| 
 | |
|     // Read state:
 | |
|     //
 | |
|     lbool   value      (Var x) const;       // The current value of a variable.
 | |
|     lbool   value      (Lit p) const;       // The current value of a literal.
 | |
|     lbool   modelValue (Var x) const;       // The value of a variable in the last model. The last call to solve must have been satisfiable.
 | |
|     lbool   modelValue (Lit p) const;       // The value of a literal in the last model. The last call to solve must have been satisfiable.
 | |
|     int     nAssigns   ()      const;       // The current number of assigned literals.
 | |
|     int     nClauses   ()      const;       // The current number of original clauses.
 | |
|     int     nLearnts   ()      const;       // The current number of learnt clauses.
 | |
|     int     nVars      ()      const;       // The current number of variables.
 | |
|     int     nFreeVars  ()      const;
 | |
|     void    printStats ()      const;       // Print some current statistics to standard output.
 | |
| 
 | |
|     // Resource constraints:
 | |
|     //
 | |
|     void    setConfBudget(int64_t x);
 | |
|     void    setPropBudget(int64_t x);
 | |
|     void    budgetOff();
 | |
|     void    interrupt();          // Trigger a (potentially asynchronous) interruption of the solver.
 | |
|     void    clearInterrupt();     // Clear interrupt indicator flag.
 | |
| 
 | |
|     // Memory managment:
 | |
|     //
 | |
|     virtual void garbageCollect();
 | |
|     void    checkGarbage(double gf);
 | |
|     void    checkGarbage();
 | |
| 
 | |
|     // Extra results: (read-only member variable)
 | |
|     //
 | |
|     vec<lbool> model;             // If problem is satisfiable, this vector contains the model (if any).
 | |
|     LSet       conflict;          // If problem is unsatisfiable (possibly under assumptions),
 | |
|                                   // this vector represent the final conflict clause expressed in the assumptions.
 | |
| 
 | |
|     // Mode of operation:
 | |
|     //
 | |
|     int       verbosity;
 | |
|     double    var_decay;
 | |
|     double    clause_decay;
 | |
|     double    random_var_freq;
 | |
|     double    random_seed;
 | |
|     bool      luby_restart;
 | |
|     int       ccmin_mode;         // Controls conflict clause minimization (0=none, 1=basic, 2=deep).
 | |
|     int       phase_saving;       // Controls the level of phase saving (0=none, 1=limited, 2=full).
 | |
|     bool      rnd_pol;            // Use random polarities for branching heuristics.
 | |
|     bool      rnd_init_act;       // Initialize variable activities with a small random value.
 | |
|     double    garbage_frac;       // The fraction of wasted memory allowed before a garbage collection is triggered.
 | |
|     int       min_learnts_lim;    // Minimum number to set the learnts limit to.
 | |
| 
 | |
|     int       restart_first;      // The initial restart limit.                                                                (default 100)
 | |
|     double    restart_inc;        // The factor with which the restart limit is multiplied in each restart.                    (default 1.5)
 | |
|     double    learntsize_factor;  // The intitial limit for learnt clauses is a factor of the original clauses.                (default 1 / 3)
 | |
|     double    learntsize_inc;     // The limit for learnt clauses is multiplied with this factor each restart.                 (default 1.1)
 | |
| 
 | |
|     int       learntsize_adjust_start_confl;
 | |
|     double    learntsize_adjust_inc;
 | |
| 
 | |
|     // Statistics: (read-only member variable)
 | |
|     //
 | |
|     uint64_t solves, starts, decisions, rnd_decisions, propagations, conflicts;
 | |
|     uint64_t dec_vars, num_clauses, num_learnts, clauses_literals, learnts_literals, max_literals, tot_literals;
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     // Helper structures:
 | |
|     //
 | |
|     struct VarData { CRef reason; int level; };
 | |
|     static inline VarData mkVarData(CRef cr, int l){ VarData d = {cr, l}; return d; }
 | |
| 
 | |
|     struct Watcher {
 | |
|         CRef cref;
 | |
|         Lit  blocker;
 | |
|         Watcher(CRef cr, Lit p) : cref(cr), blocker(p) {}
 | |
|         bool operator==(const Watcher& w) const { return cref == w.cref; }
 | |
|         bool operator!=(const Watcher& w) const { return cref != w.cref; }
 | |
|     };
 | |
| 
 | |
|     struct WatcherDeleted
 | |
|     {
 | |
|         const ClauseAllocator& ca;
 | |
|         WatcherDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
 | |
|         bool operator()(const Watcher& w) const { return ca[w.cref].mark() == 1; }
 | |
|     };
 | |
| 
 | |
|     struct VarOrderLt {
 | |
|         const IntMap<Var, double>&  activity;
 | |
|         bool operator () (Var x, Var y) const { return activity[x] > activity[y]; }
 | |
|         VarOrderLt(const IntMap<Var, double>&  act) : activity(act) { }
 | |
|     };
 | |
| 
 | |
|     struct ShrinkStackElem {
 | |
|         uint32_t i;
 | |
|         Lit      l;
 | |
|         ShrinkStackElem(uint32_t _i, Lit _l) : i(_i), l(_l){}
 | |
|     };
 | |
| 
 | |
|     // Solver state:
 | |
|     //
 | |
|     vec<CRef>           clauses;          // List of problem clauses.
 | |
|     vec<CRef>           learnts;          // List of learnt clauses.
 | |
|     vec<Lit>            trail;            // Assignment stack; stores all assigments made in the order they were made.
 | |
|     vec<int>            trail_lim;        // Separator indices for different decision levels in 'trail'.
 | |
|     vec<Lit>            assumptions;      // Current set of assumptions provided to solve by the user.
 | |
| 
 | |
|     VMap<double>        activity;         // A heuristic measurement of the activity of a variable.
 | |
|     VMap<lbool>         assigns;          // The current assignments.
 | |
|     VMap<char>          polarity;         // The preferred polarity of each variable.
 | |
|     VMap<lbool>         user_pol;         // The users preferred polarity of each variable.
 | |
|     VMap<char>          decision;         // Declares if a variable is eligible for selection in the decision heuristic.
 | |
|     VMap<VarData>       vardata;          // Stores reason and level for each variable.
 | |
|     OccLists<Lit, vec<Watcher>, WatcherDeleted, MkIndexLit>
 | |
|                         watches;          // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
 | |
| 
 | |
|     Heap<Var,VarOrderLt>order_heap;       // A priority queue of variables ordered with respect to the variable activity.
 | |
| 
 | |
|     bool                ok;               // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
 | |
|     double              cla_inc;          // Amount to bump next clause with.
 | |
|     double              var_inc;          // Amount to bump next variable with.
 | |
|     int                 qhead;            // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
 | |
|     int                 simpDB_assigns;   // Number of top-level assignments since last execution of 'simplify()'.
 | |
|     int64_t             simpDB_props;     // Remaining number of propagations that must be made before next execution of 'simplify()'.
 | |
|     double              progress_estimate;// Set by 'search()'.
 | |
|     bool                remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
 | |
|     Var                 next_var;         // Next variable to be created.
 | |
|     ClauseAllocator     ca;
 | |
| 
 | |
|     vec<Var>            released_vars;
 | |
|     vec<Var>            free_vars;
 | |
| 
 | |
|     // Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
 | |
|     // used, exept 'seen' wich is used in several places.
 | |
|     //
 | |
|     VMap<char>          seen;
 | |
|     vec<ShrinkStackElem>analyze_stack;
 | |
|     vec<Lit>            analyze_toclear;
 | |
|     vec<Lit>            add_tmp;
 | |
| 
 | |
|     double              max_learnts;
 | |
|     double              learntsize_adjust_confl;
 | |
|     int                 learntsize_adjust_cnt;
 | |
| 
 | |
|     // Resource constraints:
 | |
|     //
 | |
|     int64_t             conflict_budget;    // -1 means no budget.
 | |
|     int64_t             propagation_budget; // -1 means no budget.
 | |
|     bool                asynch_interrupt;
 | |
| 
 | |
|     // Main internal methods:
 | |
|     //
 | |
|     void     insertVarOrder   (Var x);                                                 // Insert a variable in the decision order priority queue.
 | |
|     Lit      pickBranchLit    ();                                                      // Return the next decision variable.
 | |
|     void     newDecisionLevel ();                                                      // Begins a new decision level.
 | |
|     void     uncheckedEnqueue (Lit p, CRef from = CRef_Undef);                         // Enqueue a literal. Assumes value of literal is undefined.
 | |
|     bool     enqueue          (Lit p, CRef from = CRef_Undef);                         // Test if fact 'p' contradicts current state, enqueue otherwise.
 | |
|     CRef     propagate        ();                                                      // Perform unit propagation. Returns possibly conflicting clause.
 | |
|     void     cancelUntil      (int level);                                             // Backtrack until a certain level.
 | |
|     void     analyze          (CRef confl, vec<Lit>& out_learnt, int& out_btlevel);    // (bt = backtrack)
 | |
|     void     analyzeFinal     (Lit p, LSet& out_conflict);                             // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
 | |
|     bool     litRedundant     (Lit p);                                                 // (helper method for 'analyze()')
 | |
|     lbool    search           (int nof_conflicts);                                     // Search for a given number of conflicts.
 | |
|     lbool    solve_           ();                                                      // Main solve method (assumptions given in 'assumptions').
 | |
|     void     reduceDB         ();                                                      // Reduce the set of learnt clauses.
 | |
|     void     removeSatisfied  (vec<CRef>& cs);                                         // Shrink 'cs' to contain only non-satisfied clauses.
 | |
|     void     rebuildOrderHeap ();
 | |
| 
 | |
|     // Maintaining Variable/Clause activity:
 | |
|     //
 | |
|     void     varDecayActivity ();                      // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
 | |
|     void     varBumpActivity  (Var v, double inc);     // Increase a variable with the current 'bump' value.
 | |
|     void     varBumpActivity  (Var v);                 // Increase a variable with the current 'bump' value.
 | |
|     void     claDecayActivity ();                      // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
 | |
|     void     claBumpActivity  (Clause& c);             // Increase a clause with the current 'bump' value.
 | |
| 
 | |
|     // Operations on clauses:
 | |
|     //
 | |
|     void     attachClause     (CRef cr);               // Attach a clause to watcher lists.
 | |
|     void     detachClause     (CRef cr, bool strict = false); // Detach a clause to watcher lists.
 | |
|     void     removeClause     (CRef cr);               // Detach and free a clause.
 | |
|     bool     isRemoved        (CRef cr) const;         // Test if a clause has been removed.
 | |
|     bool     locked           (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
 | |
|     bool     satisfied        (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
 | |
| 
 | |
|     // Misc:
 | |
|     //
 | |
|     int      decisionLevel    ()      const; // Gives the current decisionlevel.
 | |
|     uint32_t abstractLevel    (Var x) const; // Used to represent an abstraction of sets of decision levels.
 | |
|     CRef     reason           (Var x) const;
 | |
|     int      level            (Var x) const;
 | |
|     double   progressEstimate ()      const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
 | |
|     bool     withinBudget     ()      const;
 | |
|     void     relocAll         (ClauseAllocator& to);
 | |
| 
 | |
|     // Static helpers:
 | |
|     //
 | |
| 
 | |
|     // Returns a random float 0 <= x < 1. Seed must never be 0.
 | |
|     static inline double drand(double& seed) {
 | |
|         seed *= 1389796;
 | |
|         int q = (int)(seed / 2147483647);
 | |
|         seed -= (double)q * 2147483647;
 | |
|         return seed / 2147483647; }
 | |
| 
 | |
|     // Returns a random integer 0 <= x < size. Seed must never be 0.
 | |
|     static inline int irand(double& seed, int size) {
 | |
|         return (int)(drand(seed) * size); }
 | |
| };
 | |
| 
 | |
| 
 | |
| //=================================================================================================
 | |
| // Implementation of inline methods:
 | |
| 
 | |
| inline CRef Solver::reason(Var x) const { return vardata[x].reason; }
 | |
| inline int  Solver::level (Var x) const { return vardata[x].level; }
 | |
| 
 | |
| inline void Solver::insertVarOrder(Var x) {
 | |
|     if (!order_heap.inHeap(x) && decision[x]) order_heap.insert(x); }
 | |
| 
 | |
| inline void Solver::varDecayActivity() { var_inc *= (1 / var_decay); }
 | |
| inline void Solver::varBumpActivity(Var v) { varBumpActivity(v, var_inc); }
 | |
| inline void Solver::varBumpActivity(Var v, double inc) {
 | |
|     if ( (activity[v] += inc) > 1e100 ) {
 | |
|         // Rescale:
 | |
|         for (int i = 0; i < nVars(); i++)
 | |
|             activity[i] *= 1e-100;
 | |
|         var_inc *= 1e-100; }
 | |
| 
 | |
|     // Update order_heap with respect to new activity:
 | |
|     if (order_heap.inHeap(v))
 | |
|         order_heap.decrease(v); }
 | |
| 
 | |
| inline void Solver::claDecayActivity() { cla_inc *= (1 / clause_decay); }
 | |
| inline void Solver::claBumpActivity (Clause& c) {
 | |
|         if ( (c.activity() += cla_inc) > 1e20 ) {
 | |
|             // Rescale:
 | |
|             for (int i = 0; i < learnts.size(); i++)
 | |
|                 ca[learnts[i]].activity() *= 1e-20;
 | |
|             cla_inc *= 1e-20; } }
 | |
| 
 | |
| inline void Solver::checkGarbage(void){ return checkGarbage(garbage_frac); }
 | |
| inline void Solver::checkGarbage(double gf){
 | |
|     if (ca.wasted() > ca.size() * gf)
 | |
|         garbageCollect(); }
 | |
| 
 | |
| // NOTE: enqueue does not set the ok flag! (only public methods do)
 | |
| inline bool     Solver::enqueue         (Lit p, CRef from)      { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); }
 | |
| inline bool     Solver::addClause       (const vec<Lit>& ps)    { ps.copyTo(add_tmp); return addClause_(add_tmp); }
 | |
| inline bool     Solver::addEmptyClause  ()                      { add_tmp.clear(); return addClause_(add_tmp); }
 | |
| inline bool     Solver::addClause       (Lit p)                 { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
 | |
| inline bool     Solver::addClause       (Lit p, Lit q)          { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
 | |
| inline bool     Solver::addClause       (Lit p, Lit q, Lit r)   { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
 | |
| inline bool     Solver::addClause       (Lit p, Lit q, Lit r, Lit s){ add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); add_tmp.push(s); return addClause_(add_tmp); }
 | |
| 
 | |
| inline bool     Solver::isRemoved       (CRef cr)         const { return ca[cr].mark() == 1; }
 | |
| inline bool     Solver::locked          (const Clause& c) const { return value(c[0]) == l_True && reason(var(c[0])) != CRef_Undef && ca.lea(reason(var(c[0]))) == &c; }
 | |
| inline void     Solver::newDecisionLevel()                      { trail_lim.push(trail.size()); }
 | |
| 
 | |
| inline int      Solver::decisionLevel ()      const   { return trail_lim.size(); }
 | |
| inline uint32_t Solver::abstractLevel (Var x) const   { return 1 << (level(x) & 31); }
 | |
| inline lbool    Solver::value         (Var x) const   { return assigns[x]; }
 | |
| inline lbool    Solver::value         (Lit p) const   { return assigns[var(p)] ^ sign(p); }
 | |
| inline lbool    Solver::modelValue    (Var x) const   { return model[x]; }
 | |
| inline lbool    Solver::modelValue    (Lit p) const   { return model[var(p)] ^ sign(p); }
 | |
| inline int      Solver::nAssigns      ()      const   { return trail.size(); }
 | |
| inline int      Solver::nClauses      ()      const   { return num_clauses; }
 | |
| inline int      Solver::nLearnts      ()      const   { return num_learnts; }
 | |
| inline int      Solver::nVars         ()      const   { return next_var; }
 | |
| // TODO: nFreeVars() is not quite correct, try to calculate right instead of adapting it like below:
 | |
| inline int      Solver::nFreeVars     ()      const   { return (int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]); }
 | |
| inline void     Solver::setPolarity   (Var v, lbool b){ user_pol[v] = b; }
 | |
| inline void     Solver::setDecisionVar(Var v, bool b) 
 | |
| { 
 | |
|     if      ( b && !decision[v]) dec_vars++;
 | |
|     else if (!b &&  decision[v]) dec_vars--;
 | |
| 
 | |
|     decision[v] = b;
 | |
|     insertVarOrder(v);
 | |
| }
 | |
| inline void     Solver::setConfBudget(int64_t x){ conflict_budget    = conflicts    + x; }
 | |
| inline void     Solver::setPropBudget(int64_t x){ propagation_budget = propagations + x; }
 | |
| inline void     Solver::interrupt(){ asynch_interrupt = true; }
 | |
| inline void     Solver::clearInterrupt(){ asynch_interrupt = false; }
 | |
| inline void     Solver::budgetOff(){ conflict_budget = propagation_budget = -1; }
 | |
| inline bool     Solver::withinBudget() const {
 | |
|     return !asynch_interrupt &&
 | |
|            (conflict_budget    < 0 || conflicts < (uint64_t)conflict_budget) &&
 | |
|            (propagation_budget < 0 || propagations < (uint64_t)propagation_budget); }
 | |
| 
 | |
| // FIXME: after the introduction of asynchronous interrruptions the solve-versions that return a
 | |
| // pure bool do not give a safe interface. Either interrupts must be possible to turn off here, or
 | |
| // all calls to solve must return an 'lbool'. I'm not yet sure which I prefer.
 | |
| inline bool     Solver::solve         ()                    { budgetOff(); assumptions.clear(); return solve_() == l_True; }
 | |
| inline bool     Solver::solve         (Lit p)               { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_() == l_True; }
 | |
| inline bool     Solver::solve         (Lit p, Lit q)        { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_() == l_True; }
 | |
| inline bool     Solver::solve         (Lit p, Lit q, Lit r) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_() == l_True; }
 | |
| inline bool     Solver::solve         (const vec<Lit>& assumps){ budgetOff(); assumps.copyTo(assumptions); return solve_() == l_True; }
 | |
| inline lbool    Solver::solveLimited  (const vec<Lit>& assumps){ assumps.copyTo(assumptions); return solve_(); }
 | |
| inline bool     Solver::okay          ()      const   { return ok; }
 | |
| 
 | |
| inline ClauseIterator Solver::clausesBegin() const { return ClauseIterator(ca, &clauses[0]); }
 | |
| inline ClauseIterator Solver::clausesEnd  () const { return ClauseIterator(ca, &clauses[clauses.size()]); }
 | |
| inline TrailIterator  Solver::trailBegin  () const { return TrailIterator(&trail[0]); }
 | |
| inline TrailIterator  Solver::trailEnd    () const { 
 | |
|     return TrailIterator(&trail[decisionLevel() == 0 ? trail.size() : trail_lim[0]]); }
 | |
| 
 | |
| inline void     Solver::toDimacs     (const char* file){ vec<Lit> as; toDimacs(file, as); }
 | |
| inline void     Solver::toDimacs     (const char* file, Lit p){ vec<Lit> as; as.push(p); toDimacs(file, as); }
 | |
| inline void     Solver::toDimacs     (const char* file, Lit p, Lit q){ vec<Lit> as; as.push(p); as.push(q); toDimacs(file, as); }
 | |
| inline void     Solver::toDimacs     (const char* file, Lit p, Lit q, Lit r){ vec<Lit> as; as.push(p); as.push(q); as.push(r); toDimacs(file, as); }
 | |
| 
 | |
| 
 | |
| //=================================================================================================
 | |
| // Debug etc:
 | |
| 
 | |
| 
 | |
| //=================================================================================================
 | |
| }
 | |
| 
 | |
| #endif
 |